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Summary 

In many situations, the data given on a p-type Galton-Watson 

process Z EJN P will consist of the total generation sizes IZ 1 -n -n 

only. In that the maximum likelihood estimator "'- of the case, PM[, 

growth rate P is not observable, and the asymptotic properties of 

the most obvious estimators of p based on the 1 Z 1 , as studied by 
-n 

Asmussen and Keiding (1978), show a crucial dependence on Ipll Pl 

being a certain other eigenvalue of the offspring mean matrix. In fact, 

if Ipl l2 2 p , then the speed of convergence compares badly with PM[, 

In the present note, it is pointed out that recent results of Heyde 

(1981b) on so-called Fibonacci branching processes provide further 

examples of this phenomenon, and an estimator with the same speed of 

convergence as PM[, and based on the 

the case 2 
P = 2 , Pl 2 P . 

Iz 1 alone is exhibited for -n 



1. Introduction 

Consider a two-type Galton-Watson process z = (Z (1) Z (2)) , 
-n n n 

Le. 
2 

Z = -n+l I 
i=l 

(1.1) 

with the independent for all n,i ,k and with the same dis-

tribution for fixed i We assume throughout that the offspring 

mean matrix M = (m(i,j)) is positively regular. It is then a well-

known consequence of the Perron-Frobenius theorem that M has two real 

eigenvalues with P > 0 , P > /Pl / and, letting u,v,u ,v 
- - -'1 -1 

be 

the corresponding left and right eigenvectors, that u(i) > 0 , v(i) > 0 . 

Letting <','> denote inner product, we have ~l ,y» = 0 and we normalize 

by ~,p = /~I = <.::c,p = 1 so that U + U = 1 - -1 . We consider only the 

supercritical case P > 1 with finite offspring variances and extinction 

probability zero so that 
-n 

lim P Z = Wv with 
--n 

n-7<X> 

O<W<<Xla.s. 

The present note is concerned with asymptotic properties of 

various estimators of P A systematic account was given by Asmussen 

and Keiding (1978), henceforth referred to as AK, who derived the maximum 

likelihood estimator PML based on the first N generation as the 

largest eigenvalue of the empirical mean matrix 

(ill(i,j)) 
N-l 

= ( I 
n=O 

Z (i) 
n 

I 
k=l 

() N-l 
Z i (j)/ I Z (i)) 
n,k n=O n 

(see also Keiding and Lauritzen (1978)) and obtained similar asymptotic 

properties as for the one-type case, in particular the relation 

~im p((WpN)-~UN < y) = 
1~-7<X> 

for some o < ci < <Xl (1. 2) 

Based on earlier work by Becker (1977) who 

was concerned with the robustness of estimation procedures for the 

one-type case, AK also studied 
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coincides with PML , and a more complicated behaviour was discovered. 

In fact, the relation (1.2) with UN = WpN(Ps - p) is only valid if 

2 
Pl < P , whereas for and 2 P > P 

1 
one has two other types of 

asymptotics, viz. 

N _k: 
lim P ( (WN P ) 2UN < y) = 
N-+oo 

for some o < ci < 00 

-N 
lim Pl UN exists a.s. 
N-+oo 

(1. 4) 

respectively. Surprising at a first look, these results turn out to be 

closely related to other aspects of the limit theory of the process. In 

fact, just the same trichotomy holds for UN = <~ '£1> and if 2 > Pl - P , 

the behaviour of PE can even be directly deduced from that of such 

linear functionals, cf. AK Example 6.1. 

We refer to Dion and Keiding (1978) for estimation theory for 

branching processes in general and to Kesten and Stigum (1966a,b) for 

background material on tne process. If 
2 

Pl > P , the a.s. limit of 

throughout and we let "i V i .l:!> , ar etc. 

refer to one initial particle of type i. The proofs of AK of relations 

like (1.2) and in particular (1.3) are somewhat simpler than those of 

Kesten and Stigum (1966b) and reduce essentially to a routine check of 

the conditions of 

Lemma 1 Let be vectors and constants~ such 

that 0 < Yn < 00 ana {§'-j:/Yn} 1-S reZativeZy compact~ and define 

H 
\' -n 2 
L P Yn 

n=l 

ana .li!.!l py/aN > 0 , the limiting distribution of 
~~->oo ~ 
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exists and ~s standard normal. 

[Note that ill( has a superfluous condition and that their argument on 

pg.115 contains an error; for the correction and discussion of the 

minimality of the conditions, see Asmussen and Hering (1980) Ch.II. 

Sect.3 and also Ch.VIII]. This lemma will be used also in the present 

note as well as 

Lemma 2 F ~." t ·Z C' M > = o((pl'iJlog',T);2) or any J~xea vec or ~'<~1'--~:1J-l ,~ .b a.s. , 

cf. Asmussen (1977) and Heyde and Leslie (1971). 

2. Remarks on a paper by Heyde 

In a recent paper, Heyde (1981b) studied so-called Fibonacci 

branching processes, viz. (one-type) time-lagged processes {x } defined 

recursively by 
X 2 n-

n 

X = X + I Y 
n n-l k=l n,k 

(2.1) 

with the Y k LLd. "I\Tith In = EY k and p = (1+(1+1~m);2)/2, he showed 
n, n, 

the a.s. existence of lim X /pn as well as non-degeneracy subject to 
n n-+oo 

EY logY < 00 • 
n,k n k 

Note that if m = 1 , then EX = EX + EX 
n n-l n-2 

the Fibonacci sequence and X mimics similar stochastic properties, 
n 

is 

e.g. Xn/Xn_l + (1 + 15)/2 (the golden ratio). See also Heyde (1981a). 

Heyde also studied the problem of estimating p, to which end he considered 

PA = x. Ix. and noted a surprising dependence of the size of p In LN --If 1\[-1 

fact, if (1 - p)2 < p , then (1.2) holds while if (1 _ p)2 > p , then 

( 4) N( A ) 1. I holds with PI = I-p. Here UN = Wp PLN - P and the notation 

refers to the names of Lotka and l'Jagaev connected with the one type analogue. 
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We should like to point out here, that the relation of these 

results to those for multi type Galton-Watson processes goes further than 

just formal similarity. In fact, define ~ = (XO 0) , ~l = (Xl Xo XO) 

Z = (X - X 1 X 1) Then (1.1) holds for n .::: 1 with X(l) = (0 1) 
-n n n- n- -n,k 
X( 2) = (Yn+l,k l ) and also for all n .::: 0 if, as is inherent in Heyde's 
-n,k 

interpretation of his model, Xo = Xl . That is, X = /z / n ---n 
is simply 

the total population size of a multi type Galton-Watson process. The off-

spring mean matrix is 

M = r: ~l 
k 

the eigenvalues of which are indeed P = (1+(1+4m)2)/2,Pl = I-p . 

For example, the remark of AK pg.125 to the effect that the analysis of 

PB and PLN follows similar lines, leads to the following approach to 

the asymptotics. Recall that u + U = 1 - --'1 
and write 

(2.2) 

/z Cl V 1> T 
"-:i'J - ~-l :!:..:!:.'- , N 

Here the a.s. magnitude of SN is given by Lemma 2, while TN is a 

linear functional referred to in Section 1. 

T dominates 
N 

SN so that the behaviour of 

2 > If PI - P , it follows that 

U - W N(A 
N - P PUT - p) is that 

of In particular, if 
2 

PI > P , it follows that the limit 

obtained by Heyde in (1.4) identifies with while in 

the case P~ = P not considered by him, (1.3) holds. If P~ < P , write 

SN + TN as 

N-2 

<'~H - ~-l £:!,~> + I 
n=O 

and check that Lemma 1 applies to prove (1.2). 
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It should also be noticed that for Heyde I s model maximum likeli-

hood estimation oased on total generation sizes only is possible. In 

fact, in the same way as in the one-type case it is easily seen that 

N 

I 
n=2 

is the MLE of m and that U = 
N 

has the property (1.2). 
, 

Hence p(~) = (1+(1+4~)~)/2 is the MLE of P and UN = WpN(p(~~) - p) 

has the property (1.2) by a standard transformation theorem. 

3. Eliminating PI 

For the general two-type Galton-Watson process, the evaluation 

of PML requires a rather detailed observational scheme which could 

hardly be assumed in general. Frequently, the observations will consist 

of total generation sizes only and the results of AK and Heyde then show 

poor asymptotic properties of the estimation procedures considered so 

far if We shall here give an affirmative answer to the obvious 

question whether in the case 2 
PI ~ P it is possible to eliminate so 

as to produce an estimator p with the property (1.2) and based on the 

Iz I only. 
-n 

The idea is to first recall that TN in (2.2) dominates SN and 

next to note that TN ~ PlTN_l ; P~TN_2. Hence the three equations (2.2) 

for N,N-l,N-2 involve only the three unknown p,pl ,TN_2 and terms of 

smaller magnitude and should thus asymptotically determine the unknown. 

More precisely, define 

1~'\f-3t I . =1 2 3 8 a i = ~_ 3 1", = 
(Pl-p) <~-3'~1> 

1~-31 
and write 

(3.1a) 



Neglecting the 

Proposition 1 

° . l 

/' o 

a = a P + P 8 + ° 2 1 1 2 

where 01 = <~J-2 - ~-3~ , !.> / 1~-31 

lea ds to the equation 

a1 = P + 8 

a 2 = alP + p 8 
1 

~28 a 3 = a 2P + P -
1 

S h 2 d h V i /z > > uppose t at P1 > P an t at ar "-1 '~1 0 

(3 .1b) 

(3.1c) 

(3.2a) 

(3. 2b) 

(3.2c) 

for 

some i Then: (i) With probability one it holds for all large enough 

N that (3.2) admits solutions p,P1 ,8 with p>i\ The solutions can 

be computed by taking first p,p 
1 

of 

and next determine El by (3.2a); 

as the solutions in descending order 

(ii) P is strongly consistent for 

P and i\ strongly consistent for P1 ; (iii) UN = vJpN(p_p) has the 

property (1.2); (iv) The property (1.2) holds also for either of 

Proof· We first remark that P(\{l = 0) = o. In fact, the non-degeneracy 
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condition is well-known to imply 
i Var Wl > 0 i = 1,2 so that P(Wl = x) < p 

for some p < 1 and all x . Writing Wl = ,with Wn,k 
1 

the Wl-functional evaluated in the line of descent 

individual at time n, it follows that 

initiated by the kth 

I z I 
P (W = 0) = EP (W = 0 I z ) ~ Ep -n -+ 0 • 

1 I--n 

Next note that multiplying (3.1a) by al and subtracting (3.1b) yields 

A = (p-Pl )8 + E , E = alol - °2 + 82 + 8°1 , Here 8~ (Pl -P)(Pl /p)N-3w/ w 

is non-zero for N large and· E/8 -+ 0 a.s. as N -+ 00 , cf. Lemma 2. 

Thus A ~ 8(p-Pl ) and similarly 

Now write (3.2) in the form 

El - a - P - 1 U.4a) 

(3. 4b) 

(3.4c) 

Here (3.4b) follows by inserting (3.4a) in (3.2b) while (3.4c) results 

upon solving (3.2b) for p El 
1 

and insert in (3.2c). Now (3. 4b), (3. 4c) 

are a set of linear enuations in P- + P- -PP-
'0. l' 1 The determinant 

2 
-al + a2 = -A is non-zero for N large and solving yields 

P + PI = -B/A , PPl = CiA so that indeed for N large the solution of 

(3.2) is equivalent to the procedure described in (i). 

The above estimates for A,B,C show that the discriminant of (3.3) 

satisfies 
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Hence the asymptotic form of the solutions is 

;;:; 
-B:!: D2 

2A 

and the strong consistency (ii) follows. For (iii), (iv), subtract (3.1) 

from (3.2) and perform some elementary manipulations to get 

rl 
0 

;J 
(1 0 1 1 

~ 

where ~* = r1 

8 = P 8 p~J =~ 
8( P + P ) ~2 J 2 

28p a2 1 1 PI P 1 PI 

( say) . Furthermore, straightforward algebra shows that detQ* ;; detQ = -B( p_p ) 2 
- - 1 

so that for N large 5r~-1 exists, and solving (3.5) shows after some 

calculations that 

P - P 

PPl p+p 
1 o + 1 o - 03 PI - P - - 8(p-Pl ) 8(p-Pl ) 8(p-Pl ) 1 1 2 

2 
2Pl ~ P -2PPl 1 0 8 - 8 - 2 0 + 0 ( p-Pl ) 1 (p-Pl )2 2 (p-Pl )2 3 

(up to terms of smaller magnitude). The expressions defining the 

U.6a) 

U. 6b) 

U.6c) 

o. show 
1 

that (up to normalizing constants) the r.h.s. of (3.6a) is of the form 

considered in Lemma 1, the conditions of which are automatic with y = 1 
n 

in view of a = 0 n > 3, and it follows that the limiting distribution 
-n 

N ;,: 
of (p-P)I~_31/(Wp) 2 exists and is normal with mean zero. This is 
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equivalent to (iii). For (iv), exactly the same argument shows that 

(PI-Pl)81~~_31/(WpN)Yz is asymptotically normal with mean zero and 

finite variance, which is equivalent to (iv) in view of 8/8 + 1 a.s., 

as follows from (3.6c) by similar estimates as in the study of A . D 

Remark 1 The same procedure works also for the case 
2 

PI = P , only 

is it necessary to reformulate (i), (ii) slightly. In fact, the central 

0./8 + 0 
l 

in pro-

bability rather than a.s. It follows from Asmussen (1977) that with 

T~ J,,; 
probabili ty one <~~ ,2:!:.1> / (p" N log log N) 2 has as its set of limit point 

a compact interval comprising the origin, but this neither contradicts 

nor proves 0./8 + 0 a.s. 
l 

Thus without further investigations we must 

rephrase (i) to the probability of (3.2) to be solvable for a given N 

in the way described to tend to one as N + 00 and (ii) to 
p p 

P + P , PI + PI . 

Remark 2 Explicit expressions for the variance in (1.2) can in 

principle be deduced from the proof but will not be stated here, since 

they are complicated and do not apply to produce confidence intervals 

before offspring variances have been estimated. It should be noted 

from (iv) that the speed of convergence of PI is slower as for the 

MLE, which has asymptotic properties similar to PML , cf. the obvious 

extension of &~ Corollary 5.1. 

Remark 3 Though the above considerations certainly do not pretend 

neither to be of great practical applicability nor to present anything 

than a first tentative suggestion, it seems reasonable to ask for robustness 

properties of the procedure. Again, this presents a complicated problem and 

we shall only give some remarks. Arriori information on the relative 

sizes of P and PI will seldom be available, although one may try to 
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base a preliminary survey on fluctuations of successive values of 

PLN ' cf. Becker (1977). If 2 
Pl < P , one has to replace (3.2) by 

where is asymptoticallY normal with mean vector 0 

and a covariance matrix which is regular except for offspring distri-

butions with special dependence structures. In that case, 

and the asymptotic form of the solutions of (3.3) is 

L 
-B ± D~2 

2A 

so that indeed one root is consistent for p while the other has a 

non-degenerate limit distribution. Consistency will also still hold 

in some simple cases if the number of types is p > 2, but in view of 

the complicated algebra involved we shall not go into that. 

As a final illustration, we shall compute p for some smallpox 

data (Rodrigues-da-Silva et al. (1963)) for which Becker (1977) has 

suggested the p-type Galton-Watson process as model. Unfortunately the 

sample size is very small, N = 4 with successive generation sizes 

1,5,3,12,24. Thus al = 3/5 , a2 = 12/5 , a 3 = 24/5 and (3.3) becomes 

17z2 - 28z - 24 = 0 which yields p = 2.27 , P = -0.62 
1 

Note that 

the estimates fail to satisfy P~ > P and that not even the meaning of 

types nor the value of p is clear in this example. Thus the value of 

P fits surprisingly nicely with other estimates like PB = 2.10 or 
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2.00 considered by Becker. 
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