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Section 1. Introduction. 

This work is a thesis for the licentiat degree at the Institute of 

Mathematical Statistics, University of Copenhagen, and it consists of 

Section 1 - 3, Appendices A and B and three q<;;;parately written. papers. 

This unusual form of the thesis requires some explanation. The ~ost 

important parts of this work are the three papers, which, although 

theoretically based on the general theory of Edgeworth expansions 

(section 2 - 3), were written before these chapters. They are strongly 

connected in subject but written independently, all three depending 

heavily on the classical theory of Edgeworth expansions, of which an 

excellent and comprehensive account is given in Battacharya & Rao (1976) 

The reason, that I have chosen to include an account of this theory as 

Section 2- 3 here is, of course, that some changes were desirable for 

our purpose. This slight change in scope will be explained further be­

low; the most important things are the introduction of a mUltivariate 

notation, which makes calculations easier and makes a "directional" 

approach possible, and the separation of the theorems from their applica­

tions to sums of independent variables. Also distinction lS being made 

between the construction of the Edgeworth approximations to a glven 

measure as described in Section 2, and in Section 3 their properties as 

asymptotic expansions for certain sequences of measures. 

In the three papers the notation has been chosen as a compromlse between 

mathematical convenlence and traditions of statistical literature, e.g. 

by avoiding the use of the tensor product. Here, I have made it an ob­

ject to use the notation, that I find most convenient for the develop­

ment and presentation of the theory, even though it may take a while for 

the reader to get used to it. The Appendices A and B should be sufficient 

to explain the notation, but further knowledge of multivariate algebra 

lS helpful when doing the calculations. 
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I have not rewritten the three papers in this notation, because that 

would still not have finished the work. There are many subjects left 

out, e. g. expansions of the likelihood ratio test statistics and con­

fidence regions, and at least the last two papers may be seen merely 

as examples of applications of the Edgeworth expansions. Also, based 

on the version of the classical expansions given in section 2 and 3, 

there should be possibilities of improving the theory outlined in the 

papers. Thus, an extension of the work would be morefrui tful than 

a revision of the papers. 

Section 2 contains the basic definitions of themultiyariate Hermite­

and Cramer-Edgeworth polynomials together with the construction of 

the Edgeworth approximations. The definitions agree with Chambers 

(1967) except for notational differences and their consequences on 

the various concepts. A theorem is given on the moments of the Edge­

".forth measures, but otherwise no attention is given to their behaviour. 

In Section 3 the appearance of the Edgeworth approximations as expan~ 

sions is investigated and conditions are given for the error of the 

density and of the distribution to tend to zero at a certain rate. 

Applications to sums of independent variables are considered in the 

form of theorems applying to these cas'es", Compared to the classical 

theory as outlined in Bhattacharya & Rao (19761 the technique of proof 

has been changed to allow for different rates of increase in the eigen­

values of the variance-covariance matrix, at the cost of the introduc­

tion of a logarithmic factor in the error bound of a power series ex­

pansion. This change does not alter the validity of the expansion, and 

if the expansion of any order is valid, it makes no difference at all, 

because the next term of the expansion then determines the limiting 

behaviour of the error. 
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Some notations, concepts and theorems used in Sections 2 and 3 are 

explained in Appendices A and B. Appendix A explains the use of the 

tensor product, which is used only to make the notation simpler; no 

deep algebraic results are needed for our purpose. Appendix B on 

differentiability contains a brief intoduction to differentiability 

and differentials and gives some theorems on how to calculate higher 

differentials of functions derived from other functions by composition, 

inversion, etc. 

In the paper "Transformation of an Edgeworth Expansion by a Sequence 

of Smooth Functions" it is shown, how an Edgeworth expansion of a 

sequence of distributions, obtained e.g. by the classical theory, may 

be transformed to an Edgeworth expansion (or rather a sequence of 

Edgeworth approximations with an error, which tends to zero at a cer­

tain rate) of the sequence of distributions obtained by non-linear 

transformations of the original sequence. The technique used is based 

on that in Bhattacharya & Ghosh (1978), where the result corresponding 

to transformation of an average of non-i.i.d. random variables is proved. 

Section 5 of the paper may be disregarded in this context, since an 

improved version is contained in Section 2 and 3 here. A natural ex­

tension would be also to consider asymptotically quadratic transforma­

tions, which would be relevant for expanding distributions of test sta­

tistic. In Chandra & Ghosh (1979) this is done for the cases corresponding 

to Bhattacharya & Ghosh (1978) and the extension to other cases is fairly 

obvious. 

The paper "Edgeworth Expansions of the Distributions of Maximum Likelihood 

Estimators in the General (Non LLD.) Case" uses the results of the first 

paper to derive Edgeworth expansions for maximum likelihood estimators 
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under conditions, that are not restricted to particular situations, 

such as replications of an experiment, and it is shown how the results 

may be applied to provide expansions, e.g. for the cases of normal re­

gression models. Some explicit formulae are given to facilitate the 

computations. Similar results for the i.i.d. case have been proved 

in the one-dimensional case by Pfanzagl (1973), and in the multivariate 

case by Bhattacharya & Ghosh (1978). Ivanov (1976) has proved the va­

lidity of the expansion for the normal regression models, but not com­

puted the expansion. Other papers on this subject are Chambers (1967), 

Chibisov (1972, 1973a, 1973b). 

As a more special application the paper HA Second~order Investigation 

of Asymptotic Ancillarity" uses the Edgeworth expansions to investigate 

the conditional approach suggested in Efron & Hinkley (1978) in terms 

of asymptotic properties. The conditional distribution of the maximum 

likelihood estimator 1S approximated to second order by an Edgeworth 

approximation, which 1S explicitely calculated and some comparisons be­

tween observed and expected Fisher informations are made. The possibility 

of expanding conditional distributions in Edgeworth series has been 

pointed out by Michel (1979). 

It is a pleasure to thank my supervisor Steffen L. Lauritzen for many 

discussions and helpful suggestions during the course of my work, and 

the Institute of Mathematical Statistics, University of Copenhagen, for 

their support. Also, I wish to thank the Department of Statistics at 

University of California, Berkeley, for their hospitality during the 

academic year 1980/81 and Ina Buhl for typing the manuscript. 
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Section 2. Edgeworth approximations. 

In this section we shall construct the (multivariate) Edgeworth measures, 

used to approximate probability measures, in particular for sums of inde-

pendent random variables. The Edgeworth measures are finite signed measures, 

absolutely continuous with respect to the Lebesgue measure, and their den-

sities take the form of polynomials multiplied by a normal density. 

Let E be a finite dimensional real vector space, p = dim E ,and ~ 

an inner product on E ,i.e. a bilinear, positively definite, symmetric 

mapping of ExE into E. The canonical Lebesgue measure A~ on the Euclidan 

space (E,~) asslgns mass one to a unit cube. 

The normal distribution on E with center xOEE and varlance ~-lEE0E 

has the density 

~(x) 

with respect to A~. If Xo = 0 , we shall often write ~~ or just ~, 

if it is obvious, what ~ is. 

(2.1) 

Next, we define the Hermite polynomials. Recall, that in the one-dimensional 

case (E=~), the k'th Hermite polynomial Hk is defined by 

(2.2) 

In the general case we define the k'th Hermite polynomial Hk ~ on (E,~) , 
by 

Q{>k 
Hk ~ : E -+ Pal (E, JR) , 

k k 
Hk,~ (A,x) = (-1) < D ~~ (x) , A > / ~~ (x), .xEE AEEelk , (2.3) 

For fixed A this is a pOlynomial in x. If E9R the usual Hermite 

polynomials (2.2) are obtained by letting A=l. Hk ~ is linear and symmetric , 
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In A, i.e. if Y1"'" YkEE and 0 lS a permutation on {1, .•. ,k} then 

Thus, as a function of A , Hk ~ is determined by its values on tensors , 
:;Zk 

of the form A = y' yEE . These may be written 

(2.4) 

which is determined In a simple way from the one-dimensional Hermite-po-

lynomial. 

The use of the Hermite polynomials is based on the following simple form 

of corresponding characteristic functions. 

Lemma 2.1. The characteristic function of the measure with density 

Hk,~ (A,x) ~~(x) with respect to A~ is the function 

t ~ .k ®k 
l < A , t 

Proof. 
. @k 

It lS sufficient to show the result wlth A = y In that case, 

the result lS an easy consequence of the well-known one-dimensional ver-

sion, see e.g. Petrov (1975) Ch VI.1. 
o 

Another important property of the Hermite polynomials lS their orthogonality 

property. 

Theorem 2.2. Let A and B be symmetric tensors in E k (i.e. of the form 

®k £lk 
L: y. ,and let ~ 

J 

* &Jk \;{!k * (E ). ~ (:E'~ ) be the k'th tensor product 

* of ~: E ..,;.. E with itself. Then 
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if k=m 
= (2.6) 

if k:j:m 

Remark 2.3. Since ~ ~(A,x) 1S symmetric in AEE~k ,(2.6) also determines , 
the values of integrals of the same form, but with arbitrary· A and BEE~k 

One just has to replace A and B by their symmetric equivalents modulus 

the space generated by the permutations. 

To glve a coordinate analogue of (2.6) , assume that ~ 1S the usual inner 

product on E~P (equivalently choose an orthonormal basis with respect to 

~) , and consider 

H (x) 
k 1 ..• k p 

= (-1)k [( ~1 t1 ... ( ~p tp <p(x) 1 /<I>(x) , k=k 1+·· .+kp 

where (e 1 , ... ,ep ) 1S the orthonormal basis (~). Then, 

J ... J Hk1 ... kp(X) H .... H. (x)t,O(x)dx1 ... dx 
J 1 Jp P 

= 
{k! / (k1 ! ... kp !) 

o 

if (k1,···,kp ) = (j1, ... ,jp) 

otherwise 

The equivalence between (2.6) and (2.8) 1S easily established. 

Proof. of Theorem 2.2. We shall prove the verS10n (2.8). Suppose k.:J:j. 
1 1 

Then, by integration by parts 

(2. T) 

(2.8) 
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J(Hk k ( x ) tp( x )) H. . (x) dx 1 
1 • •• P J 1 ... Jp 

= [-H(k -1) k (x)tp(x) H. . (X)]OO 
1 ••• p J 1 • .. J p _00 

+ J(H( ) (X)tp(X)}\ ~ H. . (x) dx1 k 1-l ... kp dX1J1 .. ·Jp 

The s~uare bracket term lS zero, and if kl>l , we may repeat the proces 

until we end up with 

slnce the highest degree of xl in H. . (x) lS 
J 1 ... Jp 

= (jl, ... ,jp) , the same computation, after kl integrations by parts, 

yields 

In fact, Slnce H (x) = Hk (xl)" .Hk (x ) 
k 1 · .• k 1 P 

(cf. (2.2)), and 

the coefficient of 
p. k P 

x l ·1 In Hk (Xl) lS one, this integral e~uals 
1 

Integration with respect to the other coordinates In the same way, yields 

the result. 

When using Hermite polynomials, it is usually practical to work directly 

with their definition (2.2) - (2.4) or using some of their properties, 

o 

e.g. (2.5) or (2.6). We shall, however, use the Hermite polynomials to con-

struct certain approximations, and to do this one needs the polynomials 

themselves. These may be constructed recursivelyor by use of the following 

formula, which is easily obtained from Theorem B.5. 
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k/2 k/2' [ 1 2' k/2-' L (-~) -J k!/ (2j)! (k/2- j )!J /;,(y,x) J /;,(y,y) J if k is even 
j=O 

= 
(k-1 ) /2 '[ ,L (_~)(k-1)/2-J k! / (2j+1)! ((k-1)/2- j )!J1 f'l(y,x)2 j +1 /;,(y,y)(k-l)/2- j 

J=O 
if k is odd (2.9) 

Now, let P be a glven probability measure on E, with characteristic 

* function 1jJ: E ~ ( and the first s cumulants X1 ' ••• , xs existing; 

XkEE0k being a symmetric tensor. We want to construct an approximation 

to P ,depending only on these cumulants. 

Assume, that X, =0 (eQuivalently, choose 

that X2 lS regular, and consider 

.s 
l ( + ... + -, X s. s 

as origin In E) , and 

* ) as t~O , tEE 

The approximation, we shall construct, is motivated as an approximation 

(2.10) 

for sums of independent random variables. Therefore consider the function 

t~n1jJ(t/;n) , which is the characteristic function of a normalized sum of 

n independent random variables with distribution P. Letting T=1//llwe 

get 

(2.11) 

Taking the exponential of both sides and expanding around T=O we obtain 

(2.12) 
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where P k (it: {X)) lS the k' th Cramer-Edgeworth pOlynomial In 

(it) with coefficients depending on X1""'Xk+2 ' The formula for Pk 

lS 

dk 
[exp 

.l ["3 s-2 . s 

)} J r k! {, i-X3 (td 
) 

l 
(t = + ... + , X d,k s1 s 

,=0 

k 

[Xj +2 
((it)Sj+2)/(j+2)!]V j = L II v. ! 

vET(k) j=1 J 

obtained from Theorem B.5. 

(2.13) 

Here, we have extended the (X.IS) by linearity to admit complex arguments. 
J 

Letting ,=1 In (2.12) we obtain the approximation 

lJ!(t) I=::j lJ! (t: {X·}) 
s J 

= (2.14) 

which has the advantage, compared to (2.10) , of being easily invertible, as 

we shall see below. 

With (:, = X2-1E(E'~2) ,we see that exp{-h 2 (t,t)} lS the characteristic func-

tion of W(:, , the normal distribution with center 0 and variance X2 • 

The inversion of (2.14) follows from Lemma 2.1 or directly by using the 

fact, that mUltiplying the characteristic function by (-it) corresponds to 

differentiation of the density in the direction t Thus, the measure with 

characteristic function lJ! (t:{X.}) has density 
s J 

(2.15) 



- 11 -

wi th respect to At;,' where P k ( - D: ix j } ) lS the operator obtained from 

Pk(it:{x)) by substituting minus the differential operator D for 

(it) ; e.g. a term 

becomes 

The measure Qs(· , with density f (x:{x.}) 
s· J 

wi th respect to 

At;, is called the Edgeworth approximation of order s-1. Often, we shall 

just write ,I, ,f 
'l's s and Q 

s 
for the Edgeworth approximations to the 

characteristic function, the density and the measure. Notice, that the 

first order Edgeworth approximation is the usual normal approximation. 

From (2.13) , (2.14) and (2.5) we deduce, that 

f (x: {X.}) 
s J 

3(s-2) 
= I 

m=3 

t'fjV s 
.. ·®xs 

s v. 
,x)<f)t;,(x) / IT v.!j! J 

j=3 J 
(2.16) 

where I* lS the sum over all partitions v = (V 1 , ••• ,vm)ET(m) = {Ijvj"':m} 
vET(m) 

for which v 1=v2=O . This formula is a multivariate analogue of PetroY 

( 19 75) , VI • (1. 9 ). 

An important question is, of course, how well the Edgeworth approximations 

work as approximations. This will be discussed in the next section; here we 
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shall only glve a theorem on approximation of moments. We have not as-

sumed moments of P of higher order than s , but we shall define the 

formal cumulants of P (of any order)"by 

if 1 <a<s 
(2.17) 

if a>s 

and the formal moments of P by the well-known relations between moments 

and cumulants, i.e. by 

I a! 
vET(a) 

a 
IT 

j=1 
\! . ! 

J 

* Also, we define for each "direction" tEE 

p (t) 
s 

2 j/2 
) ) 

11.>1 

which is invariant under mUltiplication of t by a real (non zero) con-

stant. Then, we have the following similarity between the formal moments 

and the moments of Q . 
s 

Theorem 2.3. With notation as above, the Edgeworth approximation Qs has 

moments (m) of all orders, satisfying 
a 

m 
a = 110'. if 1 <a<s+2 

* a>s+2 , tEE 

where c 1 (s ,a) 1S a constant depending only on s and a (see (2.25)). 

(2.18) 

(2.19) 

(2.20) 
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Proof. That P has moments of all orders, is obvious from the form of 
s 

its density. In proving (2.20) we may restrict attention to one-dimen-

sional (E=R) distributions, since it is essentially an assertion on 

the moments of <t,X> , X having distribution P respectively Q . 
s 

With E=B moments and cumulants are real numbers. The moments of Qs 

are obtained by differentiation of the characteristic function 1J; • 
s 

First, using (2.13), we get 

da rv 

---- P (it:{x.})/ 
dta k J 

t=O 

(a) 
I being the sum over all V=(V 1 ' ••• 'Vk ) for which I(j+2)v.= a. Next, 

J 

if a> 1 we have 

.-0: da [exp {-h2t2} 
s-2 

Pk(it:{x)))]/ m = l (1+ I a dta k=1 t=o 

a 
(a)i-(O:-(3)H 

s-2 ( (3 ) k v. 
= I (0) I (3! I IT (x. /(j+2)!) J/v .! 

(3=0 
(3 a-(3, X2 k=O vET(k) j=1 J+ J 

s-2 
where the second factor I ( ... ) lS taken to be one if k=(3=O and zero 

k=O 
if k=O , (3)0. Using (2.9) , (2.21) equals 

a 

I 
(3=0 

, (a-(3)/2 
a'X2 * 
( (a-(3 )/2) !2( a-:-(3 )/2'~ET( (3) 

s 
IT 

j=3 

v. 
(X./j!) J/v .! 

J . J 

(2.21 ) 

(2.22) 

* where the first sum is restricted to 0: - (3 being even, and I is restricted 

to the 

(a-(3)/2 

v = (v" ... ,vs ) 

play the role of 

that (2.22) equals 

for which v =v = 0 I 2 

v 2 ' we see, that 

and 2(j-2)v.<s-2 
s J-

2(a-(3)/2 + 2 jv. = a 
3 J 

Letting 

, such 



I** 
vET(a) 

'\** where L 

a 
a! IT 

j=2 
v . ! 

J 

- 14 -

('" / . , ) v . X· J. J 
J 

lS restricted to the v's satisfying 

For ~a we have the formula (2.18), l.e. 

a 
'" _ '\ , ('" /. I v. ~ - La. IT X· J.) J /v . I 

a vET ( Cl, ) j = 1 J. J • 

'\ (j-2)v .<s-2 . 
L J-

which compared to (2.23), on noting that if vET(a) and v 1=0 , we have 

I'" 1 '\*** 11 -m < L 
a a - vET(a) 

a ·-2 ·/2 v. 
a! IT (p J x2J /j!) J/v .! 

. 2 s J J= 

where *** I is restricted to v's for which v =0 
1 

lS short for p (1) 
s 

and 

a 
et! / IT 

j=2 

v. 
., J" .. , J . v 

J 

and 

and otherwise 

I(j-2)v.>s-2 , 
J 

o 

(2.23) 

(2.24 ) 

(2.25) 
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Section 3. Edgeworth expanSlons. 

In this section we shall investigate how well an Edgeworth apprOXlma­

tion behaves as an approximation of the distribution or density of a 

random variable X on a vectorspace E , dim E = P < 00 We shall 

first obtain some bounds for the approximation and later show how these 

behave for a sum of independent random variables as the number n of 

terms tends to infinity. It turns out, that the Edgeworth approxima­

tions appear as asymptotic expansions in this setting. 

The scheme of proof is first to approximate the characteristic function 

as in (2.12) in a neighbourhood of the origin. The next step is to in­

vert the approximation to yield an approximation to the density. To do 

this, one has to prove, that the contribution from the tail of the cha­

racteristic function lS not of too great importance. The inversion takes 

a different form for absolutely continuous and for discrete distributions. 

In any case the local expansion (of the density) may be integrated, either 

with respect to the Lebesgue or the counting measure, to yield an appro­

ximation to the distribution (as a set function). In this respect the 

discrete (lattice) case is much less tractable. 

The method follows closely that of Bhattacharya & Rao (1916), chapter 9. 

Besides the notational differences, there are some important changes. We 

don't expand the derivatives of the characteristic function, which in 

Bhattacharya & Rao are used to allow integration of the local expansion. 

Instead, we use a simple method, which either requires the existence of 

one more moment to obtain the same expansion or contributes a logarithmic 

factor to the last term of the expansion. The advantage of this approach, 

besides its simplicity, is, that it allows us to handle cases In which 

the eigenvalues of the variance grow at different rates in the sequence 

of distributions considered. 
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Recall, that 

depends only on t Vla its "direction". The expanslons of the charac­

* teristic function ~:E ~ are also constructed considering each direc-

tion separately. Thus, the method is essentially the same as in the one-

dimensional case. 

The variance * defines an lnner product on E 

* the norm of tEE by 

and we shall denote 

Lemma 3.1. * If tEE for some 0>0 , then 

where the constants c3 and c5 depend on s and 0 only, and 

s-2 
I ok / (k+2)! - ~ 

k=1 

Proof. Consider the functions 

f(u,t) = exp{g(u,t)} uER 

(3.4 ) 
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s-2 
h(u,t) = f(u,t) - I Pk(it:{Xj}) uER 

k=O 

By the definition of the Cramer-Edgeworth polynomials (Pk ) we have 

dJ 
h(u,t)1 

duJ 
u=O 

s-l 
d 

s-1 h(u,t) I 
du 

u=O 

= 0 if 

ds - 1 
= ~1 f(u,t) . 

du 

Also, if O.::u:::1 ,1.::k.::s-1 and Iltllps(t):::o then 

where 

k s-2 
liLk g(u,t)I::: I lx- 2(t~j+2)lj!/ [(j-k)!(j+2)!] 
du j=k J+ 

s-2 
I oj-kj !/[(j-k)!(j+2)!] 

j=k 

Using this, we obtain 

ds - 1 . s-1 [ dk ]Vk 
1---S=-1 f(u,t)I.::lf(u,t)1 L (s-1)! IT Ik" g(u,t)l/k! /vk! 
du vET(s-1) k=1 du 

c 3 depending on sand 0 only 

(3.6) 
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where 

s-2 
c4(s,o) = L Ok/(k+2)! 

k=1 
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it follows by (3.5) and Taylor's formula, that 

Since lexp {-~I It I 12} h(1,t)1 is the quantity to be estimated, the lemma 

follows. 

Theorem 3.2. Let t be such, that 11-1jJ (ut) I < 1 if O<u< 1 , and suppos e 

that 

lS finite. If also I It I Ips(t)20 , then 

11J! (t)- 1jJ (.t) I s 

(3.8 ) 

o 

(3.12) 
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Proof. Define 

Then 

Since the first s derivatives of h2 at zero vanish, the definition 

of M(t) and Taylors formula gives 

Also, by (3.8), Ih1(t)l.:::c5(s,o)/ltI12 , and by use of the inequality 

le:X:-11.:::lxle 1xl for xEC , (3.13)- (3.14) implies 

I~(t) - exp{h1(t)}1 

.::: I h2 (t ) I exp {I h 1 (t ) I + I h2 (t ) I } 

~ (M(t) Iltlls+1/(s+1)!) exp {c5(s,o) IltI1 2+M(t) Iltll s+1/(s+1)!} 

which, combined with Lemma 3.1, glves the result. 

(3.14) 

o 

Theorem 3.2 provides our final approximation to the characteristic function 

and corresponds to Bhattacharya & Rao (1976), Theorem 9.9. The use of this 

approximation relies on the fact, that if P is the distribution of n 

i.i.d. random variables, having s+l finite moments, then p (t) lS of order 
s 
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1/1ll and M(t) of order n-(s-1)/2 if Iltrip (t):.:o ,such that the _ s_ 

integral of the bound (3.12) over this set of t's is O(n-(S-1)/2) as 

n tends to infinity. 

More generally, consider a sequence (P) of distributions with charac­
n 

teristic functions ,/, cwnulants X 'rn ' . J,n 
j=1, ... ,s; n = 1,2, ... 

etc. We shall be concerned with expansions of (f ) , the sequence 
n 

of densities as xi'::) 00 ; the density being either with respect to the 

Lebesgue measure or with respect to the counting measure on a lattice. 

In the continuous case, the density f 
n 

1S obtained by inversion of 

the characteristic i'unction, 

1S the density of Pn with respect to Ab ,if l1Jln (t)1 1S integrable. 
n 

Using Theorem 3.2 and (3.15) we reach the following theorem. Note, that 

J (&)2-
r 1 t 11 = X2 (t ). n ,n 

Theorem 3.3. Suppose that a sequence - (En) of positive nwnbers exists, 

* and that for each tEE ,a sequence (a (t)) of positive nwnbers exists, 
n 

such that a (t) 
n 

depends only on the direction 

such that for n~ we have 

1 *-
p - (t) < a (t y-' for all tEE s ,n _ - n _ 

* QCE ) = 0(1) uniformly ln tEE 
n 

and assGune also, that for any 0>0 we have 

t/Iltll n 
of t , and 

(3.16) 
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00 

O( E: ) 
n 

(3.18 ) 

and for some 0>0, 

where M lS given by (3.11) . Then for sufficiently large n , the den-

f of P with respect to 
n n 

exists, and 

If (x)-f (x)1 = O(E: ) uniformly in xEE , n s ,n n 

where f lS the Edgeworth approximation of order (s-1) to f 
s ,n n 

see (2.15) . 

Proof. By (3.15) we have 

If (x)-f (x) I n s,n 

«2n)-Pfl~ (t)- ~ (t)ldA (t) - n s,n X2· ,n 

* Now, for any integrable function h on E ,we may decompose the In-

tegral , writing t = u( t/ 11 t 11 ) , O<u<oo, to obtain 
n 

f h ( t )(lA ( t ) 

where i\ lS the Lebesgue measure corresponding to the inner product on 

* E and p .. . d1'(t) is the integral over the unit sphere, lit 11=1 

with respect to the geometric surface measure 1 induced by A. Thus, 

(3.20) 

(3.21) 

(3.22) 
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we only need to bound the integral over the sphere of 

co 

I ( t) = J uP- 1 11jJ (ut) -1jJ ( ut ) 
o n s,n 

du , 
'f? 

tEE"' , lit 11 = 1 
n 

by O(s). Given 0>0 we estimate l(t) by 
n 

where 

oa (t) 1 
11 (t) = J n uP- 11jJ (ut) -1jJ ( ut ) 1 du 

o n s ,n 

co 

12 (t) = J up - 1 11jJ (ut) 1 du 
oa (t) n 

n 

co 

13 (t) = J uP- 1 11jJ (ut) 1 du 
oa (t) s,n 

n 

By (3.18)JPI2 (t)dA(t)=0(sn) , and by (3.16),(3.17) and Skovgaard (1981a), 

Lemma 4.1 it follows that 13 (t)=0(sn) , since exp{-~an(t)202}an(t)k = 

(3.23) 

O(sn) for any kEN. To estimate 11(t) we use Theorem 3.2 and (3.16),(3 17), 

(3.19) . First notice, that if u<oa (t) , then if 0 is sufficiently small - n 

M(ut)<M(oa (t)t) =O(a (t)-(s-1)) = O(s ). 
- n n n (3.24) 

Next, for the exponent of the bound (3.12) we have 

2 s+1 c5(s,0)u +M(ut)u /(s+1)! 
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if n 1S sufficiently large and 0 sufficiently small. 

That 11 (t) and hence I(t) 1S O(E) 
n 

1S now a trivial consequence 

of (3.24) and (3.25), and since all the bounds are uniform 1n t , the 

theorem 1S proved. 
o 

The formulation of the theorem, stating the conditions for each direction 

separately may seem to make these hardto verify. In fact, compared to 

the theorems of Bhattacharya & Rao (1976) or to Skovgaard (1981a), Th.5.3, 

the "directional" approach makes the theorem both easier to apply and 

more flexible in the sense, that cases, where the rate of convergence de-

pends on the direction, are also covered. However, the resulting expansion 

of the distribution gives a slightly larger error rate compared to the 

other approaches, but this seems to be of minor importance for our purpose. 

We shall give an example to illustrate the use of Theorem 3.3 at the end 

of this section. 

Before turning to the lattice case, we shall glye a lemma showing how (3.~8) 

may be verified in the case of sums of independent variables. Therefore, let 

be mutually independent random variables on E ; X. having mean 
J 

zero, k'th cumulant 

Let 

have distribution P 
n 

stic function given by 

1jJ (t) = n 

n 
IT 

j=1 
g. (t) . 

J 

for 1<k<s 

cumulants 

* and characteristic function g.;E ~~ 
J 

(3.26) 

and characteri-
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* Let E be equipped with a fixed Euclidean norm denoted I I . I I 

(which norm is chosen, doesn't matter), whereas the norm given by 

X2 n will be denoted by , "." ,i.e. n 
X2 (t if92 ) 

,n 

The following lemma 1S a "directional" verS10n of Skovgaard (1981a), 

Lemma 5.5. 

Lemma 3.4. Let P be the distribution of U as above , and let the 
n n 

sequences (a (t)) and (E) be given. Then under the following con-
n n 

ditions, (3.18) holds: 

I. A finite set SaN exists, such that 

J IT I g. (t ) I dA (t ) <00 
jES J 

where A 1S the Lebesgue measure corresponding to the fixed 1nner pro-

duct. 

11. A constant K>O exists, such that 

y (t) = inf 
n 

n 
{L (1-lg·(t)1 2 )1 !It''~K} 

j=1 J 

satisfies 

y (t)/[(1+lltI1 2/a (t)2) log (11tll le )]~ n n n n n (3.28 ) 

uniformly 1n t 1n {II t 11 = 1} . 

Proof. Almost identical to the first part of the proof of Lemma 5.5 

in Skovgaard (1981a). o 
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Notice, that there lS no normalization in the definition (3.26) of U . 
n 

This is taken care of by letting the varlance X2 n define the metric , 
and hence the canonical 1ebesgue measure on E , with respect to which 

the density lS taken. This is a more satisfactory method of normaliza-

tion, since it avoids the arbitraryness In the choice of a square-root 

of the variance. 

1et us now turn to the·la,ttice·case. If dim E=p, a lattice In E denotes 

a set of the form 

z. E Z 
J 

j=1"",P1 

where ~1""'~pEE are linearly independent. A random variable XEE lS 

called a lattice random variable (on L),if. it takes values in x +1 o 

with probability one for some xoEE} and its varlance X2 is regular. 

L is called the minimal lattice for X, if also there is no sublattice of 

1, which contains the support of X-x for some x EE. For a more thorough 
o 0 

account on probability measures on lattices, see Bhattacharya & Rao (1976), 

Chapter 5, from where we have adopted the notation. 

Next, let * n 1 ' ••• ,np EE 

<~.,n·> = <5 •• 
l J lJ 

be a dual base to 

where <5 •• 
lJ 

is the Kronecker~delta . .Define the set 

with 1 by 

/ t./ <'TT 
J 

j=1, ... ,p} 

l.e. 

* * F <E associated 

(3.30) 
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The inversion formula for a lattice random variable X takes the fol­

* lowing form. Denote the characteristic function ~:E ~c , and let A 

* be any 1ebesgue measure on E Then, if X is concentrated on 

we have 

J () -i<t ,x> 
.~ t e 

* F 

dA ( t ), xEx +1 , 
o 

* * where A(F) lS the 1ebesguemeasure A of F 

x E1 
o 

(3.31) 

To prove, that the point probabilities (3.31) may be approximated by 

values of the normal density function, we need a condition, that ensures, 

that the lattice is sufficiently dense compared to the variance of X. 

Thus,besides the norm I r tll * on E ,we define the lattice 

norm of as 

d(t) 
2 2 1 

= (t 1 + ... +t ) 2 
. P (3.32 ) 

obtained by defining ( n1,· .. , ~) as an orthonorJ11al base on * E • Thus, 

d(t) measures t In "lattice units". The analogue of Theorem 3.3 now takes 

the following form. Consider a sequence (x) of lattice random variables n 

on x +1 EE. The approximations to the point probabilities become n n 

* = f (x) (21f)P/A (F) 
s,n X2 n 

,n 
(3.33 ) 

with obvious notation; f lS glven by (2.15) and lS the (s-1)'th s ,n 

order density approximation in the continuous case. In the sequel, let 

X 
n 

denote the 1ebesgue measure on * E induced by the variance of 
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Theorem 3.5. Let (X ) be a sequence of lattice random variables as -- n -

described above. Let (E) and (a (t)) be sequences of positive num-
n n 

bers , a (t) -- n depending only on the direction t/ 11 t 11 of t , and n 

suppose the following conditions are fulfilled as n~: 

(a) 

(b) 

p (t)<a (t)-1 for all tEE* 
s,n - n 

a (t) - (s-1) = 0 (E ) = 0 ( 1 ) 
n n 

* uniformly 1n tEE 

( c) For any 0 >0 , 

Ilj; (t) 1 dA. (t) =0 (E ) 
n . n n 

(d) For some 0>0 , 

M(oa (t)/lltll ) = O(a (t)-(s-1)) unifoI'.mly in 
n n n 

* tEE 

(e) A constant C exists, such that 

11 t 11 2/ d (t) 2 + C ~ 22 log E -1 
n n n 

* tEE ,n=1,2, ... 
1T 

Then 

sup {I p{ Xn=x} - p (x) 1 s ,n 
xEx +L } = O(E 1 A (F *)-1 

n n n n n 

Proof. Exactly as 1n the proof of Theorem 3.3 it 1S shown, that 

= O(E ) A (F *)-1 uniformly on the support of X . n· n n n 

Hence, it only rema1ns to prove, that 

O( E ) • 
n 

(3.34) 

(3.35) 

(3.40 ) 
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d (t» TI , (3.38) shows that 
n -

-1 2 ~ 
2 log E - TI CJ • 

n 

Estimating the left hand side of (3.40) by use of Lemma 4.1 of Skovgaard 

(1981a), the result follows. 
o 

Remark 3.6. Note, that the infimum of the ratio I It I I 2/d (t)2 In (3.38) 
n n 

is just the smallest eigenvalue of X2 n in terms of the inner product , 
generated by the lattice. Thus, (3.38) is the extra condition ensuring, 

that the variance grows sufficiently quickly compared to the distances 

between lattice points. That the bound of (3.39) becomes 

instead of just aCE ) is necessary to get a useful result, since. 
n 

* A(F )-1 is approximately proportional to the point probabilities around 
n n 

the "center" of the distribution. 

As In the continuous case, it is the condition (3.36), that may be hard 

to verify. For sums of independent lattice random variables the analogue 

of Lemma 3.4 only differs in that the Condition I disappears, because there 

are no problems with the integrability of 

case is simpler than the continuous one. 

~ . In this sense the lattice 
n 

In the case of sums of i.i.d. random variables on the integer lattice, 

d (t) will be independent of n , while IItll n will be proportional to n 

m. For an (s-1)'th order Edgeworth expansion s will be III -(s-1) n 0 n 

an (t) will be of order rn, such that (3.34) c~ (3.35) and (3.38) are tri­

vially valid. Assuming the existence of moments of order s+1, (3.37) 

follows from the continuity of M around zero. (3.36) follows from (3.28), 
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slnce y (t) will increase proportionally to n . Thus the expansions 
n 

of i.i.d. random variables follow easily from these results, and the 

In -1 resulting expansion will be a power series expansion in vn 

Suppose now, that local expanslOn of the form (3.20) or (3.39) has been 

established, what can we say about the corresponding approximation of 

the measure as a set function? A direct integration over an unbounded 

set results In general in an unbounded error term, but we can take ad-

vantage of the form of the approximation to prove that we can still in-

tegrate the approximation without losing control of the error. The idea 

lS as follows. Suppose the approximating measure is normal and the error 

of the local expansion lS E<1. For some fixed (small) 0>0 define the 

set 

Then for any measurable set B we may bound the error /P(B)-q,(B) / 

by the error within A plus P(A C)H(A C) . Since the volume of A lS 

O((logE- 1 )p) we get 

-1 p = O(dlog E ] ) as 

By Skovgaard (1981a), Lemma 4.1, ~(AC) lS O(E) , while 

P(A c) = 1-P(A):: 1-Q(A)+/P(A)-Q(A) / , 

(3.42 ) 

such that also this may be bounded by the "within A error". A preClse 

version of this argument is given in Skovgaard (1981c). Lemma 7.2. for the 

Edgeworth expansions, uSlng the set A in (3.41) the final error term for 

t'he measure becomes 
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(3.43) 

For the usual case of a power ser1es expansion, this logarithmic factor 

is of no importance, since the error will still be of smaller order than 

the last term of the expansion. In particular, if the expansion with one 

extra term is valid, this term determines the error, and the logarithmic 

term then disappears. 

While the integration of f (x) 
s ,n 

1n the continuous case is simple, be-

cause the distribution function is a linear combination of derivatives of 

the normal distribution function, the summation causes great problems in 

the discrete case. Using a multivariate version of the Euler-MacLaurin 

summation formula, Bhattacharya & Rao (1976) derives an expansion of the 

distribution function. Summation of the point probabilities within ellipsoids 

or even spheres is extremely complicated and relates to problems of ana-

lytic number theory, such as expanding the number of integer lattice 

points within a ball of radius R as R~. Some work on the problem has 

been done by Esseen (1945). 

An example. Consider the example of Section 6 in Skovgaard (1981a), i.e. 

independent , (a+st. )X. being distributed as gamma with shape 
1 1 

parameter wi>O ,and a>O , 6>0 , ti>O . with the "directional" approach 

of this section it is possible to show the validity of the Edgeworth ex-

pans ion of any order of the sufficient statistic (x. ,t.X.) , 111 

without the condition (log n)/m ~O where m 1S the smallest eigenvalue n n 

of the covarianc e matrix of (T 1 ,T2 ) • As in the paper it then follows, 

that the distribution of the max1mum likelihood estimator may be expanded 

to any order solely under the conditions 

'i' - 2 
LW. (t. -t) ~ , 
11 
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where t = \w.t./\w .. The error term of the (s-1)'th order expanslon L l l L l 

becomes O(m -(s-1)/2). We shall not go through the calculations in de­
n 

tails, since they are similar to those given in the paper, but only glve 

a few remarks on the differences. 

Instead of (6.3) we obtain (in the same way) with u2+v2 = 

(3.44 ) 

such that p ((u,v)) s ,n We may take a ((u,v)) = 
n 

1 

p ( ( u, v ) f 1 and E 
s ,n n = m -2. Then (3.16) and (3.17) are obvious, and 

n 

(3.19) follows from the analyticity of the cumulant generating function 

and (3.44). (3.18) is proved by Lemma 3.4 as in the paper, but again with 

a directional approach to establish (3.28). 
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Appendix A. Tensor Products, 

We shall glve a brief summary of some basic concepts related to tensor 

products of vectorspaces. Our use of these concepts is mainly notational 

and we only use some of the simplest results of this theory; first of 

all some isomorphisms between different spaces. By use of this appendix, 

it should be possible for the reader to understand our notation used 

In Section 2 and 3 or to "translate" it to more familiar expressions, 

while the reader, who lS familiar with multivariate algebra will appre-

ciate the simplicity with which multivariate calculations can be handled 

in this language. An introduction to the theory of multivariate algebra 

may be found e.g. In Greub (1967). 

Let be finite-dimensional real vectorspaces, and 

* * E ,F , ... their duals, i.e. the spaces of linear mappings into m 

Theorem A.1. Given El , ... ,Ek there exists a unlque (up to isomorphisms) 

palr (E l®- ••• ®Ek,]J) of a real vectorspace and a map ]J: 

E1x .•• xEk-,»E Ek with the following properties: 

(a) ]J lS k-linear (linear In each component). 

(b) For each k-linear map A: El x ... xEk -'»F , there 

is a unique linear map g : El~" .@Ek-,»F , such that A = g Q ]J. 

Proof. Omitted. 

The pair (E1~ ... ~Ek,]J) lS called the tensor product of El"" ,Ek . 

Sometimes E1® ••• ®Ek will be referred to as the tensor product. If 

xlEE1, ... ,~EEk ' then ]J(x1, ... ,xk ) is called the tensor product of 

xl" .. ,xk and is denoted x l&> ••• 0~ . Such an element of E l® •• • i8lEk 

lS called an elementary tensor. Any tensor aEE 1® ••• ®Ek can be written 

as a finite sum of elementary tensors. The dimension of El® ••• r;l1Ek lS 
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the product of the dimensions of the E. 'so The k-fold tensor product 
l 

of 

* 

E with itself is denoted 
~k 

E 

If AEE and xEE we let <A,x> = A(x) denote their lnner product 

to emphasize the symmetry arising from the fact, that E lS isomorphic 

* to the dual of E 

Theorem A.2. The spaces (E cOl i2lE) 1"" • • • k 

the isomorphism being given by 

<A ,~ &; A x @ €Ix > 1 ... -K' l' .. k 

* when A.EE. 
l l 

Proof. Omitted. 

x.EE. 
l l 

* * and E ill" 1 . * 0E 
k 

are isomorphic, 

(A. 1 ) 

In fact since IR,g, ••• 0lR lS isomorphic to lR, Theorem A.2 follows from 

the more general construction of tensorproducts of linear mapplngs. If 

f.:E.~F. are linear mappings, then there is a unique linear map l l l 

f po ')?)f • E g @E ~F 6;9 @F 1""'" k' 1'" k 1 ... k (A.2 ) 

We shall need the concept of a symmetric tensor In 
~k 

E ,defined below 

In two equivalent ways. 

Definition A. 3. A tensor aEE®k lS called symmetric, i.f it can be written 

as a finite sum of elementary tensors of the form 
~,)k 

x ,xEE, or equlva-

* * lently if the following condition holds: For any A1EE , ... , ~EE and 

any permutation 0 on {1, ... ,k} we have 
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(A.3 ) 

o 

Each tensor 
@k 

aEE has a unlque symmetric equivalent under the equivalence 

relation given by 

In particular we denote the symmetric equivalent of an elementary tensor 

x 1@ ••• i&Xk by X{i ••• 0Xk and call e the symmetrical tensor product; a 

purely formal concept. We have 

(A.4 ) 

where the sum is over all permutations 0" on {1, ... ,k} . It should be noted, 

that the 0 product as defined here is not standard, and differs from that 

in Federer (1969), Ch.1, first of all by a constant factor and secondly by 

taking values in E@k instead of in the space of equivalence classes. The 

simplicity of the concept as used here and our rare use of it compensates 

for this difference. 

A matrix-like representation of the tensor product can be glven as follows. 

Let x = (x1"'~'~ )EE and y = (y 1 ' ... ,y m )EF be coordinate yersions of 

two vectors, then x~yEE®F may be represented by the kxm matrix (x.y.), 
l J 

and addition of tensors corresponds to addition of the elements of their 

matrices. If A = (a .. ) is the kxm matrix of a bilinear map, then it lS 
lJ 

seen, that Slnce 

x'Ay = L. La .. (x.y.), 
l J lJ l J 
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A may be regarded as a linear mapplng of the tensor product E0F, 

represented by kXm matrices, into lR . In the same way tensor products 

of k vectorspaces may be represented by k-dimensional arrays of numbers, 

etc. 

Moments and cumulants of a random variable XEE will be considered 

* as tensors In the following way. If A1 , ••• ,~EE ,then the joint kith 

moment of <A1 ,X> ,"', .<:~ ,X> , l. e. the expectation of <A1 ,X> ... <~ ,X> 

may be written 

(A.5) 

* * such that the k'th moment ).1k lS a k-linear map of E x, .. xE into.!R, 

or egui valently 

(A. 6) 

Similarly for the kith cumulant 
®k 

XkEE . Particular attention should be 

given to the variance 

&2 
X2 = ).12 - ).11W).11 E E 

As a bilinear form on E* it defines an lnner product and a norm I IAI 12 

02 * = X2 (A ) on E if it is regular, i.e. if no linear function of X lS 

* degenerate. Thus E becomes a Euclidean space. Also defines an 

* isomorphism between E and E by letting X2 (A)EE be given by <X2(A),B> 

* = ~2(A®B) , A ,BEE 

* * As such x2ELin(E ,E) , the space of linear mapplngs of E into E, and 

-1 * the lnverse mapplng X2 ELin(E,E) may In turn be regarded as an element 
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of * '592 (E) ,thus defining an inner product on E . and 

* then isometric mappings between the Euclidean spaces E and E 

* 

are 

The norms on E and E define norms on tensor products of these, e.g. 

if AE(E */~k ~ (E~'lk) * , then we define 

Let us finally define the polynomials on a vectorspace. Let Bk(E,F) de­

note the k-linear mappings of Ex ... x.E into F, kEIN, while BO(E,F) 

refers to F By the polynomials on E taking values In F we shall 

mean the set Pol(E,F) of mapping P:~F of the form 

n 
p(x) = AO+ L ~(x, ... ,x) , nEIN , ~EBk(E,F) 

k=1 
(A.8 ) 

or eQuivalently, Slnce lS isomorphic to 
4i'k 

Lin(E- ,F), we may write 

The smallest possible n lS called the degree of P , and the A's 

are called the coefficients of P. 
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Appendix B. Differentiabili ty. 

We shall glve some notation and some not quite standard results on 

differentiability; especially on higher differentials of varlOUS kinds 

of mapplngs. Most of the material may be found in standard references 

on mathematical analysis; some of the results on higher differentials 

are briefly, but in precise and selfcontained form given in Federer 

( 1969), 3. 1. 11. 

We shall be concerned only with mapplngs between finite-dimensional 

normed vectorspaces E,F,G, etc. Which norm lS chosen lS immaterial. 

In this appendix we shall deal with real vectorspaces only, but in a 

few other places mappings between complex vectorspaces occur, and we 

use the results of this appendix without further remarks, since there 

are no essential differences. Also, since we are not trying to minimize 

regularity conditions, we shall mainly deal with continuously differen­

tiability to avoid unnecessary technicalities. 

Let f:~F, be a mapplng defined on an open set BeE and let xOEB. 

Definition B.1. f lS said to be differentiable at Xo ' if there exists 

a linear mapping Df(xo ): E~F , such that 

If 

the 

hood 

f lS differentiable at Xo In 

differential of 

U of x (i.e. 
0 

Df : U~Lin(E,F) 

[x~Df(x) ] 

f at Xo . If 

differentiable 

(B.1 ) 

B , then Df(xo)ELin(E,;F) is. called 

f lS differentiable on a neighbour~ 

at any point in U), and the differential 
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lS continuous at x ,then f lS said to be continuously differen­
o 

tiable at x 
o 

Remark. Note, that Lin(E,F) lS a real vectorspace. We equip this space 

wi th the norm 

11 All = sup {" A ( x) " Ilxll = 1} , AELin(E,F) (B.2 ) 

Some obvious notations are being used, e.g. f:~F is differentiable, 

if f is differentiable on B, etc. We let C1(B,F) denote the class of 

continuously differentiable functions. 

In matrix-notation, if x = (x1 ' •.• ,xm) and f(x) = (f1(x), ... ,fn(x)) , 

then if f is differentiable at x, 

( df· \ 
d/(x)) = 

J 

DF(x) .. 
lJ 

lS the (i,j)'th coordinate of the matrix of Df(x) . 

Since the differential Df: ~Lin(E,F) also maps B into a finite-di-

mensional real vector space, we may consider the ,Elifferentiability. Thus, 

we say that f ls~wice (continuously) differentiable at x , if DF 
o 

lS defined and (continuously) differentiable at x . In that case, the 
o 

second differential, l. e. the differential of TIf , is denoted D2f 

and D2f(x) maps E into Lin(E,F). Thus, the mapping 
o 

B ~ Lin(E,Lin(E,F)) (B.3) 
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Similarly, we define CP(B,F) , the class of p times continuously dif-

ferentiable mappings of B into F recursively~ and also the p'th 

differential of fECP(B,F) by 

~Lin(E, ... ,Lin(E,F)) (B.4 ) 

The class Coo(B,F) of infinitely often differentiable functions of B 

into F is the intersection of the classes CP(B,F) , pEN . 

If fEC2(B,F) , then 2 D f(x ) , x EB , may be regarded as a bilinear map-
o 0 

ping of ExE into 
2 2 

F , by the definition (D f(xo )(x1))(x2 ) = D f(xo )(x1,x2 ) , 

since it lS linear in both of the arguments x 1 ,x2EE. One of the main 

theorems on differentiability is the following: 

Theorem B.2. If fEC2 (B,F) and xEB ,then D2F(x) belongs to the class 

B2 (E,F) of symmetric, bilinear mappings of ExE into F. 

Proof. Omitted. 

Analogously, if fECP(B,F) ,DPf(x) may be regarded as a p-linear mapplng 

of Ex ... xE into F, and it lS a consequence of Theorem B.2, that it is 

symmetric. 

As a p-linear mapping ,DPf(x) factorizes through the tensor product E~P 

such that DPf(x) may be regarded as a linear mapping of 

We shall use the same notation for this mapping, writing 

and if 

~p 
E into 

(B. 5) 

F. 
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are two ways of writing the same thing. The coordinates of (B.5) are, 

[DPf(X)(X 1 ,.o 0 ,x )]. P .J 

m 

= I 
k =1 

1 

m 

I 
k =1 

P 

fJ.(X)) x 1k .• oX k 
1 P P 

(B.6) 

such that the "matrix" of DPf(x) lS the mx ... xmxn array of partial 

derivatives at x 0 

Since DPf(x) lS symmetric, it lS glven by its values on the "diagonal", 

l.e. 

, yEE , uEf1. , 

u=o 

which may be denoted the pIth directional derivative In the direction y . 

In se~uel, we shall shortly reVlew some of the theorems on higher diffe-

rentials, that we shall need. 

Theorem B.4. (Taylor's formula). If fECP(B,F) , x,x EB , then 
o 

(a) f(x) = f(x ) 
o 

+ Df(x ) (x-x )+ ... + ~ DPf(x ) «Y;.-x f:g,p }\ 
o 0 p. 0 \ 0 

+ 0 ( 11 x-x 11 p) as x~x o 0 
(Bo 8) 

(b) f.(x) = f.(x )+Df.(x )(x-x )+ ... + 1 DP- 1f.(x) ((x-x )!YP-1)\ 
J J 0 J 0 0 (p-1 ) ! J 0 0 

* where x = x +8 (x-x ) , 0<8<1 . 
o 0 
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Proof. Omitted. 

In some of the following formulae, we shall use the set T(p) Of par-

titions of an integer p. We define 

T (p) = {v= (v 1 ' ••• ,vp) I ~ jv.=p , v.>O} , 
J l-

(B.10) 
j=1 

the v. 's being required to be integers. 
l 

Theorem B.5. (The chain rule). Let fECP(B,F) and gECP(D,G), where 

f(B)~ D~ F . Then gofECP(B,G) and for xEB ,z=f(x) we have 

= I 
vET(p) 

P 
lIT 
j=1 

v . ! 
J 

. I V j' 
J • 

Proof. See Federer (1969), 3.1.11. 

6 . (€is) . Theorem B. . Let AELln E ,F and deflne f 

DPf(x ) (x 1@ ••• ®x ) 
o P 

(B.11) 

( ) -_ A(x@s). E~F by fx 

(B.12) 

if p~s 

where the @ product lS the symmetrized verSlon of the tensor product; 

see (A.4). 

o 
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Proof. Omitted. 

Notice, that Theorem B.6 tells us how to differentiate a polynomial, 

since (B.12) is the derivative of one of its terms. If A is symmetric, 

then the 0 product may be replaced by the product in (B. 12). 

Now, let F,G and H be equipped with a product Fx~H [(~,y)~~yJ , 

which satisfies 

(I) 11 h 11 ~ 11 ~ 11 1 Jy 11 , (~, Y )EFxG 

An example of a product of this kind 1S composition of functions. 

Theorem B.T. (The product rUle). Let fECP(B,F) and gECP(B~G), then the 

function fg: ~H given by (fg)(x) = f(x)g(x) belongs to 

and 

(~ ) ( Dj f (x) (y ® j ) ) (DP- j g ( x) (i'/ip- j ) 
J 

Proof. See Federer (1969),3.1.11. 

(B.13) 

o 

Theorem B.T tells how to differentiate a product of two real (or complex) 

functions; in this setting it is known as Leibnitz' formula. It also tells 

how to differentiate a composition of two functions with respect to a para-

meter, a case of frequent occurrence in expansions in statistics. It should 

not be confused with the chain rule concerned with differentiation with 

respect to the (only) argument of the function. 
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B.7 

AnalogOusly, there are two rules for differentiation of the inverse of a 

function; one in the usual sense of expressing the differentials of a 

functions inverse (with respect to composition) in terms of the differen-

tials of the function itself; the other in the sense of a product structure, 

e.g. differentiation of one divided by a real function or differentiation 

of the inverse of a function with respect to a parameter. 

The first of these rules is exactly Lemma 4.3 of Skovgaard (1981a) and 

we shall not repeat it here. Note, that it does not give a formula for 

the higher differentials 1n general only the structure of these. In terms 

of coordinates a formula 1S known even for implicit functions; see Bolotov 

& Yuzhakov (1978). 

For the other inverse-rule we shall glve two vers1ons, the first 1n an 

algebraic setting, the second adapted to our purpose. 

Theorem B.8. Let A be a normed algebra, and let 
-1 

a 

of aEA 
-1 

, i.e. aa = e . Denote this inverse mapp1ng by 

be a right-inverse 

-1 
R: a~a ,and 

let B be the domain of R . Then if aEintB, R 1S infinitely often 

differentiable at a, and 

DkR(a) (x®k) ( )k, -1 -1 -1-1 = -1 k.a xa x ... a xa kEN (B.14) 

where k x's appear 1n the product. 

Proof. Omitted. 

Theorem B.9. Let E = Lin(G,H) and F = Lin(H,G), where dim G = dim H , 

and denote elements of E ~ f,g,h, ... Let R be the mapping f~f-1 

defined on the subset of E of bijective mappings. Then R is infinitely 
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often differentiable, and 

(B.15) 

if f lS bijective. 

Proof. Omitted. 

A more familier way of writing (B.15) lS 

(B.16) 

as h~. 

Note, that Theorem B.9 lS not a special case of Theorem B.8, Slnce f 

and f- 1 are elements of different spaces. 

B.8 
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