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Abstract. We describe and discuss a paper of T.N. Thiele from 

1880 where he formulates and analyses a model for a time series 

consisti.ng of a sum of a regression component, a Brownian motion 

and a white noise. He derives a recursive procedure for estima

ting the regression component and predicting the Brownian motion. 

The procedure is now known as Kalman filtering. He estimates the 

unknown variances of the Brownian motion and the white noise by 

an iterative procedure that essentially is the EM-algorithm. We 

finally give a short account of an application of Thiele's model 

and method to the description of hormone production during normal 

pregnancy. 

Key words~ ARI~A, Brownian motion, EM-algorithm, incomplete data, 

Kalman filtering, restricted maximum likelihood, time series, 

variance components. 
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1. Introduction 

In the present paper we shall give a description and a discussion 

of a paper by T.N. Thiele (1880, 1880a) on a particular time se

ries model used by him in a problem of astronomical geodesy, more 

precisely in connection with the problem of determining the di

stance from Copenhagen to Lund (Sweden). 

Although the paper has been overlooked by today's statisticians, 

it contains remarkable results, results that are interesting even 

today and not just from a historical point of view. 

A short discussion of Thiele's model and method has survived in 

the sense that it is described in the textbook by Helmert (1907) 

that has been used as a basis for teaching statistics to geode

sists until recent time. 

Thiele proposes a model consisting of a sum of a regression com

ponent,a Brownian motion and a white noise for his observations, 

although he does not use these terms himself. 

He solves the problem of estimating the regression coefficients 

and predicting the values of the Brownian motion by the method of 

least squares and gives an elegant recursive procedure for carry

ing out the calculations. The procedure is nowadays known as 

Kalman filtering (Kalman and Bucy, 1961). 

The iterative procedure used by Thiele to estimate the variances 

of the Brownian motion and the noise is related to the EM

algorithm described by Dempster, Laird and Rubin (1977) or, more 

precisely, identical to the algorithm given by Patters on and 

Thompson (1971) for variance component models. 
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Thiele did not derive the distribution of his variance estimates 

which is rather typical for statistical work at that time. In 

later work by Thiele he becomes interested in such problems but 

in this particular paper they seem beyond his horizon. 

It is perhaps even more remarkable that this paper is the first 

paper written by Thiele on the method of least squares! 

There are obvious reasons for his paper to have been more or less 

neglected by other statisticians. Thiele is certainly not friend

ly to his readers and assumes these to have quite an exceptional 

knowledge and understanding of Gauss' method of least squares. 

His ideas seem to be so much ahead of his time (100 years) that 

his contemporaries did not have a chance to understand the paper 

and, maybe more important, to grasp the significance of the work. 

When later the time was ripe, the development of statistics was 

so much concentrated in England and the U.S. of A. , where no one 

seemingly would dream of looking for essential contributions to 

statistics made by a Danish astronomer in 1880. 

My interest in this work arose partly from reading a version of 

the paper by RaId (1981) containing a short description of 

Thiele's paper, and partly because I for some time had been work

ing with statistical description of hormone concentrations in 

plasma during pregnancy, where the data seemed to be described 

perfectly by Thiele's model. In section 7 we shall give a short 

description of the experiences in applying Thiele's procedure to 

that problem. 

The "quotations" from Thiele's paper given here are not direct 

translations from the original paper, but made such as to convey 
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the meaning, atmosphere and writing style of Thiele although 

modern notation and concepts are used. 

r-
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2. The model 

Before we proceed to discuss the statistical analysis performed 

by Thiele, we shall briefly sketch how he arrives at his model. 

Thiele wants to give a model describing the observation errors 

from a sequence of measurements obtained through time. 

He discusses first the empirical fact that such errors often 

appear as if they had a systematic component but emphasizes that 

this is not true since no procedure of correction seems to remove 

the phenomenon. Thus another explanation must be appropriate and 

he attributes the phenomenon to the fact that a (random) compo-

nent of the errors is accumulated through time. 

More precisely he considers measurements made by an instrument 

where part of the error is due to fluctuations of the position of 

the instrument itself. If X(t) is the position of the instrument 

at time t, the most likely position of the instrument at time 

t + t.t should be the position immediately before, i.e. X(t), and 

deviations from this should be governed by the normal distribu-

tion law. He then concludes that any sequence of instrument po-

sitions X(tO) , ••• ,X(tn ), where to' ... ,tn are consecutive time 

points, should have the property that the increments are inde-

pendent, normally distributed with 

E(X(t.) -X(t. 1)) =0 
1 1-

ti 2 2 
V(X(t.) -X(t. 1)) =f t lJj (u)du=LLl. , 

1 1- . 1 1 
1-

where w2 (u) is a function describing the average size of the 

square of the fluctuations at time u. 
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In the special case where w2 (u) =w 2 we note that X(t) is what 

today is known as a Wiener process or Brownian motion. 

The 'quasi-systematic' variation in the errors is then supposed 

to be due to a process of the above type. 

The observations themselves are now supposed to be independent, 

normally distributed around the X-values. More precisely, for 

i = 0,1, ... , n let 

Z(t.) =X(t.) +s(t.) 
111 

where s(tO) ,s(tl ) , ... ,s(tn ) are independent and independent of 

the X-process, normally distributed with expectation equal to 

zero and 

I have deliberately not specified the joint distribution of all 

the variables completely (X(tO) -s distribution is unspecified). 

This is because Thiele does not either. We shall later see that, 

in fact, X(tO) plays the role of what we today would call a para

meter, in Thiele's statistical analysis although Thiele does not 

make a clear distinction between a parameter and an unobserved 

random variable. 

Note the special case of the model obtained by assuming 

a) equidistant time points: t. = i 
1 

b) constant variance in the time fluctuations: w2 (u) =w 2 

c) constant measurement error: 0~ = 0 2 
1 
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We then get for the differenced process 

I7Z(i) =Z(t.) -Z(t. 1) 
1 1-

that this is a stationary process with expectation equal to zero 

and covariance function 

r(k) =V(I7Z(i),I7Z(i+k» 

if k = ° 
if k = 1 

otherwise 

which is a moving average process of order one. In other words, 

Z(O) ,Z(l) , ... ,Z(n) is a sample from an ARlMA(O,l,l) process. 

An ARI~1A (0,1,1) process even with missing observations is there-

fore a special case of Thiele's model and can be treated with 

Thiele's methods, to be described subsequently_ 
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3. Least squares prediction of the Brownian motion 

In Thiele's formulation the primary objective is to estimate the 

unknown values of X(tO) , ... ,X(tn ). As earlier mentioned he does 

not distinguish between a parameter and an unobserved random 

variable but treats these unknown quantities seemingly alike. Let 

us examine his procedure in some detail. 

2 2 First, at this stage, Thiele considers o. and w. known, 
1 1 

X(to) , ... ,X(tn ) unknown and Z(tO) , ... ,Z(tn ) known, i.e. observed. 

He then writes: 

"We get the following system of 2n + 1 equations with n + 1 un-

knowns: 

= 0 with weight w~2 

X (tn ) - X (tn - l ) = 0 

Z(tO) -X(tO) =0 

=0 

with weight 

with weight 

-2 
w 

n 
-2 

°0 

-2 
with weight ° n 

(3.1) 

Solving these by the method of least squares leads to the system 

of n + 1 equations: 
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-2 -2 -2 A -2 A 

00 Z(tO) = (00 + Wl )X(tO) - Wl X(t l ) 

-2 -2 A -2 -2 -2 A -2 A 

01 z (tl ) = -w 1 X(tO) + (U)l + 01 + w2 ) X(tl ) - ()J2 X(t2 ) 

0-2 Z (t ) = - w- 2 ~ (t 1) + ( - 2 + 0-2 ) ~ (t ) 
n n n n- wn n n 

which we shall now show how to solve" . 

Thiele's argument is as short as this, showing how he (of course) 

assumed the reader to be absolutely familiar with the method of 

least squares. 

Before we proceed to describe Thiele's recursive procedure we 

shall discuss in which sense the estimates X(t.) given by (3.2) 
1 

(or predictions, as we would say today) are the 'right' ones. 

A rapid check will show that the values X(tO)' ... ,X(tn ) given by 

(3.2) minimize the quadratic form 

n -2 2 n -2 2 
Q = l: (51' (Z (tl,) - X (t , » + l: w, (X (t ,) - X (tl, -1) ) 

i=O 1 i=l 1 1 

Apart from an additive constant we have 

Q = - 2 log f , 

where f is the joint density of X(t l ) , ... ,X(tn ) ,Z(tO) , ... ,Z(tn ) 

where X(tO) is considered non-random, i.e. a parameter. 
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For the sake of clarity we shall henceforth write X(tO) =a and 

realise that the joint distribution of ~ and Z where 

is multivariate normal with 

EX = (a, ... , a) E Z = (a, . . . , a) 

and the joint density of X and Z can therefore be factorized as 

into the product of the marginal density of Z and the conditional 

density of X given Z. 
'" '" 

For each fixed value of a, the second factor is maximized as a 

function of X when 

* X = E (XIZ) 
a '" '" 

The maximal value of g will be equal to 

n+l - --
( 21T) 2 -~ Il:l 

where l: is the conditional covariance matrix of X for given Z. 

Since this does not depend on a, the maximal value does not de-

pend on a and f can thus be maximized as a function of a and X 

by letting a maximize h(Z;a) and letting 

X=E (XIZ) 
f"O..I A ~ I".J 

a 

i. e. for i = l, ... ,n we have for the solutions to (3.2) 
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X(t.) =E (X(t.)IZ(tO), ... ,Z(t)) 
l A l n (3 .3) 

ex, 

and 

where ex, is the maximum likelihood estimate of ex, based on 

Another argument, see e.g. Rao (1973), 4a.ll, shows that the 

'estimator' of X(t O) , ... ,X(tn ) obtained by minimizing Q is least 

squares in the sense that for all linear combinations with coeffi-

n n A 2 
E( L: A.X(t.) - L: LX(t.)) 

j=O J J j=O J J 

n 2 
> E ( L ,\. X (t .) - k (Z (to) , ... , Z (t ))) 

. 0 J J n J= 

for all measurable functions k. 

It is worth noting that Thiele also considers the problem of 

'estimating' the value of X(s) at a time s, where no observation 

has been made. He shows correctly that this is given as 

X (s) = 
(ti +l - s)X(ti +l ) + (s - ti)X(ti ) 

ti+l - ti 

x (t ) 
n 

if t. < S < t. 1 (3.5) 
l = = l+ 

if s > t = n 

His method of obtaining this result is ingenious and elegant and 

also typical for his work. We shall therefore describe his argu-

ment: 

The situation where we have not observed X (s) must be equivalent 
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to the one where we introduce a fictituous observation and claim 

that we have an observation of X(s) with infinite variance. That 

is we define 

Z(s)=z, 

where z is arbitrary but finite and assume that 

2 2 
CJ =E(Z(s) -X(s)) =00 . 

Calculate now X(s) ="E(X(s) IZ(tO), ... ,Z(tn ),Z(s))" using the 

usual system of equations (3.2) where of course CJ -2 = O. This then 

leads to (3.5). 

This "method of the fictituous observation" appears in different 

versions in other parts of his work as an elegant and useful trick, 

cf. Hald (1981). 
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4. Recursive solution to the prediction problem 

With the computer capacity of 1880 it was of extreme importance 

to find a computationally simple way of solving the equations 

(3.2). 

In the numerical example treated by Thiele 74 observations are 

recorded and without a procedure utilising the relative simple 

structure in the equations, the computational work involved would 

be prohibitive. 

Thiele solves the problem by giving an elegant recursive proce-

dure for the computations. The procedure consists of two parts: 

Part I. Define the following set of coefficients: 

and for i = 1, ... , n let 

2 -1 -1 
w. = (w. +u. 1) 

1 1 1-

-2 
U. =0'. +w. 

1 1 1 

*-

(4.1) 

If we now let X (t.) be the best predictor of X(t.) when only 
1 1 

Z(to) , ... ,Z(ti ) have been observed, i.e. 

* x (t.) =E A (X(t.)IZ(tO), ... ,Z(t.)) 
1 a(i) 1 1 

where a(i) is the maximum likelihood estimate of a based on 

Z(to) , ... ,Z(ti ), we have the following recursion formula: 

. } ( 4 • 2) 

That this is correct is shown by Thiele by an induction argument 



13 

* demonstrating that X (t i + l ) fits into the equations (3.2.) if 

* X (t.) j < i do. 
J. -

The computations are indeed very simple to carry out using just 

a table of reciprocals and a calculator with multiplication and 

addition. 

As (4.2) says, the new predictor is a weighted average of the old 

predictor and the new observation. 

Thiele does not directly give an intuitive 'justification' of for-

mula (4.2) but from other parts of his paper it seems clear that 

his argument basically must be as follows. 

* At each stage X (t.) is the best possible measurement of the quan-
1 

tity X(ti ) that can be obtained from Z(tO) , ... ,Z(ti ). Since the 

* increments of the X-process have expectation equal to zero, X (ti ) 

is also a best measurement of X (t i +l ) based on Z (to) , ... , z (ti ) . 

Z(ti +l ) is also a measurement of X(ti +l ) and the corresponding 

observation errors are independent. Thus the best way of combi-

* ning these is to calculate the weighted average of X (t.) and 
1 

Z(ti + l ) with the reciprocal variances as weights. Let now 

Then 

and thus 
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( 4. 3) 

Further we get for the variance of the error of this average that 

-2 -4 2 
CPi+l CPi+l + 0 i +1 0 i +l = -----:;1,------2;::;-----

(CPi+l + 0 i + l ) 

Combining this with the obvious fact that 

we see that the coefficients given by (4.1) are just 

u. = 1/1/!. 
1 1 

w. = l/cp. 
1 1 

and (4.2) and (4.3) are equivalent. 

This recursive procedure is the idea behind Kalman-filtering, 

cf. Kalman and BUcy (1961). 

Part 11. As a result of the first recursion we obtain for each 

value of i the best predictor of X(t i ) based on Z(tO) , ... ,Z(ti ). 

We shall now perform a backwards recursion calculating X(t.) from 
1 

these values as 

( 4 .4) 

That this is correct is again shown by an induction argument. 



15 

Again the form of (4.4) indicates that a heuristic argument of 

the same kind as in part I can be given although it gets slightly 

more complicated. 

Thiele now proceeds to give recursive procedures for calculating 

variances of the prediction errors. This is again done elegantly 

using the following important argument. 

* It follows from (4.4) that X (t.) are best estimates of the quan-
1 

tities 

A(t ) =X(t ) 
n n 

• } (4.5) 

i < n 

The variance of the corresponding errors is thus given as 

and for i < n 

* Yi =V(X (ti ) -A(ti » 

-2 -4 
= u i wi +l V(X(t i ) - X(t i +l » 

Further, the errors 

are independent. This is typical for the way we have solved the 

linear equations. To calculate the variance of any prediction 

error of the type 
n 

V( L: A.[X(t.) -X(t.)]) 
i=O 1 1 1 

* we just have to express the linear combination in terms of X (t.) 
1 



such that 

and thus also 

whereby 
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n * n 
L: ]J.X (t.) = L: A.X(t.) 

i=O 1 1 i=O 1 1 

n n 
L: ]J.A(t.) = L: A.X(t.) 

i=O 1 1 i=O 1 1 

n n 2 
VC L: A. [X(t.) -X(t.) J) = L: ]J. y .• 

i~O 1 1 1 i=O 1 1 
(4.6) 

He now attributes to personal communication with Professor Opper-

mann that it always will be so that as a result of solving the 

normal equations by the procedure given, one will end up with a 

system of functions that can be considered as independent and 

replacing the original observations, thus making the calculation 

of error variances etc. simple. Some years later Thiele has this 

idea spelled out systematically by deriving the canonical form of 

the linear normal model and introducing the notion of a system of 

"free functions" which is what today is called finding an ortho-

normal basis of a suitable type, cf. RaId (1981). 

Using ( 4 .6) Thiele gives now a recursion for calculating. 

o~ 
A 

-(X(t.) -X(t. 1))2 I = V(X(t. ) -X(t. 1) 1 1 1- 1 1-

2 A 

T. = V(X(ti ) -X(t.)) 1 1 

2 where it for later purpose should be noted that o. and 
1 

. 222 2 
depend on the ent1re set of values 00, ... ,on,wl",.,wn 

on a. 

( 4 .7) 

2 
T. both 

1 

but not 

Finally I it seems worth mentioning that Thiele gives a continued 

fraction representation of the solutions to the normal equations 
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(3.2) as well as a description of how to obtain the values X(t.) 
1 

by geometrical construction. 
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5. Thiele's estimation of the error variances 

The estimation (prediction) described in the previous sections is 

based on the assumption that the error variances are completely 

known. Normally, however, the variances are unknown but it will 

then often be of interest to consider the case 

2 2 a. = a/h. 
1 1 

2 2 w. = w /k. , 
1 1 

2 2 
where h. > 0, i = 0, •.. , nand k. > 0, i = 1, ..• , n are known and a , w 

1 1 

unknown. A typical situation could be 

h. = 1 f 
1 

-1 
k. = (t. - t. 1) . 

1 1 1-

We are then faced with the problem of estimating 0'2 and w2 . 

Thiele discusses this problem and gives a heuristic argument for 

his solution. We shall describe his method and argument and in-

vestigate it from a more exact point of view. 

First Thiele claims that it seems appropriate to base an estimate 

of 0'2 and w2 on the quadratic forms 

n 
Ql = L: h. (Z(t.) _~(t.»2 

i=O 1 1 1 

and 

n A 2 
Q2 = L: k. (X(t.) -X(ti _ l » 

i=l 1 1 

where X(t O) , ... ,X(tn ) are calculated as described in the previous 

t · ft' . 't' 1 1 2 2 f 2 d 2 sec 10n rom cer aln 1nl la va ues aO'w O 0 a an w . 

The first problem is to decide how the degrees of freedom should 

be allocated to the two quadratic forms. The total number of de-

grees of freedom must be n since we have used the method of least 

squares on 2n+l equations with n+l unknowns. It seems thus appro-
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priate to let 

( 5 .1) 

where f 1 + f 2 = nand (f I' f 2) are chosen in a reasonable way. 

In analogy with usual least squares where only one variance has 

to be estimated it seems plausible that one should subtract from 

the number of terms, the relative amount of variation due to the 

estimation of X(t i ). More precisely let 

-2 f =n+l-O' 1 0 

f = n 2 -w -2 
o 

where T~(O'~'w~) and a~(O'~,w~) are the prediction errors in (4.7) 

2 2 2 2 
based on the assumption that 0:. = O"O/k. and w. = wO/k . • Note that in 

l l l l 

fact 

since 

n 2 2 2 -2 
L: h.T.(O'O'wO)+wO i=O l l 

n 2 2 2 
L: k.a.(O'O'w O) 

i=l l l 

is the trace of the matrix of a projection onto an n+l dimensional 

2n+l subspace of JR and thus equal to n+ 1. 

Using (5.1) we obtain new values 02 and w2 of 0'2 and w2 and we 

then repeat the procedure in the sense that new estimates X(ti ) 

2 2 
are calculated, new values for Ti , ai' Ql' Q2' fl and f2 etc. The 

2 2 procedure is to be repeated until stable values of a ,ware 

reached. According to Thiele one has to do that three or four 

,...,2 ,...,2 
times. The final stable values of a ,ware then used as esti-

mates of 0'2 and w2 . Thiele writes that "it seems at least plau-
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sible" that the procedure is correct. 

Formulating Thiele's estimation method more precisely we see that 

his estimates X (to) , ... ,X (tn ) , '02 
I ~2 satisfy the system of n + 3 

equations obtained by taking (3.2), inserting into these the va-

lues 

2 ~2 2 ~2 
0. = 0 jh. w. = w jk. 
111 1 

and supplementing with the equations 

n A 2 
1:: h. (Z(t.) -X(t.)) 

~2 i=O 1 1 1 
o = -------------

n 
~-2 2 ~2 ~2 

n+1-0 1:: h.T. (0 ,w ) 
i=O 1 1 

n A 2 
1:: k. (X(t.) - X(ti _ l )) 

~2 i=l 1 1 
w = ------------

n 
~-2 2 2 2 

n-w 1:: k.O.(0 ,w) 
. 111 1= 

Rearranging (5.3) we get 

(5.3) 

2 n A 2 n A 2 
(n+l)'0 = 1:: h.(Z(t.) -X(t.)) + 1:: h.E 2 2(X(t.) -X(t.)) 

1'=1 1 1 1 . 1 ~ ~ 1 1 1=0 0,W 
(5.4) 

~2 n A 2 n 2 
nw = 1:: k. (X (t .) - X (t. 1)) + 1:: k. E 2 2 (6 . ) . 1 1 1 1- . 1 1 

1= 1=0 0 ,w 

where 

6. =X(t.) -X(t. 1) - (X(t.) -X(t. 1)) 
1 1 1- 1 1-

The form (5.4) will be convenient in the next section. 

Thiele does not discuss the problems of existence and uniqueness 

of solutions to equations (5.4) and (3.2) combined, nor does he 

discuss convergence properties of the iterative procedure to solve 

these equations beyond the remarks mentioned earlier that it has 
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to be performed "three or four times". We shall return to this 

problem later. 
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6. Discussion of procedures for estimation of the 

error variances 

We shall first reformulate the problem slightly by forgetting 

the prediction problem and consider the problem of estimating the 

unknown values of a,cr 2 ,:2 based on the observations 

where (Z(tO) , ... ,Z(tn )) has the joint normal distribution speci

fied by Thiele's model. 

We shall treat the problem as a problem of estimation in an ex-

ponential family with incomplete observation, cf. Sundberg (1974). 

That is, we shall use that we can think of Z(t.) as 
1 

zet.) =a+y(t.) +E:(t.) 
1 1 1 

where yet) =X(t) - a is a Gaussian process with expectation equal 

to zero, independent increments with 

2 y ( t .) - y ( t . 1) = X ( t .) - X ( t. 1) '" N ( 0 , w /k.) , 
1 1- 1 1- 1 

y (to) = 0 and E: (ti ) independent and independent of the y IS with 

expectation equal to zero and variance cr~ = cr 2/h .. 
1 1 

Suppose that we had observed not only Z (t.) = z., i = 0, ... ,n but 
1 1 

also Y(t.) =y. for i=O, .•. ,n, where YO=O. The likelihood of 
-- 1 1 

2 a,S,cr would then be given as 



2 2 - 2 log L ( a, a ,W ) 
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2 2 -2 n 2 -2 n 2 
= 1/J(a,a,w) +a L: h.(z. -y. -a) +w L: k.(y. -y. 1) 

i=O 1 1 1 i=l 1 1 1-

* 2 2 ~2 n 2 -2 n 2 
= 1/J (a,a ,w ) +a L: h. (z. -y.) +w L: k. (y. -y. 1) 

. 0 1 1 1 . 1 1 1 1-1= 1= 
-2 n 

- 2 aa L: h. (z. - y. ) 
. 011 1 1= 

Thus we see that we deal vlith an exponential family with canonical 

statistics 

n 2 
sI = L: h. (z. -y.) 

i=O 1 1 1 

n 2 
s2= L: k.(y. -y. 1) 

. 1 1 1 1-1= 

n 
s3 = L: h. (z. -y.) . 

. 011 1 1= 

From general theory, Sundberg (1974) f it now follows that we get 

the likelihood equations in the case where only ~ has been ob

served by equating the expectation of these statistics to their 

conditional expectations given the observed value of z. 

We get for the expectations 

2 2 n 
ES 1 = (n + 1) (J + a L: h. 

i=O 1 

2 ES 2 = nw 

n 
ES 3 = a L: h. 

i=O 1 

(6.1 ) 

and the conditional expectations need to be worked upon a bit: 

n 
= E(Sliz) = L: h. E((Z(t.) _Y(t.»2 1 z) 

'" i=O 1 1 1 '" 

n A 2 n A 2 
= L: h. (z. -y(t.» + L: h. E((y(t.)-y(t.» Iz) 

'011 1 '01 1 1 1= 1= 
(6.2) 



24 

where we have let 

y(t.) =E (y(t.) Iz) =Xex(t.)-ex 
1 ex 1 1 

where 

ex X (t.) =E (X(t.)lz), 
1 ex 1 '" 

A 

such that Thieleis X(t.)-values are given as 
1 

(6.3) 

The term E«~(t.) -y(t.))2 Iz ) is just a conditional variance and 
1 1 '" 

does therefore not depend on ~ so that we can proceed as 

n ex 2 2 n 
E (S 1 I~) = L: h. (z. - X (t.)) + ex L: h. 

i=O 1 1 1 i=O 1 

n 
ex + 2ex L: h. (z. -X (t.)) 

i=O 1 1 1 

+ 
n ex 2 
L: h. E(X (t.) -X(t.)) • 

i=O 1 1 1 
(6.4) 

Similarly we get for S2 : 

n 2 
E (S 2 1 ~) = L: k. E ( (Y ( t .) - Y (t1· -1)) 1 ~) 

i=l 1 1 

n A A 2 
= L: k. E«Y(t.) - Y(t. 1)) Iz) 

i=l 1 1 1-

n A 2 
= L: k. (Y(t.) -Y(t. 1)) 

. 1 1 1 1-
1= 

n A A 2 
+ L: k. E(Y(t.) - Y(t. 1) - (Y(t.) - Y(t. 1))) 

i=l 1 1 1- 1 1-

n 2 
+ L: k. E(Xex(t.) -Xex (t1·_ l ) - (X(t.) -X(t. 1))) f (6.5) 

. 1 1 1 1 1-
1= 
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and finally for 8 3 : 

n '" 2 
= L h.(z. -Y(t.)) 

i=O 1 1 1 

n n a = L h. (z. -X (t.)) +a L h. 
i=O 1 1 1 i=O 1 

( 6 .6) 

We now form the equations obtained by equating (6.1) to (6.4), 

(6.5) and (6.6) and get from the last of these that the solution 

a satisfies 

n a 
Lh.(z.-X (t.))=O 

. 0 1 1 1 1= 

Inserting this into the two first equations gives us the equations 

'" "'2 n . a n a 2 
(n+l)CJ = L h. (z. -X (t.)) + L h. E"'2 "'2(X (t.) -X(t.)) 

i=O 1 1 1 i=O 1 CJ 'w 1 1 

A 

"'2 n 2 
nw = L k. (Xa (t .) - Xa ( t . ) ) 

. 111 1 1= 

(6.7) 

where we have made clear how the expectations depend on the para-

meters. To see that these equations are very similar to Thiele's 

(5.4) we use (6.3) and the fact that 

and 

whereby we see that the only difference between Thiele's equa-
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tions (5.4) and the maximum likelihood equations (6.7) is the 

term 

n A 2 
L h. E (a - a) 

i=l 1 

on the right hand side of the first equation. 

In the limiting case with k. =00, i.e. where the Brownian motion 
1 

is vanishing and Z(tO) , ... ,Z(tn ) become independent we have 

n n 
Xa (t.) = ~ (t.) = a = ( L h.) -1 L h. z . 

1 1 i=O 1 i=O 1 1 

A 2 n -1 2 
E 2 2 (a - a) = ( . L hi) (J 

(J ,W 1=0 

whereby (6.7) reduces to the equation 

whereas (5.4) becomes 

2 n A 2 
(n + 1) (J = L h. (z. - a) 

i=O 1 1 

~2 n A 2 ~2 
(n + 1) (J = L h. (z. - a) + (J 

i=O 1 1 

(6.8) 

(6.9) 

so that Thiele's equations correspond to the usual way of taking 

into account that a linear parameter has been estimated. 

Thiele's equations (5.4) can be seen to be equivalent to the equa-

tions defining the so'-called restricted maximum likelihood esti-

mates, cf. Patterson and Thompson (1971). The equations can e.g. 

be obtained as follows. Write the joint density of Z(tO) , ... ,Z(tn ) 

as 

where g is the marginal density of the n linear IIcontrasts" and 
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h is the conditional density of 20 given these contrasts(any set 

of n + 1 linearly independent linear combinations of which the n 

are contrasts will do). 

The likelihood equations for 0 2 ,00 2 based entirely on the marginal 

distribution of the contrasts is exactly Thiele's equations (5.4), 

see the cited paper by Patterson and Thompson (1971) and also 

Harville (1977). 

Also the algorithm used by Thiele is identical to the algorithm 

suggested by Patterson and Thompson (1971). 

Harville (1977) has discussed the properties of the algorithm 

although on a heuristic and empirical basis. Since the algorithm 

is a special case of the more general E~1-algorithm discussed by 

Dempster, Laird and Rubin (1977) one can say a bit more about its 

properties. 

If the starting values do not happen to be a saddle point of the 

likelihood function, it either converges to a local maximum of 

the likelihood function or diverges in the sense that either 

0 2 -+ 0 or 00 2 -+ O. Each step of the algorithm increases the likeli-

hood. There seem to be no simple conditions for the equations to 

have a unique solution. 

Thiele seemed unaware of these problems not even mentioning them. 

A guess would be that his long series of observations ensured 

that he never encountered the problem in practice. Also it seems 

as if he did not pay much attention at all to the variance esti

mation and only wanted to correct the initial values of (0 2 ,00 2 ) 

as far as this gave a sigpificant change in the values of X(t.) 
1 
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that were of primary interest to him. It is anyway quite typical 

for the time period that variances only have secondary importance. 

The last section of Thiele's paper contains a worked out example 

with a series of 74 astronomical measurements and here he has no 

problems. 
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7. An application 

In the final part of Thiele's paper he extends the model by the 

inclusion of a linear regression term in the sense that he cons i-

ders the problem 

k 
Z(t.) = L: a f (t.) +X(t.) +s(t.) 

1 v=l v v 1 1· 1 

where fl, ... ,fk are known functions and al/ ... ,ak are unknown 

constants. He gives a similar recursive procedure for this prob-

lem although he leaves the proofs to the reader. 

Working with hormone concentrations in pregnancy some time ago 

(Lauritzen (1976» I used the model of the form 

Z(t.) =a+St. +X(t.) 
1 1 1 

for the logarithm of concentrations of progesterone in plasma. 

The data showed good fit but indicated that a model of the type 

Z(t.) =a+St. +X(t.) +s(t.) 
111 1 

would be more realistic and give a better fit, although the quali-

ty and amount of data prevented to pursue the issue further. 

Recently Mogens Christensen, Aalborg Hospital, has provided me 

with measurements of concentrations of the hormone HPL on 69 

pregnant women, taken at various time points during pregnancy and 

with 4-11 observations for each women. It seemed natural to try 

out Thiele's model and algorithm on this data set. Of course one 

could expect difficulties because of the very short observational 

series and this was indeed the case. The algorithm did not conver-

ge for 54 of the 69 series. Thus it looks as if the distribution 

of the solutions to the estimating equations have a lot of mass 
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on the boundary and the only way to get around this was to assume 

the variances of the Brownian motion and the white noise to be 

identical for all women. Under this assumption the algorithm con-

verged in the sense that after 24 iterations the estimates for the 

variances did not change with more than 1% and after 42 iterations 

2 2 not m0re than 1 0/00. The stable values of 0,W reached were 

quite sensible compared to other knowledge and examination of re-

siduals showed a good fit. On the other hand 42 iterations is a 

lot more than "three or four times" as Thiele writes. Nowadays 

these iterations can be performed quickly and cheaply on a high 

speed computer,but in 1880 ... ? 

Note that it in this particular application is quite important 

that one uses Thiele's 'restricted maximum likelihood estimates' 

rather than the maximum likelihood estimates themselves since 

otherwise the different values of a and S for different women 

would create a nuisance parameter effect and give rise to useless 

estimates of 0 2 and w2 . 
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8. Final comments 

Even though Thiele did not fully discuss the difficulties con

cerning the estimation of the error variances, it is amazing that 

he got so far in the understanding of the time series model that 

he discussed. 

The most striking contrast between Thiele's "approachll to time 

series analysis and time series analysis as of today seems to be 

the very detailed analysis of one particular model, as opposed to 

the more modern tendency of investigating large classes of models 

without really trying to understand or utilise the particular 

structure of each of them. Also the way Thiele establishes his 

model is closely related to a particular practical problem where 

he takes very much into account, how the observations in fact 

have been produced. Sometimes one can get the impression that 

model building in time series analysis today is made completely 

independent of how the data have been generated. 

Could Thiele's success in 1880 encourage modern statisticians to 

make detailed investigations of particular models ? 
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