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Abstract 

In a random coefficient linear regression model which is not ba­

lanced it is shown how one can make asymptotic inference on the 

parameters when the number of observations tends to infinity in 

such a way that the variance due to the design stays bounded. 



1 

1. Introduction and main result 

Consider the model for a random coefficient regression with normal 

errors 

Y. =X.B. +U" i=l, ... ,n 
111 1 

where (Bl, ... ,Bn,Ul, ... ,Un ) are independent normally distributed 

in such a way that 

B. rv N (S, l:) and U1' rv N (0, a~ I) 
1 m p. 1 

1 

We shall assume that the design matrix Xi has rank m for all if 

and tha t p. > m, i = 1, ... , n . 
1 

It follows that 

I 2 
Y. rvN (X.S, X. l:X. +0'. I), i=l, ... ,n , 

1 p. 1 1 1 1 
1 

are independent. 

2 2 
We want to estimate S/l: and al, ... ,an , and find the asymptotic 

distribution of the estimate for S. 

p. 
Let P. denote the projection of R 1 onto the subspace spanned by 

1 

X., then for i=l, ... ,n, 
1 

and 

are independent. 

2 (I -P.)Y. ""N (0,0'. (I -P.)) 
1 1 p. 1 1 

1 

I 2 
P.Y ....... N (X.S, X. l:X. +0'. P.) 

1 1 p. 1 1 1 1 1 
1 

The variable P.Y. is in one-to-one correspondence with 
1 1 

/\ I -1 I 

Si = (XiXi ) XiYi , the estimate of the "individual coefficients". 
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Thus the likelihood splits into a product of two factors, one con-

2 A 2 
taining cr. and one derived from ~. which contains ~,S and cr .. 
111 

2 
If cr. and ~ are known then it is easily seen that the maximum 

1 

likelihood for S is given by 

where 

A 2 
S(~,cr ) = 

n -1 n A 

(~lW') ~lw. S. 111 

2 I -1-1 
w. = (~ + cr. (X. X. ) ) ,i = 1, ... ,n . 

1 1 1 1 

Swamy (1971) suggested using the estimates 

and 

2 2 
cr.*= I(I-P.)Y.I I(p. -m), i=l, ... ,n 
111 1 

n 2 I -1 
~* =SSD(S)/(n -1) - ~l cr.*(X.X.) In 

111 

which are easily seen to be unbiased for cr~ and ~ respectively. 
1 

Thus we use the residual sum of squares from each regression to 

estimate the variance within each experiment. We then find the 

empirical variance matrix of Si and correct it to be unbiased for 
A _ 1 n A 

~. Note that we take the SSD (S) around S = n ~l Si· 

Swamy now defines 

and shows consistency and asymptotic normality under the assump-

tion 

A. III sup 
l<i<n 

2 1-1 
cr. tr(X.X.) -+Opn+ oo • 
111 
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Now S. has a variance composed of two components, the population 
1 

2 ' -1 variance E and the design variance 0. (X.X.) . The condition A 
111 

ensures that the design variance disappears in the limit, and 

hence that the estimator S becomes asymptotically equivalent to 

Sf but then there may not be so much reason for weighting after 
I 

all. Often X.X. will be of the order of p. and hence the condi-
1 1 1 

tion is that In sup 
l<i<n 

2 -1 
0. p. -+ 0, that is,p. should tend to infi-

1 1 1 

nity much faster than 10. 

For the applications it is certainly of interest to derive a 

limit result without this severe restriction. One would often 

have many experimental units, (n large) each giving rise to an 

unbalanced design (X.) which is not necessarily very large 
1 

(p. bounded). Thus a reasonable condition is that 
1 

B. sup 
l<i<n 

2 '-1 
0. tr (X. x. ) < C < 00 

1 1 1 -

We can now prove the following 

Theorem 1 The asymptotic distribution of S* when n -+ 00, such that 

B is satisfied is given by 

n ,...., -1 n ,...., -1,...., n,....,-l 
N (s, (El EW.) (El Ew. w. w.) (El Ew.) ) m 1 1 1 1 1 

with 

,....,-1 2'-1 
w. = E + 0. * (X. x. ) . 

1 111 

For this to be useful one must have a consistent estimate of the 

asymptotic variance of S*. 

Theorem 2 A consistent estimate of the asymptotic variance of S* 

is given by 
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where 

1 2 I -1 -1 2 I -1 2 I -1 -1 A.-l 
fOO:* +Z0.*(X.X.) ) 0.*(X.X.) 0::* +Z0.*(X.X.) ) A.Z l dz 

l l l l l l l l l l 

where 

*-1 2'-1 
A. = (p. -m)/2 and w. =E* +0.*(X.X.) . 

l l l l l l 

2 P 2 Note that if p. -+ 00 sufficiently fast then 0. * -+ 0. and the asymp-
l l l 

n -1 
totic variance will be equivalent to (El wi ) which again is 

-1 equivalent to n E. 

If 0~ = 0 2 for i = 1, ... ,n, then 0 2 can be estimated consistently 
l 

n 2 I -1-1 
and El(E* +0*(X.X.) ) will estimate the asymptotic variance 

l l 

consistently. 

The estimator in Theorem 2 for the asymptotic variance is not 

easy to calculate. Some different expressions are given in con~ 

nection with the proof. A different estimator is given in 

Theorem 3 If p. >m + 2, i = 1, ... ,n, then a consistent estimator 
l 

of the asymptotic variance of S* is given by 

where 

*** * * + 2 I -1 + -1 
w. =w.E w. +W.0.+(X.X.) w. (1- A. ) 

l l * l l l l l l l 

and 

222 
0. + "" 0. X If, f = p. - m - 2 = 2 (A. - 1) 

l l l l 
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and 

+ 2 I -1 -1-1 
W,=(L*+0,+(X,X,) (I-A.)) 

1 1 1 1 1 

Thus by discarding two degrees of freedom from each of the vari-

2 
ances estimates 0,*, one can produce another simpler estimate. 

1 
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2. Proof of the results 

We shall repeatedly use the ordering of positive definite symme-

tric matrices given by the usual definition: If ~ and E are posi-

tive definite symmetric m x m matrices then ~ > E (or E <~) if ~ - E 

is positive definite. 

We shall need the following results: 

~ < I tr ~ 

~ -+ ~ -1 is convex and decreasing 

A -+ (E + A~) -l(E + AO~) (E + A~)-l 
is convex and decreasing 

The convexity results are easily proved by diagonalizing E and ~ 

simultaneously by some non-singular transformation. 

We shall also employ the L2 norm of an m x m matrix A given by 

2 ' , 
2 IAxl x A Ax ' I A I = sup -- = sup .. = A (A A), 

x I x I 2 x x ' x max 

·the maximal eigenvalue. Note that I ~ I = Amax (~) for a positive de­

finite symmetric ~. 

We apply these notions to find that under condition B we have 

-1 2'-1 
E <wo = E +0. (X.X.) < E +CI 

1 111 

and hence E -1 > w. > (E + Cl) -1 . 
1 

Thus for a fixed E, the weights as well as the variances lie in 

a compact set. 

We need the following simple result: for 



7 

A A A , 

SS«(3-(3) =L nl «(3. -(3)«(3. -13) we have 
1 1 

EIS - 13 I E 0 ( 1/ ID) 

EISS(13 - (3) -E SS(13 - (3) I EO(ID) . 

This follows easily by calculating the variances 

and 

V(SS«(3-13» 
1 "n -1 -1 = 2 £...1 w. ®w. 
n 1 1 

both of which are O(l/n) by the remarks above. 

We shall use the following notation: for a sequence {X } of random 
n 

variables we write Xn E Op (1) if the sequence is tight, that is if 

for all E > 0 there exists a constant C such that p{ I X I > C} < E: 
n - -

for all n. 

If {b } is a sequence of real numbers we write X E Op (b ) if 
n n n 

b -1 X E Op (1). It is easily seen that if E I X I or V (X ) is bound-
n n n n 

ed then it follows from Chebychev IS inequality that Xn E Op (1) • 

Similarly if Xn ~ a, then also Xn E Op (1) • 

Lemma 2.1 Under condition B, the estimator L* is consistent for 

L, in fact L* - L E Op (l/ID) . 

Proof It is seen that 

nrn - - I 
- - (S-B){S-B) n-l 

rn n 2 2 1'_1 
Ll(G.* -G.) (X.X.) n 1 1 1 1 
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Now the first and second terms are E 0p(l) and the third is evalu­

ated by its variance 

V( 1n n 2 2 I -1 
n L:l(0.* --0.) (X.X.) ) 

4 
2 0. I 1 I 1 

-- En
l ~ (X.X.)- ® (X.X.)-

1 111 n Pi-m 1 1 1 1 

This is contained in 0(1) under condition B which completes the 

proof. 

Lemma 2.2 Under condition B we have 

* '" sup I w. - w. I E 0p (1/ In) 
.11 
1 

and 

Proof We have 

* '" * '" w. -Wo =w. (L: - L:*)w .. 
111 1 

For the first factor we have the inequality 

and for the third 

'" -1 
W. < L: 

1 

which shows that they are both in 0p(l) uniformly in i. The se­

cond factor is 0p(l/In) which proves the first result. 

The second result is proved as follows: 

/':; = 1 L:nW~)-1_(1 n'" -1 (-- L:lwi ) 1 n 1 1 n 

(1 L:~w~)-1(1 n "" * 1 n'" -1 = L:l(w. -w.» (- L:lwi ) n 1 n 1 1 n 

Now the second factor is, by the above, E 0p(l/I:n ). We have to 
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show that the first and third factors are bounded. 

-1 
From the convexity of cP -+ <p we have 

and 

L: n 
1 

2 
(}i* 
-- cr 
()~ 

1 

2 
(}i* cr 
~ 
(). 

1 

1 which shows that both factors are E 0p(l), 

hence .6 1 E 0p (l/ID) . 

since E -n 

Next consider 

.6 = (1: L: nw . ) -1 - (1: L: nl E w1' ) -1 
2 n 1 1 n 

= - (1: "nlw"'.) -1 (1: n '" '" 1 n '" -1 
L. L: 1 (vi. - E w . )) (- L: 1 E w1' ) n 1 n 1 1 n 

Again the first factor is bounded in probability. 

2 

L: n (}i* 
1, -2- = 1 

(). 
1 

-1 The third is evaluated as follows. From the convexity of cP -+ cP 

it follows that 

1 n'" 1 n 2 ' -1-1 
L: lW1' > (L: + -n L: () (X X) ) n 1 i* i i 

and again 

1 n'" 1 n 2 ' -1-1 
E L: lW' > (L: + - L: 1 (). (X. X . ) ) n 1 n 1 1 1 

> (L: + cr) 

which shows that the third factor is bounded. 

Finally the second factor is evaluated by its variance 

1 L: n V(w.) EO(l/n) 
n2 1 1 
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which shows that 6. 2 EO(l/In). Thus 6. 1 +6. 2 EO(l/ln) which proves 

the last assertion of Lemma 2.2. 

Lemma 2.3 Under condition B we have that 

is asymptotically normally distributed with parameters 0 and 

n '" -1", 
El Ew.w. w .. 

1 1 1 

Proof We are considering a sum of independent random variables 
A. 

Z.=w.(S.-S). 
1 1 1 

We find 

"'-I A ~ ~ -1 r.J 

V Z. =E w. V(S.) w. =Ew.w. w. 
1 1 1 1 II 1 

Hence 

and 

n n '" -1", 
El V(Z.) = El Ew.w. w .. 

1 1 1 1 

By the convexity of the function 

it follows that 

'" -1'" >("+CI)-l E w.w. w. >w. '-' 
1 1 1 1 

and hence 
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En V(Z.) >n(E +cr)-l . 
1 1 

Thus we can check Ljapunov's condition 

(En EIZ.1 3 )2 2 
1 1 < an -+ 0, n -+ 00 

1 E ~ V (Z i) 1 3 - n 3 1 (E + Cr) -1 1 

which proves Lemma 2.3. 

We can now combine the results and prove Theorem 1. 

1 n 2 I -1 
El (J. * (X. X.) and note that n 1 1 1 

E * * - E E 0p ( 1/ In) and that L: * * - L: * = 
1 1 A _ _ , 

n-l (i1 SS(S - S) -n(S - S) (B - B) ) E 0p(l/n). 

Now 

n * A n~ A n ~ ** A 

L: lW' (S. - S) = L: lW' (S. - S) - L: 1 (w. - w . ) (S. - B) 
1 1 1 1 111 

n ** * A - L: 1 (w . "- w.) (S. - S) 
111 

The first term is by Lemma 2.3 asymptotically distributed 

n ~ -l~ 
N(O,L: l Ewiwi w) and hence E 0p(In). We want to prove that the 

other terms are 0p(l). 

The last term is evaluated as follows 

n * ** A lL:l(w.-w. )(S·-S)I 
111 

n * ** A 

< 1 L:lw. (L:* - L:**)w. (S. - S) 1 
111 

* < suplw. 
. 1 
1 

** Isuplw. IsuplS. -BlnIE* -L:**I 
. 1 . 1 

1 1 

The second term which contains the essence of all the difficul-

ties is evaluated by its variance. We easily find 
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A A 

E{ (Si - S) I ss (S - S) } = 0 

A A A 

V{ (Si - S, Sj - S) I ss (S - S) } = 0, i * j 

and 

n ** '" A Hence for R = Ll(w. -w.) (S. - S) we get ER = 0 and 
1 1 1 

n ** '" A A ** '" = E Ll(w. -w.)V{(s,.-S)ISS(S-S)}(w. -w.) 
1 11 1 1 

which shows that 

** '" 2 A IV(R) I :SE suplw. -w.1 tr(SS(S - S)) EOp(l) . 
. 1 1 

1 

Thus we find that 

n * A n~ A 

L lW' (S. - S) = L lW' (S. - S) + E 
1 1 1 1 

wi th E E Op ( 1) • 

Finally we write 

wi th El E Op (11 Ill) from Lemma 2.2. Hence 

where E2 E Op (l/n) which is the desired conclusion and the proof 

of Theorem 1 is completed. 

Next we prove Theorem 2. From the above results we have 
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and similarly 

we see that it is enough to prove that 

1 2' -1 -1 2 I -1 2 I -1 -1 Ai-l 
E J (L: + zo'. * (X. X. ) o'. * (X. X. ) (L: + zo'. * (X. X. ) ) A. z dz 

o 111 111 111 1 

= E· 2(X'X )-1'" w. a. .. W. 
1 1 1 1 1 

The expression in the integral contains the two matrices L: and 

, -1 
(X.X.) . We diagonalize them simultaneously such that L: becomes 

1 1 
, -1 

the identity and (XiXi ) the diagonal matrix diag(dl, ... ,dm). 

We then have to verify that 

E 7 (1 + zV) -2 VAzA-ldz = E (1 + V) -2 AS 
o 

2 
where V = dkO' i * is Gamma distributed with parameters A = Ai and 

2 
S=O'i dk/Ai here ,i=l, ... ,n and k=l, ... ,m. 

To prove this relation we interchange the integration as follows: 

1 
E J (1 + zV) -2 VAz A- l dz 

o 

00 v 
= J I (1+u)-2 u A- l dUAe-v/Sdv/(r(A)SA) 

o 0 

00 

= J (1 +u)-2 AS e-U/SuA-ldu/(r(A) SA) 
o 

= E (1 + V) - 2 AS. 
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This completes the proof of Theorem 2. In order that the result 

1 -2 A-l be useful one has to calculate the integral f 0 (1 + zx) z dz. 

We have found the following two expressions 

1 00 

f (1+zx)-2 z A-ldz =(1+x)-1_(A-l) L: 
o ~=O 

(-x)~ 
~+A 

A-l 
= (l+x)-l+(A -1) (-x)-A{ln(l+x) + L: (-x)v lv }. 

v=l 

Finally we want to prove Theorem 3. 

Just as with Theorem 2 we only have to prove that 

( 1 _ 1 -. 1) + 2 ' -1 + rv 2 ' -1 ...... 
f\. Ew.0.+(X.X.) w. = EW.0. (X.X.) W. 

l II II l llll l 

Diagonalizing as before this result reduces to 

(1 - A -1) E {U (1 + U (1 - A -1) ) - 2}= A S E (1 + V) - 2 

where V, A and S has the same meaning as before, and U is distri-

buted as r (A - 1, SAl (A - 1) ). This relation follows from 

00 

(1+v)-2 -viS AS f 
A-l 

v e dv 
0 

00 

e-v/Sdv f 
-2 A-2 = AS v (1 + v) v 

0 

00 

-1 -2 A-2 
= AS f u(l+u(l-A )) u e 

u(l-A- l ) 

S du(l-A-l)A 
0 

by dividing by A r(A)S .. 
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