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Abstract 

The purpose of the paper is to develop a method for the statisti­

cal analysis of a Markov branching process. We first describe a 

Markovian model for a family tree and apply likelihood methods 

for the estimation of the parameters. Next we derive the maximum 

likelihood estimates of the moments of the population size and 

find their properties using the theory of counting processes and 

martingales. 
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o. Introduction 

The present paper gives an example of an infinite dimensional 

(non-parametric) statistical problem, which is analysed using 

likelihood methods. In order to derive asymptotic properties we 

apply the theory of counting processes and martingales and the a-

symptotic theory for convergence of martingales to Gaussian pro-

cesses. 

The purpose of the paper is not so much to be directly useful in 

analysing family trees, but is considered a contribution to the 

application of the methodology of point. processes and product inte-

gration to statistics. 

1. The probability model for the family tree 

We shall consider a set I of individuals n, each characterized by 

a finite sequence of integers n = <il , ..• ,ik >, k = 1,2, ..• , which 

for k ~ 2 indicates that n is the ik'th child of the mother T(n) = 

<il , ... , i k - l >. See Harris (1963). We shall assume that if n E I, 

then T (n) E I. The individuals of the form n = <i> have no mother 

and constitute the original population at time O. 

We order the individuals lexicographically, that is <il, ••• ,im> < 

<jl'··· ,j,e.> if for some k = 1,2, ... we have i l = jl'··· ,ik - l = jk-l' 

i k ~ jk. Note that T (n) < n and that each individual has a finite 

number of ancestors. 

To each individual we associate a death time u and a number of 
n 

offspring produced at death y . Note that the birth time of an 
n 

individual coincides with the death time of its mother. We also 
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assume that u E [0,1], and that y E {O,l, ••• }. n n 

For notational convenience we introduce a fictitious individual ~, 

the common ancestor for the original population, i.e. T«i» = ~ 

and assume V~ = 0, that is we think of the original population at 

time t = 0 as having been born at time O. Thus there was a death at 

time 0 and an n-birth Le. Y~ = n. We thus assume ~ E I, and ~ < n, 

for all n E 1. 

the process {V ,Y } El 
n n n 

by We want to build a stochastic model for 

specifying the conditional distribution of (V ,Y ) given 
n n 

{tJI/J'YI/J}I/J<n and given that we start with n individuals at time 0* 

For this purpose let G(s,t) be defined for 0 ~ s ~ t ~ 1 with 

values in [0,1] such that the following conditions are satisfied 

(1.1) G(s,t) = G(s,u) G(u,t) , 

(1.2) G (s, .) and G ( • , t) are right continuous, 

(1.3) G(s,s) = 1 , 

We also consider p .(t), j E {O,l, .... }, t E [0,1] such that 
J 

(1. 4) 

(1. 5) 

p. (e) measurable for all j 
J 

p.(t) ~ 0, L. p.(t) = 1 for all j and t. 
J J J 

Finally we shall assume for convenience that G (s ,I) = 0 I 0 ~ S < 1 

and that p. (1) = 1 if j = 0 and 0 otherwise. This corresponds to 
J 

letting t = 1 be a point where all individuals are forced to die 

and leave no offspring. Similarly we define p. (0) = o. , that is, 
J In 

we start off with n individuals. 
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We shall now construct the distribution of (U ,Y ) El from the 
n n n 

parameters (G,P) and n. 

We define 

(1. 6) 

(1. 7) p{y =j I U,/,=u,/"Y,/,=j,/"t!J<n,U =u }=p. (u ) f o<u ~l, j=O,l, •.. 
n 'V 'V 'V 'V n n J n n 

Thus we see that given the pedigree of an individual n, G(uT(n) ,.) 

describes the distribution of the lifelength of n and, if it dies 

at u , then p. (u ) describes the probability that it is replaced 
n J n 

by j offspring. 

Note that we have fixed X(O) = nand that lines of descent of dif-

ferent children from the same mother develop independently. 

Due to the right continuity of G we see that U > U ( ). Note that n T n 
the process is inhomogeneous in time due to the fact that Pj(t) 

may depend on t. Since we have not assumed continuity of G(s,.) 

the process may have fixed points of discontinuity, where the 

probability is positive that the individual may die. 

It is easy to check that if G (UT (n) 1 s) > 0 then 

which means that G(s,u) has the interpretation that it is the pro .... 

bability that an individual seen alive at time s, will also be 

alive at time u. 

The function G(O,·) is decreasing and right continuous. There 

exists thus a point to E ]0,1] such that G(O,t) > 0, t E [O,tO[' 
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G(O,t) = 0, t E [tOil]. 

Now if u and t E [0, to [ we find 

G(u,t) = G(O,t) 
G(O,u) • 

Hence on [O,tO[ the function G(u,t) is completely determined by 

G(O,t) which is the lifelength distribution of an individual alive 

at time O. 

The role of to is best seen by considering 

Since G(O,s) > 0 and G(O,tO) = 0 we have G(s,tO) = 0 which means that 

all particles alive at time s will certainly die before or at to. 

The population itself, however, may continue to exist, since new 

individuals may be born at to' 

2. The statistical analysis ofa family tree 

Let us consider an observation of a family tree F = (U ,Y) I on n n nE 
a finite interval [0,1[. We shall assume that I is finite and that 

the number of individuals at time 0 is n. 

From (1. 6) and (1.7) we find the following expression for the pro­

bability of obtaining F. 

(2.1) L = n· {G (U ( )' U -) 
nEI T n n 

G(U ( ),U )}py (U ) 
T n n n n 

If G(s,·) is continuous this will be zero, but if atoms are al-

lowed we sometimes get a positive value. 
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We shall derive the maximum likelihood estimate in the sense of 
A A 

Kiefer and Wolfowitz (1956), that is, we shall find (G,p) such 

that for any (G,P) we have 

A A 
L(G,p) ~ L(G,p) . 

We clearly only need the expression for L if it is positive. We 

shall thus restrict attention to those functions G which have 

atoms at the pOints where the deaths have actually occured. 

In order to simplify the expression for L we introduce the random 

variablesK,TO" •. ,TK such that K = 1,2, .. o. and 

o = TO < Tl < .. 0 < TK < 1 which are the points where deaths have oc­

cured. 

In general one may find many deaths at any given time and we 

therefore define 

M .. 
1J 

= 2: l{U ( ) =T., U =T.} 
T n 1 n J n 

that iS f the number of individuals that are born at time T. and 
1 

die at time Tj" Let also 

N.(u) =2:1{Y =j, O<U ~u} 
J n n n 

O~u<l 

be the number of j ... births after time zero but before or at time u. 

Then N(u) = 2:. N. (u) is the number of deaths before or at time u, 
J J 

and X (u) = n + 2:. (j - 1) N. (u) is the population size at time u. 
J J 

Note that N.,N, and X are defined to be piecewise constant, right 
J 

continuous and that N. and N are increasing. The notation L1N(u) 
J 

is used for N (u) - N (u-) and we have the relation 

(2.2) 2: 
i~k, j=k+l 

M .. 
1J 
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since both sides indicate the number of individuals born before or 

at Tk who die at Tk+l " 

Similarly 

(2.3) L 

i~k, j >k 
H .. 

1J 

since both sides count the number of individuals who are born be-

fore or at Tk and who die at Tk+ l or later, that iS,who are alive 

just before Tk + l • Note that X (Tk+l ) > 0 if k < K .. 

With this notation the likelihood function (2.1) can be written 

L = 

The second factor is maximized by 

/\ 6Nk (Ti ) 
(2.4) Pk (T i) = 6 N(T . ) 

1 

or 

/\ dNk . 
Pk (t) = dN (t) 

where the right hand side is the Radon - Nikodym derivative of the 

measure determined by Nk with respect to that determined by N. 

The first factor is maximized as follows. Let 

S. = 1 - G(Ti,Ti""+l) 1 

R. = G (T i ,Ti~l) - G(Ti,Ti +l ) 
1 

v. = G(T.,T·+ l ) 
1 . 1 1 
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denote the probabilities of an individual dying before Ti +l , at 

Ti + l or after Ti +l given it is born at Tie We have Si +Ri +Vi =1 

and (1.1) implies that 

which shows that 

• V. 2 R . 1 J- J-

L M.. L M .. 

n 
i<j 

M .. 
{G(T.,T-:-) -G(T.,T.)} 1J 

1 J 1 J 

. <k<' 2 1J . <k . k 1 1J = n V 1= =J- R 1= ,J= + 
k k k 

which is maximized for Sk = 0 and 

A 
1 - V = k 

t-N(Tk +l ) 

X(T~+l) 

where we have used the relations (2.2) and (2.3). From this result 

we can write the estimate of G as 

A 
(2.5) G(s,t) = n 

]s,tJ 

using the product integral notation. 

1\ A 

(1 _ dN (u) ), 

X (u""') 

We have thus found (G,p) such that L becomes positive. This esti-

mate is the maximum likelihood estimate in the sense of Kiefer and 

Wolfowitz (1956). The estimates are the natural estimates, since 
A 
Pk(t) is nothing but the fraction of births at time t which were 

A 
k .... births, and G(s,t), when s.,..· t is small, is just the ratio of 

those surviving t to those surviving s. We have used the product 

integral notation, which seems to be the natural one for this type 

of estimator •. The estimator is an analogue of the Kaplan Meier 

estimator, which has been treated from this point of view by Jo.,... 

hansen (1978). 
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It is seen that the estimates are functions of the counting pro-

cesses {N.}. We can prove that· {N.} is sufficient for the parame-
J J 

ters (G,P). If we condition on{N.(u), j=O,.l, .•. ,uE [Oi-l[}.theh 
J 

we know all the variables K,Tl, •.. ,TK, where the processes jump 

and we also know how many die at u (L'lN (u)) as well as how many j -

birth we have (L'lN. (u) ). The only variability in the outcome, when 
J 

{N.} is given, is which individuals die and which of these give 
J 

rise to j - births. Due to the interchangeability between indivi-
. - -1 

duals these probabilities. equal (X(U)) and 

( 
L'lN (u) ) -1 L'lN (u) 

respectively. 
L'lN 0 (u) , • . • , L'lN j (u) , • . • 

Thus the conditional distribution of the actual outcome given {N.} 
J 

is a combinatorial coefficient, which proves sufficiency of· {N.}. 
J 

A A 
Now from {p} and G it is easy to reconstruct· {N.} and hence we 

J 

have found sufficiency of the maximum likelihood estimator of 

(p,G) • 

3 . The population: size X 

Often the observed quantity is the population si.ze X(u) and it is 

natural than to derive estimates of quantities derived from X, 

like the mean, the variance or even the distribution of X. 

It should be emphasized, however, that in general X is not a suf ... 

ficient statistic, since {N.} cannot be recovered from X. If the 
J 

functioh G is continuous,however, such that two jumps cannot oc-

cur at the same time, then L'I Nj (t) = l{L'lX(t) = j - I}, j '*' I, which 

shows that at least {N.}, j '*' 1 can be recovered from X in this 
J 

case. Clearly NI can never be found since a death followed by a 
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I-birth will remain unnoticed by X, the population size. 

Thus in general X is a reduction of the data which implies that 

certain parametric functions cannot be identified from the obser-

vat ion of X alone. 

In order to get a relatively easy description of the process X we 

shall assume that 

G(O,t) > ° , t < 1. 

We shall let G denote the probability measure determined by G(O,.), 

thus G(O,u) = G(]u,l]) = G]u,l]. It was proven by Jacobsen (1972) 

that X is now a Markov jump process and that the transition proba-

bilities are solutions of the forward and backward differential 

equations, even when G is allowed to have atoms. 

If P(s,t) denotes the transition probability matrix for X and v 

denotes the matrix of integrated intensities, see below, then the 

Kolmogorov equations take the forms 

(3.1) 

(3.2) 

P (s, t) I = f v(du) P(u,t) 
]S,t] 

P(s,t) - I = f P(s,u-) v (du) 
]s,t] 

where v depends on G and p as follows: 

Lernma3.l Let G denote the measure determined by G(O,.) then 

(3.3) v .. (A) 
1J 

i (rn) i G [t ]m-l G] t, lJi - m 
= J L (p. "+ (t) ~ 0 .. ) ( ) . G(dt) , 

A m=l J-1 m 1J m G[t,l]l 

i,jE{O,l, .•• }, Ac[O,l]. 

Here p~m) (t) denotes the m fold convolution of {Pk(t) }. 
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G(dt) 
= - f (1 - Pl(t)) G[t,l] 

A 

J:j: 1. 

Proof We shall first prove that 

(3.6) lim 
sft 

p{X(t) = j I X(s) = iJ- cS •• 
1J 

i 
= L 

m=l 

G]s,t] 

We shall think of s being close to t and that the i individuals 

alive at time s give rise to death times Tl , ... ,Ti . For j :j: i we 

want to find the probability 

m 
Am(s,t)=P{TkE]s,t], k=l, ... ,m, L (Yk-l)=j-lp Tk>t, k=m+l, ... ,i} 

k=l 

that is, the probability that m specified individuals die in 

]s,t], and that the increase in X is from i to j and that the re-

maining i.,..m individuals survive t. 

The probability can be found as follows 

Am(s,t) = 

G(dulJ .•. G(dum) (G]t/l]\i-m 
L f p. +1 (u l ) •...• p. +1 (u ) G] 1 J ) . + + . " Jl J ill G] l]m s, J l ... Jm=J-1 ]s,t]m m s, 

hence 
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l' Am (s,t) G]t l]i-mG[t]m-l 
st1mt'-:G=-'];-s-,-;t~];-= L Pj +1 (t) •... ·Pj +1 (t) I i a.s. [G] 

jl+ ... +jm=j-i 1 m G[t,l] 

(m) G]t,l]i-mG[t]m-l 
= p . "+ (t) . 

~ )-1 m G[t,l]l 

Now multiply by (i) and sum over m. This gives the probability that 
m 

the increment is j - i but only caused by deaths among the i indivi-

duals alive at time s. 

Clearly the offspring could also give rise to a second generation. 

This probability is negligable as the following argument shows. 

Consider the probability that an individual dies and that at least 

one of its offspring also dies in ]s,t]. This clearly equals 

B(s,t) = 
/G]t,l] \ k , G (du) 

J L { 1 - \ G] u , 1 ]) } Pk (u) G [ u I 1 ] 
]s,t[ k=l=O \ 

but B(s,t) /G]s,t] ~ 0, s t t. Note that the integration does not 

contain the point t, since if the first individual dies at t, the 

second will die later than t, due to condition (1.2) which ensures 

that lifelengths are strictly positive. 

Combining the above results we have proved (3.6) vvhen i =1= j I which 

shows that the intensity has the required form and hence that the 

integrated intensity v .. is given by (3.3). For j = i we use the 
1) 

fact that v .. = - L v ... The result (3.3) is more transparent if 
11 j =l=i 1) 

m-I G is continuous, since then G[t] = 0 unless m = 1. Hence we find 

v . . (A) 
1) 

G(dt) 
= J (Pj-i+l (t) - 0ij)i G[t,l] 

A 

and hence the usual result that 
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V .. 
1J = i VI (j-i+l) 

which shows that the j'th row of V is determined by the first row. 

This also holds in general but is perhaps most easily seen from the 

generating functions below. 

Let us introduce h t (z) = Lj Pj (t) zj, then we find from (3.3) 

V. (z ,A) 
1 

= L z j v . . (~~) 
j 1J 

G [t ] i i G ( d t) 
= f [{(ht(z) - Z)G[t,l]+Z} - z] G[t] 

A 

where the integrand is interpreted as a limit if G[t] =0. 

In particular 

and hence 

Vl(z,A) 
G (dt) 

= f (ht(z) - z) G[t,l] 
A 

dv.(z,·) 
1 (t) = 

(z + VI (z, Lt.]) ) i_ zi 

vl(z,[tJ) dvl(z,.) 

which shows that {vij } is completely determined from {vlj }. 

Corollary 3.2 From the observation of X alone only the parameters 

Pj(t)/(l-Pl(t» '1 j:l=l and f (l-Pl(t» G(dt) /G[t,l] 
A I 

are identifiable. 

Proof When the above parameters are given one can construct v .. 
1J 

and hence V and the distribution of X. 

We shall now turn to the moments of X and their estimates. The 

usual way of obtaining moments is via the probability generating 
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function which we shall therefore consider: 

From the backward and forward equations we get for f t(z) = s, 

(3~-/) f t (z) - z = s, 
G(du) 

f- - {h ( f ( z» - f ( z) } 
]s,t] u u,t U,t G[u,l] 

and 

(3.8) f t (z) - z = s, 
G(du) 

f {f _ (f _ (z» - f - (z)} G£u] 
]s,t] s,u u,u s,u 

where again the integrand is interpreted as a limit when G[u] =0. 

It follm-ls from (3. 7) that for s t t we have 

G[t] 
= (ht (z) - z) G[t,l] = 

Theorem 3.3 Under the assumption that 

f ,,2 G(du) 
"- j p .. (u) 1 < co 

-J G[u,] [O,t] j 

the variable X(t) has finite mean and variance. Differential 

equations for these can be found by differentiation of (3.7) and 

(3.8) for z = 1. 

The first part of this result follows from Lemma A.I in the appen-

dix. The proof of the second part will be omitted. 

We want to derive expressions for the mean and variance of X(t) 

given X(O) =1. We define 

m(s,t) = E{X(t) X(s) = l} 

v(s,t) = V{X(t) I X(s) = l} 
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and m2 (Sft) = E{X(t) (X(t) - 1} X(s) =1}. 

From the forward equation (3.8) we find by differentiation for z = 

1 the expressions 

m(s,t) - 1 = lI,t] m(s,u-) 111 (du) 

m2 (s,t) = f m2 (s,u-) 113 (du) + f m(s,u-) 112 (du) 
]s,t] ]s,t] 

and finally 

v (S,t) = f v (s,u-) 113 (du) + f m(s,u-)n (du) 
]s,t] ]s,t] 

where 

(3.9) 111 (A) f 2: ' G(du) = (J -1) Pj (u) G[u,l] 
A j 

112 (A) = f 2: '(' 1) ()G(du) 
J J.... Pj u G [u,l ] 

A j 
(3.10) 

113 (A) [{1+2: ' G[U] 2 G(du) = f (J .,.. 1) Pj (u) G[u, I]} .,... 1] 
A j G[u] 

(3.11) 

(3.12 ) 

One can show that the following relations hold 

m(s,t) -1 = f m(s,u-) 111 (du) 
]s,t] 

(3.13 ) 2 f m (s,u .... ) m(u,t) ]J2(du) 
]s,tJ 

and 

m(s,t)2_ 1 = f m(s,u-)2 113 (dU) 
]s,t] 

which give the relations between (m, m2 ) \. and (]J l' 112 ' ]J 3) . 
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f1 

then we have 

(3.14) 
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the expressions for the moments as 

= 
(ill 

~) and II = (1l01 
n \ 

\0 II ) m 3 

M(s,t) - I = f M(s,u-) ll(du) 
]Sf t ] 

or in product integral form: 

(3.15 ) 1>1( s ,. t ) = n (I + d II ) . 
]s,t] 

follows. Let 

Now these expressions for the mean and variance have been derived in 

the model where any G is allowed (provided G(O,t) > 0, t < 1). Thus 

in particular the results hold for the model with parameters 
A A 

(p,G). Thus we can derive the maximum likelihood estimates of m 

and v (or M) by first estimating II and then insert into (3.15). 

If we let 

cr (A) = f G(du) 
A G[u,l] 

then G]s,t] = n (l - dcr) 
] s, t] 

and we find from (2.5) the estimate 

and 

(3.16 ) 

(3.17) 

A 
1l1(A) 

A 
cr (A) = f dN(U) 

A X (u-) 

dN j dN 
= f L (j-l) dN X(u-) = 

A j 

dX 
f X(u-) 
A 

dN. 
= f L j(j-l) X(u~) 

A j 
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/I. 
(3.18) 113 (A) 

(3.19) 
/I. 
n (A) 

2 dN. ( dN. \ 2 
= i ~ (j - 1) X (u ~ ) - i \ ~ (j - 1) X (u~) ) 

Hence we find 

/I. /I. 
(3.20) m(s,t) = n (l+d]Jl) = 

]s,t] 

and 

n (1 + X(~~» 
]s,t] 

= X (t) 
X (s) 

(3.21) 
/I. 
V (s, t) 

X(t)2 
= X (s) 

f L j (j _ 1) dN j (X (t) \ 2 + X (t) 
]s,t] j X(u-)2 - \X(s») X(s)· 

Note that the estimate of E{X (t) X (s) = I} is just X (t) / X (s) . 

This is in agreement with the fact that X(t) is a linear combina-

tion of the sufficient statistics and that in analogy with the re-

suIt for finite dimensional exponential families one would expect 

that the estimate of a linear function of the sufficient statistic 

would be just the observed value. 

If one wants moments of higher order the same approach would give 

a matrix of moments expressed as a product integral of simple 

functions of the measures 
.p G (du) 

fA Lj J Pj (u) G[u,l] . 

Note finally that the estimate of v is not a function of X alone, 

one needs more information to calculate L. j (j - 1) dN.. If how-
J J 

ever, G is continuous then only one jump can occur at any given 

time and then L...! j (j - 1) dN. = f (dX) 2 + f dX I 
j J 

/I. 
and then v can be 

calculated from X alone. 
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4. Exact properties of the rrtoTl1.entestitrlators 

We have derived the estimators of the moments m, v and ~1. We now 

want to find a stochastic integral equation which admits these 

estimators as solutions in order that we can derive some properti-

es. The basic tools are the results about counting processes and 

martingales and in the next section v.Je shall then apply the asymp-

totic theory of martingales to find the asymptotic properties. 

We shall assume from now on that G(O,o) is absolutely continuous 

and we define the hazard or intensity by 

dG 
A(U) = du/G]u,l] 

such that 

t 
G]t,l] = n 

lOft] 
(1 - A (u) du) = exp {- J A (u) du} . 

o 

Since G(O,t) >0, t<oo we find that 

t 
J A (u) du < 00 

o 
t < 1. 

1\ 
We can now simplify the expression for )J and ]1, since we now have 

only one jump at a time. 

Let us define 

(4.1) C. (u) = 
J ( 10 

and 

(4.2) 

(j - 1) (1 - l/X (u) ) ) 

2 + (j - 1) Ix (u) 

c. = 
J 

1 {X (u) > O} 

Then we find from (3.9)~(3.12) and (3.16)-(3.19) that 
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(4.3) 11 (A) = f L C. (j - 1) Pj (u) A (u) du 
A j J 

and 

A dN. 
(4. 4) ]1 (A) = f L c. (u-) (j - 1) X(u2) 

A j J 

We shall first derive some properties of the counting processes 
A A 

{N.} and then derive the properties of 11 and finally M. 
J 

Consider the processes {N j } as a marked point processes on [O,l[ 

with jump times 

T = inf {t I N (t) ~ n} 
n 

indicating the occurence of the n'th death. The mark of this point 

is Zn = j if the n I th death gives rise to a j-birth. Since G is 

continuous we find Tn < Tn+l . Let T 
00 

=lim 
n-')oo 

m 
.L • 

n 

Lemma 4.1 The processes {N.} are non-explosive in the sense that 
J 

T = 1 a. s. if 
co 

Proof omitted. 

t 
f L j p. (u) A (u) du < 00 ( J . o j 

t < 1. 

Thus we only have a finite number of jumps on any compact interval 

of [0,1 [ . 

We now want to find the compensator for N. as discussed for in­
J 

stance by Bremaud and Jacod (1977). They give an explicit formula 

for the (predictable) compensator N .. 
J 
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Lemma 4.2 The compensator for N. is given by N. (t) = 
J J 

t 
f p. (u) X (u-) A (u) du, that is N. = N. - N. is a local martingale o J J J J 

'" and N. is increasing and predictable. 
J 

Proof omitted. 

We shall also need some results about stochastic integrals and 

Stiltjes integrals with respect to counting processes. 

The following result has been taken from Boel, Varaiya and Wong 

(1975) • 

Lenuna 4.3 Let Y .. I i, j (IN be predictable processes, such that 
1J 

(4.5) 
t 2 

ELf Y.. dN. < 00 , 

j 0 1J J 
t<l, iEJN 

than the Stiltjes integrals M. = L. f y". d (N .• - N . ) 
1 J 1J J J 

are stochastic 

integrals and M. is a local square integrable martingale with 
1 

(4.6) <Mi,Mk > = L. f Y .. Yk . dN. 
J 1J J J 

A 
We shall now return to ]1 which is a linear combination of integrals 

with respect to {N.}. We first define 
J 

(4.7) ]1 (A) L f C. (u-) (j -1) p.(u) ).(u) du. 
J J . j A 

A 
The main result about ]1 _.]1 can now be formulated as follows: 

Theo:Eem 4~4 If ol L. j4 p. (u) A (u) du < co, t < 1, then the process 
J J 

A 
]1~]1 is a matrix valued local square integrable martingale and 

(4.8) 
A 2@ (j ~l) 2 

<]1 """ ]1> = Lj f Cj (u.,...)· X (u) Pj (u) A (u) du, 
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where 2 ® denotes the Kronecker product of the matrix with itself. 

Proof Let the norm I A I of a matrix be I A I = sup. L. I a .. I. From 
1 J 1J 

we find that condition (4.5) is satisfied if 

t 
I = L E f 

j 0 

2 (j - 1) 2 
ICj(u-)I 2 dN. < 00 • 

X (u-) J 

Now ! Cj (u-) ,2 < (j + 2) 2 which shows that 

t 
I < L f (j + 2) 4 p. (u) le (u) du < co • 

j 0 J 

A 
Thus the elements of the matrix ~ - ~ are local square integrable 

martingales and from (4.6) we find 

A 
f C . (u .... ) ® C. (u-) I j- 1 \ 2 dN. <~ ~> = L 

j J J \.X(U-») J 

= L f C. (u-) 2® (j -1) 2 
p. (u) Ie(u) du . 

j J X (u-) J 

This completes the proof of Theorem 4.4. Note that in particular 

A 
E ~ = E ~, and in general E ~ '" ~, but the difference is small when 

X (u-) is large, since C. (u-) RI C .. This will be used in the next 
J J 

section where asymptotic results will be proved. 

A 
Before proceeding to the results about M we need a rather techni-

cal Lemma which will also be used in the next section. 

We define M = IT (I + d~) 

Lemma 4.5 If Lj rft j8 Pj (u) le (u) du < co, t < 1, then the variables 
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l\ _ .2"'-12. _2( j-l \2 _ 
(4.9) Znj(s) =n/M(O,s ) I /M (O,s) I /Cj(s ) I \X(s-)j X(s )Pj(s)\(s) 

are integrable uniformly in nand s < t and we have 

t 
L / sup E I Z . (s) I ds < 00, t < 1 • 

.. j 0 - n . -n J - . .. ... .-

The proof of this result, contains the basic evaluations of moments 

of the branching process but since it is rather involved we shall 

leave the proof for the appendix. 

A "'-1 
We shall here apply the result to give some properties of 14M . 

Theorem 4.6 
t 8 A "'-1 

If / L. j p. (u) \ (u) du < =, t < 1 then M M ..,.. I is a o J J 

matrix valued local square integrable martingale with 

(4.10) A "'..-1 A 2® A '" 2® 
<Ml'vl ..-·1>=/ M(O,s"') d<l1"-l1> M(O,s)-

=L / (~(O(s-)C. (S-)M- l (O,s»2® '(j_l)2 J X(S-) Pj(s)\(s) ds. 
j 

Thus in particular 

A'" 1 
E MM- = I 

and 
A "'-1 A'" 1 

V (M LvI ) = E<M lYI - I> . 

Proof Fix a sample path' {N.} and consider the matrix valued func';" 
J 

A 
tion s ~ M(O,s) M(s,l) . This function is differentiable with re-

spect to a measure 110 that dominates' {N.} as well as Lebesgue mea-
J . 

sure. We find 

d A 
-- M ( 0 ,s) ~1( s , 1 ) 
d110 

and hence 

A '" 
A . d11 A (d \ 

= M (0 , s..-) d 11 0 M ( s ! 1) + H ( 0 , s..,..) \ - d :0 j f.1 ( s , 1) 
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/\ /\ /\ 
M(O,s) M(s,l) ~ M(O,l) = J M(O,u-) d(].1 -].1) M(u,l) 

[O,s] 

J 
[O,s] 

/\ /\ ~-l 
M(O,u-) d(].1 -].1) M (O,u). 

/\ "" 1 
This relation gives M1JI"'" as a Stiltjes integral with respect to 

A 
the measure determined by u ~ (p .... ].1) [O,u]. In fact it is also a 

stochastic integral. We express the right hand side as 

(4.12) 

and find that Lemma 4.5 implies condition (4.5) of Lemma 4.3. 

Hence the conclusion of Theorem 4.6. 

The result of Theorem 4.6 is rather complicated but we can find 

some consequences for the individual terms of the matrix. 

/\ ~-l 
Consider the upper left hand corner of H M -, I which is just 
/\ 
m(O,s) fm(O,s) ,",",1. On the interval l{X(s-) >O} we have m=m and 

hence we have the well known result that 

x (s) - 1 
nE{X(s) I X(O) =l} 

is a local square integrable martingale. 

We can find the variance from 

v( X(s) \ /\ ~-l . s 
(j -"- 1) 2 

Pj (u) A (u) du . = E<m (0, s) m (0, s) ,-1> = J 
.,-

,nm(O,s) ) "-

0 j n m (0, u) 

This result could also be derived from the expressions for the mo-

ments in Section 3. Of more direct use are the results about the 
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asymptotic properties in the next section. 

5. P"symptotic results for the momen:t estimators 

A A 
We shall consider the asymptotic properties of ~ and M when X(O) = 

n -+ 00. 

The basic idea is that the counting processes, suitably normalized, 

converge weakly to Gaussian processes and that this holds for sto-

chastic integrals with respect to these, as well. 

t dN· 
Some asymptotic properties of the stochastic integrals J X(u~) 

have been studied Harrington and Fleming (1978) in connection with 
t 

the estimation of Jp. (u) A (u) duo o J . 

The results that we need are due to Aalen (1977) and Rebolledo 

(1977). We shall use the formulation of Rebolledo (1977) I see also 

Aalen and Johansen (1978). 

The basic results can be formulated in 

Lemma 5.1 Let N. have compensator 
J 

t 
= J A . (u) du and as­o nJ 

sume that H . is a predictable process with values in the space 
nJ 

of p x p matrices. 

We shall assume that 

(5.1 ) P 
H . (t) -+ 0 f 

nJ 
n-+co, t<l, j E:IN 

(5.2) H 2G9. (t) P 2G9 A . (t) -+ g. (t) I 
nJ nJ J 

n -+ 00, t < 1, j E :IN 

where g. is a deterministic function with values in the space of 
J 

p x p matrices. 
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H2~ (t) A . (t) is integrable uniformly in 
nJ nJ 

n for each t < 1 and j E ill 

t 
L: f sup E 1Hnj (u) 12 Anj (u) du < 00 

j 0 n 

t 
. - - -- -L: - fIg. (u n 2au 

j 0 . J . 
< co • 

Then the Stiltjes integrals Y . = f H . d (N . - N.) are stochastic 
nJ nJ J J 

integrals and for each finite set J c ill we have 

vlhere the Yj are independent Gaussian processes with <Y j> (t) = 

t 2® rI gj (u) duo 

Further Y = L:. Y . and Y = L:. Y. exist 
n J nJ J J 

and Y w 
Y ! => n~oo 

n 

and V(Y ) ~ V(Y) L f 2® ( ) du , = g. u n ~co. n j, J 

Proof What we have to prove is that the results of Rebolledo for 

a finite number of martingales can be applied here to the countably 

many processes, since we have sufficiently small tail sums. 

From assumption (5.4) we see that 

t 
L.E f 
j 0 

2 I H . (u) I A . (u) 
nJ nJ 

du < co. 

This shows that condition (4.5) is satisfied and that the stocha-

stic integrals Y . and Y - L: Y . are local square integrable nJ n - j nJ 

martingales and finally that 
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L J H2~ (u) A ,(u) duo 
j nJ nJ 

liJe also find 

(5.6) 

(5.7) 

t 2 
IV( L Y ,) (t) 1=1 L E<Y ,>(t) I~ L J supE1H (u) I A (u) du 

nJ nJ 0 n nJ' nJ' j>M j>M j>M 

tv ( L 
j>M 

Y,)(t)I < 
J 

t 
L J 

j >~J[ 0 

2 Ig, (u) I du. J . 

As M ~ 00 these variances tend to .zero uniformly in nand it follows 

from Kolmogorov.s inequality for martingales that 

and 

sup 
n 

P{sup 1 L 
u~t j>M 

Y ,(u) 1 ~ 
nJ 

E} ~ 0 r 

P{sup I L 
u~t j>1v1 

y, (u) 1 ~ E} ~ 0 , 
J 

Next we shall prove that 

M~oo 

y,;;t 
nJ 

y, I 

J 
n ~ 00 and M fixed. 

This follows from the general conditions of Rebolledo (1977) if we 

can prove that 

(5.8) 
t 

E J IH, (u) 12 1 {IH ,(u) I > E} A ,(u) du ~ 0 o nJ nJ nJ 

(5.9) 
t 2ti9 P t 2ti9 
J H, (u) A, (u) du ~ J g, (u) du , 
o nJ nJ 0 J 

We have assumed that H2~ A , is uniformly integrable and that 
nJ nJ 

H ,(n) E 0, this implies (5.8). 
nJ 

Next consider 
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R . (u) = I H . (u) 2® A . (u) - g. (u) 2® I 
nJ . nJ nJ J 

p 
We have assumed that R . (u) -+ 0 I hence since R . (u) 

nJ nJ 

ly integrable this implies that for each u and j 

is also uniform-

EIR .(u) 1-+ O. 
nJ 

We also assumed, (5.4) and (5.5), that sup E IR . (u) I 
n nJ 

is inte .... 

grable with respect to u on [O,tJ. Hence by dominated convergence 

t 
we find that f El R . Xu) I du -+ 0 which again shows that o . nJ 

l R . (u) du ~ O. o nJ 

This establishes the regularity conditions of Rebolledo and we 

find that any finite set of the Y . converges to the set of Y., 
nJ J 

which have the stated variance. 

Finally (5.6) and (5.7) imply that 

v{~. Y .} -+ V{~. Y.} 
J nJ J J 

/\ 
The main result about the estimate ~ can now be formulated in 

Theorem 5.2 If ~j eft j 4 Pj (u) A (u) du < co, t < 1, then 

L f (j - 1) C. dU. = W 
j J J 

(1 '-1) where C j = 0 J 2 and {U j } is a sequence of independent Gaussian 

processes with <Dj> = f (Pj (u) A (u» / m(O ,u) duo 

Further 

/\ P 
sup I (~ ..,.. ~) (O,U) I -+ 0 T 

u~t 

and 

v (W) , n-+co. 
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Proof We have the expressions 

and 

A 
].l(O,t) 

t 
].l(O,t) = L J C. (U-) (j -1) p. (u) A(U) du J .._.. J ... 

j 0 

t 
].l(O,t) = L J c. (j - 1) p. (u) A (u) du. 

j 0 J J 

Let us first evaluate 

t 
Vn (~-].l) (O,t) = L J Vn(Cj(U"") -Cj)(j -1) Pj(u) A(U) du. 

j 0 

Now Vii I C j (u) - C j I < Vu ~ 1 ~: j 1 {X (u -) > O} + Vn (j + 2) 1 {X (u -) = O} 

and hence 

E Vn sup l].l - ].l I (0 ,s) 
sft 

< t (1 n 1 {X (u-) > O} \ 2 = J - E X (u"'") + Vnp{X(u-) =O}j LJ. (j+2) PJ'(u) A(U) duo 
o Vn 

E n 1 {X (u-) >O} 
We show in the appendix that X(u-) is uniformly bounded 

and hence the first part of the integral goes to zero. The second 

part is evaluated as follows 

Vii p{X(u-) = O} ~ (1 - G(O,u» n Vn ~ (1 - G(O,t»n Vn 

which shows that the second part of the integral goes to zero. 

Thus we can throughout replace ].l by ].l in the results to be proven. 
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A '" 
We shall now discuss the process Vn (].1 - ].1). We define 

. ·'1 
p.(u)X(U-)A(U), H .(u) =C.(u-) x1-) 

J . nJ J u-
Vn, Y . (t) = 

DJ··· . 

A . (u) = 
DJ 

t ,r:- j-l _ _ 
f vn C . (u-) X ( ) d (N . N .) , g. (u) - C. o J u- J J J J 

(j -1) vp. (U)A(U) /m(O,u) , 
J 

then 

A '" Vri- (il - -P) =- L. Y--. 
J nJ 

To prove convergence we must now check the conditions from Lemma 

5.1. 

p 
From X(u) / n ~ m(O,u) we find immediately that 

. 2® P 2® H .( u) A. (u) ~ g. (u)· • 
nJ . nJ J 

Next evaluate H . 2® A . as follows 
nJ nJ 

H . (u) ~ 0 and 
nJ 

rH . (u) ,2 A . (u) 
nJ nJ 

< Ic.(u-) ,2 (j _1)2 nl{X(u-) >O} () A(U) 
. J X (u-) Pj u. 

< 4 n l{X(U~) >O} 
(j + 2) X(u ) Pj (u) A(U) 

which shmvs that H .2® A . is uniformly integrable and that 
nJ nJ 

t 2 
L f sup E I H . (u) I A . (u) dt 
j 0 n nJ nJ 

t 
< L f (j + 2) 4 p. (u) A (u) du 

j 0 J 

nl{X (u-) > O} 
sup E X (u-) 

which is finite since 

nand u ~ t . 

Finally 

. nl{x (u"'")· >0 } 
X (u"'") 

n,u~t 

is integrable uniformly in 

t 
L fig. (u) 12 du . J 
j 0 

< t (j + 2) 4 Pj (U)A (u) du 
~ c! m(O,u) 
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t 
<L: f (j+2)4 p .(U)A(U) du/m(O,t) <co 

J . 
j 0 

Thus Lemma 5.1 applies and we find the results of Theorem 5.2. 

We can now state our main results about the moment estimator. 

Theorem 5.3 If L: j it j 8 Pj (u) A (u) du < co, t < 1 then 

- 1\ yn (M (0, t) .,.. M (0, t) ) 
t 

w 
=> f M (0 , u) dW (u) M (u It) 

and further 

and 

o 

t 
= L: (j.,.. 1) f IYl(O,u) c. M(u,t) dU. (u) 

j 0 J J 

sup 1~(O,t) - M(O,t) I !; 0 
u~t 

n~co 

1\ 2® 2 p. (u) A (u) 
V{vn(M-M)} ~ 3: f (M(O,u) CjM(u,t» (j-l) ~(o,u) du,n~co. 

Proof Consider first 

t "'-1 
= f M(O,s) dVri (11- 11) M (O,s). 

o 

Now IM(O,s) t as well as IM-l(O,s) I are uniformly bounded in (OJ't) 

and hence 

'" -1 P 
sup rVri (MM .,.. I) (O,u) I ~ 0 
u~t 

and we shall hence only consider the process 
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_ 1\ "'-1 t 1\ 1\ '" 1 
Vn (:filM - I) (Oft) = J M(O,s-) d(]J - 11) VnH- (O,s) • 

o 

From Theorem 4.6 we have that it is a local square integrable martin-

gale and that its variance is given by 

1\ ...... -1 
which by Lemma 4.5 is bounded uniformly in n. Hence V {M M } ~ 0, 

1\ ""-1 P 
n ~ ex) which shows that sup I M M (0, u) - I I ~ 0 which again 

1\ u~t 
shows that H is a consisten-t estimator of M and hence of ~JI. 

M. 

To prove the asymptotic normality of 
1\"'-1 

Vn (lYl M .- I) we define 

H . (u) 
1\ "'-1' j-l 

Vn = M(O,u-)C. (u-)M (O,u) 
X(u-) nJ J 

A . (u) = X(u""") p. (u) A(U) 
nJ J 

g. (u) M (0, u) -1 jPj (u) A (u) 
(j - 1) = c. M (O,U) 

J J m (0 , u) 

1\ 
From the consistency of t4 and M we find that H . (u) go, 

nJ 
H . (u) 2® A . (u) g g. (u) 2® • 

nJ nJ J 

Next evaluate 

this variable is by Lemnla 4.5 uniformly integrable and satisfies 

t 
L J sup E IH . (u) ,2 A . (u) du < ex) 

j 0 n nJ nJ 
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which shows that Lemma 5.1 can be applied and this then completes 

the proof. 

t 13 
Theorem 5.4 If L. f j p. (u) A (u) du < co, t < 1 then a consistent 

J 0 J _ A 
estimate of the asymptotic variance of Vn (M - M) is given by the 

stiltjes integral 

t(A A )2®·n(j~1)2 
= L of I M ( 0 , s -) C J' M ( s - , t) . 2 dN. 

j \ X (s-)· J 

Infact 

A p 
sup IV(O,s) - V(O,s) I =+ 0 • 
s~t 

proof 
A "'-1 

The variance of Vn (M!J[ - I) is given by 

A "'-1 
E Vu <MI"f .,.. I> (t) 

t (A "'1 )2®n (j-l) 2 
= L E f M ( 0 , s -) C J' (s - ) M - (0, s ) 2 dN. 

j 0 X (s-) J 

We replace ~""'l(O,s) by ~-l(O,s-) and N. by N. and derive the sto-
J J 

chastic process 

z (t) 
n 

Let Z (t) by the same expression with N. replaced by N .. 
n J J 

The process Z - Z is a square integrable local martingale if we 
n n 

can prove that the integral 

t A A-I 4 n 2 (J'~l) 4 
I = L f E n·1(o,s-) C. M (O,s-) I 3 l{X(s-»O} p.(u) A(U) du 

n j 0 J X (s-) J 

is finite. 
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The proof is analogous to that of Lemma 4.5 as given in the appen-

dix. The same application of Holder1s inequality will show that 

n I is bounded, and hence that I ~ 0 I n ~ co. 
n n 

Thus Z - Z is a local square integrable martingale, with a vari­n n 

ance which tends to zero as n ~ co. Hence 
._p­

sup lz (s) - Z (s) I ~ 0, 
s~t n n 

n ~ co. 

We shall now find the limit of Z . 
n 

From 

it follows that 

A A-I (01 
1JIC.M = 

J 

A-I AA_2) 
(j-llm 2 + vm 

A A-I -1 P 
IMC.M .... MC.!>'I I/(j-l) ~ 0 

J J 

Inl{X(s-»O} . ·1· P 
uniformly in [O,t]. Since also .... I ~ 0 

X(s~) m(O,s) 

uniformly in [Oft] it follows that 

Z (s) 
n 

s 
L J 
j 0 

uniformly in [Oft]. 

( 1 )2@ M(O,u) Cj M (O,u) 

Combining these results we find that 

(j-l) 2 Pj (U)A eu) du 

m (0, u) 

A 
V(O,t) = Z (t) ~(O(t) 2@ 

n 

t 
= L J 

j 0 
(

A A )2@n (j-l) 2 
M (0, s-) CJ' fv1 (s- I t) -~--'-;2::-- dN . 

X (s .... ) J 
n 

converges in probability and uniformly in [O,t] to the expression 
A 

for the asymptotic variance of 'In (M - M) . 
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6. Appendix 

We shall first prove some inequalities for Markov branching proces~ 

ses and then apply them to the proof of Lemma 4.5 and Theorem 5.4. 

'" (A) = J 2 p-l L ( a I? + . p) () G (d 1.1) 
'Yp J J Pj U G[u,l] , 

A j 

then 

E{Z(t)P I X(O) =l} < exp (cp ] 0 ,t]) - 1 . 
P 

Proof We define 

m~ n) (s, t) = E { (Z (t) - Z (s) ) p 1 {O < N ( t) - N ( s) < n} X(s) =l}. 

Now Z(t) -Z(s) = L' a.(N.(t) ..... N.(s» and hence N(t) ~N(s) =0 => 
J J J J 

Z (t) .,.. Z (s) = 0 which shows that 

m~n) (s,t) = E {(Z(t) -Z(s»Pl{l ~ N(t) -N(s) ~ n} I X(s) =l}. 

Since there is at least one death in ]s,t] if N(t) -N(s) ~ 1 we 

decompose after the first death time U and the birth size Y as 

follows 

m~n) (Sf t ) = 

Under the condition in the expectation we have /':, N (u) = 1 and 

Z(t) - Z(s) = Z(u) -Z(s) + (Z(t) -Z(u» = a k + L~ (Zi(t) -Zi(u» 
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where (Z. (t) - z. (u», i = 1, •• . /k are LLd. and each gives the in-
1 1 

crement of a Z'process starting with 1 individual at time u. Let 

N(i) denote the number of deaths in this process, then 

1{1 ~ N(t) -N(s) ~ n} ~ l{O ~ N(i) (t) _N(i) (u) < n-l}. 

We can then evaluate the integrand as follows: 

E[ (Z (t).,..Z (s) )p i {l&N (t) -N (s) ~n} I X (s) =1, U=u, Y=k ] 

~Ef[ ~ (akk +Z. (t) .... Z. (u) )l{O~N(i) (t)-N(i) (u)~n-l}JPlx(s)=l,U=U,Y=kfl 
l i=l 1 1 

< 2P- l (a~ + k P m~n-l) (uft) ) 

This then gives the recursion 

m(n) (S,t) ~ cp (Sf t ) + 
p p J m (n-l) (u, t) cp (du) . 

p p ] s, t] 

From m(O) (Sit) < 1 we find by induction that p . 

m(n) (s,t) < 
p 

n 
L J cp(dul ) ... cp (duk ) < 

k=l s<ul < •.. <uk~t P P 

n 
L ( Cpp ] Sf t])k /k! 

k=l 

Now we let n ~ 00 and obtain the result of Lemma A.l. 

Lemm.a A.2 Let B be binomially distributed with parameters (n,p) 

then 



and 

"(on \k < 
E l+B) 

35 ~ 

nk (k+l)! 

(n+k) (k) pk 

nk k! " 

(n+k) (k) pk . 

proof From the inequality 

it follmvs that 

1 < 
zk 

(k+l) ! z f; 1 (Z+l) ... (Z+k) , 

< "Ck+l)!" nk n+k (n+k) "y n~y 
(n+k) (k) pk Y:k+l \ y p q 

which proves the first result. The other one is proved similarly. 

CorollaryA.3 The variables 

are uniformly integrable for all p. 

Proof It is clearly enough to prove that 

P 
E {(x tS») 1 {X (s) > O} I X (0) = n} 

is bounded uniformly in n, and s ~ t and any p ~ 1. 

n " 
Let B (t) = L 1 {X (t) > O} { where Xl" .• ' X are independent identi .... 

1 v n 

cally distributed Markov branching processes each starting with 1 

individual at time O. Note that B(t) is binomially distributed 

(n,p(t»~ with 

p (t) = p {Xl (t) > O} > G ( 0 , t) . 
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We now evaluate as follows: 

( n \p 
,X(s») l{X(s»O} < 

l n \P 
,B(S») l{B(s) > O} + n P i{B(S) = O} 

since clearly X(s) ~ B(s). The first term has a bounded mean by 

Lemma A.2 and the second since P[{B(~) = O}-,X(O) =nJ ~ 

(l""G(O,s»n ~ (l-G(O,t»n decreases exponentially fast. Note 

that the evaluation is independent of SE [OftJ, since pes) is 

bounded below by G (O! t) > O. 

Lemma A. 4 Let Z = ~ a. N ., a. ~ 0 r then for any p and q ~ 1 we 
J J J 

have that if <Pp (0, t) < 00, t < 1 then 

{l n \q(Z(s)\p } 
E ,B (s) 1 {B ( s) > O}) ,-n-) 'X (0) = n 

and 

are bounded uniformly in nand s ~ t. 

proof 
n 

If X(O) =n, then we write Z(t) =~ z. (t), whereZl, .•• ,z 
1 1 n 

are independent identically distributed processes starting with 1 

individual at time O. Then (l ~n Z. (t»)P < 1 ~n Z~(t) 1 and hence 
n 1 1 = n 1 1 

X(O) =n} 

(n \q p = E[l{Bl (s) >O} ,BI (s») I X(O) =nJ E(Zl(s) I X(O) =n) 

.. (n \q p 
+ E[l{B' (s) +1>0},B 1 (8)+1) I X(O) =nJ E(Zl(s) I X(O) =n) 
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where we have decomposed the integral according as Xl(s) =0 or 
n 

Xl(s) > O. We have used the notation BY (s) = r: l{X. (s) > oL It 
i=2 1 

now follows from Lemma A.l and A.2 that I(s) is bounded uniformly 

in s ~ t and n. 

- --- --Next cons-ider-

n g l{B(s) = O} I X(O) =n E[( Z(nS»)P ] 

X(O) =n] 

Xl (0) = I} P{B' (s) = 0 I X(O) = n} 

p n-l 
= n g E{Zl (s) I Xl (0) = I} (1- G(O ,s)) 

g n-l 
< n (1 - G ( 0 It) ) (exp (<p ] 0 , t]) - 1) 

p 

which is bounded uniformly in nand s < t. 

We can now prove Lemma 4.5. 

We have 

2 < 2 { } We first evaluate IC j (s-) I. (j + 2) 1 X(s-) > 0 . Next vle get for 

any matrix M = n (I + d}J) that 

2 . 
IM(O,s) t ~ max(m(O;s)+v(O,s),m~O,:s» < 3m2 (0,s) +2. 

and hence 

t"'<J2 f"'oJ ,-...J 

IM- l (O,s) I < max(m (O,s)+v(O,s) ImeO,s» 

~3(0,s) 

< 3m2(0 ,s) + 2 

",,3 
m (O,s) 
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Now m (0, s) = m (0 , s) on the interval vlhere X (s"") > 0 and hence 

bounded below since 

m (0, s) ~ G (0, s) ~ G (0 I t) > 0 0, 

. -Similarly. one proves _that - ~2 ~ ]J2 _and ··~2 ~ m2-I - and by Lemma A.l f 

m2 (O,s) = E{X(s) (X(s) -1) I X(O) = l} is bounded uniformly on 

[OTt]. Thus the coefficient 
"'-1 2 

IM (O,s) I is bounded by some con~ 

stant A(t), say. 

Next consider 

1\ 
IM(O,s-) I 

X(s-)2 
~ 3 

n J 
[ 0 , s [ 

L, j (j -:-1 )dN , 
_~J ______ =--=J + 2 

2 . 
X(u-) 

n 
Let Y = L j j (j ... l) Nj and B (u) = Ll l{Xv (u) > O} then 

X (s-) 2 .. 2 ~ 2 + 3 Y ( s .... ) 1 {B ( s -) > O} + 3 X (s'" ) Y ( s .... ) 1 {B ( s.,. ) = 0 } 
n B(s .... ) 2 n 

and 

IZ ,(s) I < ldt) ,(2 + 3 X(s-)2y (s-) i{B (s-) >O} 
nJ . 2 

n B (s-) 

X(s-) 2 \2 l{X(s-»O} 4 
+ 3 Y(s-) l{B(S-)=O}j' n (j+2) p, (s) A(s) • 

n X(s-) J 

Thus Z ,(s) is uniformly integrable if each of the following vari­
nJ 

abIes are 

nl{X(s-»O} 
X (s"-) 

Y (s .... ) 2x (s-) 3 
~--~~~4~- l{B(s-»O} r 

n B(s-) 

Y(s-)2X (s-) 3 
n 

This is just the corollary A.3 for the first variable. 

i{B(s-)=O}. 
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From Holder's inequality we find 

E ( y (Sn""') 2 X (8-) 3 )8/7 
--'----'-- --"----'--.-4 I {B ( s - ) > 0 } 

< 4/7/Y(s-) \4 3/7 (X(s-)8 n 813\ 
E \ n· ) E \ 1 }. 

B (s-) B(S-)32 3 

B-y Lemma -A. 4 
t 

dition f L 
o 

these _integrals are unifo~IIlly J:>_ound?d uJls1er~he s;on­

j 8 p. (u»).. (u) du < 00, t < IT hence the second variable 
J 

is uniformly integrable. 

We have left out the conditioning event {X (0) = n} in the notation. 

Similarly we get 

8 
"7 

l{B(S-)=O}) 

8 4 3 

~ n'"'"7 E7 Y(s"-) 4 E7 X(s-)8 l{B(s-)=O} 

which by Lemma A.4 is uniformly bounded in nand s ~ t. 

Thus we have proved uniform integrability using the fact that if 

Elvntl+E is uniformly bounded then Vn is uniformly integrable. 

This proves the uniform integrability of IZ . (s) I and we find that 
nJ 

sup E jZnj (s) I < c2 (t) (j+2) 4 Pj (s) A (s) 
n 

which shows that 

t 
f L sup El Z . (s) I ds < 00 • nJ . o j n 
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