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Abstract 

It is shown how one can extend Cox's model for regression analysis 

of survival data to allow for an arbitrary underlying measure for 

the intensity. 

In this extended model Cox's estimator of the regression parame

ters and the intensity measure becomes a maximum likelihood esti

mator. It is shown how one can analyse the extended model as a 

dynamical exponential family in such a way, that Cox's partial 

likelihood can be explained by the notion of S-ancillarity. 
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1. Introduction and summary 

Cox (1972) introduced the regression model for survival data 

which can be described as follows: The lifelengths of n indi-

viduals are distributed independently with an integrated intensi-

t. S'z. (u) k 
1 1 ty J e A (u) du where A ( .) and 13 E R are unknown parameters, 

o 
whereas z. (t) ERk is a vector of known cofactors for the i'th in-

1 

dividual at time t. 

It was suggested to use the likelihood 

n 
L = IT 

c i=l 

eS'zi(t i ) 

S'z.(t.) 
2: e J 1 

jER(t.) 
1 

to estimate S. Here t. is the death time of the i'th individual 
1 

and j E R(t.) if individual j is alive just before time t .. 
1 1 

Cox also suggested using the discrete measure A given by 

A (A) = E 

as an estimate of JA(u)du 
A 

t. EA 
1 

1 
S'z.(t.) 

2: e J 1 

j ER (t. ) 
1 

Various arguments have been given for using this likelihood func-

tion, see Cox (1975), Kalbfleisch and Prentice (1980) and Oakes 

(1981) . 

Cox has argued that L is a partial likelihood in the sense that c 

it is a product of some factors (every second) in a natural fac-

torization of the likelihood function. The main purpose of the 

present work is to show how a suitable extended model, replacing 

JA(u)du by the measure A,allowsone to show that Lc is a partially 
A 
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maximized likelihood, or likelihood profile, in the sense that 

L (S) = max L ( S , 11.) • 
c 11. 

Moreover the value of 11. that maximizes L(S,1I.) is precisely 11. 

above, thus an argument can be given for using Cox's likelihood 

for estimating S without reference to the notion of partial like-

lihood and the estimates of Sand 11. are just the joint maximum 

likelihood estimates. 

We want to exploit the connection between Cox's model and the ge-

neral multiplicative model for counting processes suggested by 

Aalen (1978). 

A counting process can be considered a continuous family of bina-

ry variables and the idea is to consider a continuous family of 

Poisson variables. This pOint of view leads to a natural defini-

tion of a dynamical exponential family, related to the notion of 

conditional exponential family, see Heyde and Feigin (1975). For 

this to work out we shall use the results of Jacod (1975) for 

multivariate point processes which seems to be the natural tool. 

Thus we shall first rephrase the Poisson process as a multivari-

ate counting process, then show how other Poisson-like processes 

can be constructed by specifying the density with respect to the 

distribution of the Poisson process. 

Then we shall extend the class of Aalen models to allow arbitrary 

measures, and finally we shall show how this solves the problem 

of extending the Cox model. 

It should be pointed out, however, that although the proposed ex-



- 3 -

tension has the property that S and A are maximum likelihood esti

mates, it also has the property that the sample paths have only 

one jump, but this jump could be any size. Hence the discrete 

measures which we allow for A do not necessarily correspond to a 

reasonable model for survival times, but should be considered an 

explanation of the usual estimates. 
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2. The Poisson process as a multivariate counting process 

Consider a Poisson process X(t) ,t E R+ = [O,oo[ on some probability 

+ space (r:l, F ,P). Let A EM (R+) denote a Borel measure on B (R+), the 

Borel sets of R+, with the property that A( [O,t]) < oo,t < 00. We will 

assume that X(O) = O,X(t) has independent increments, is piecewise 

constant, right continuous and that the distribution of X(t) -X(s) 

is Poisson with parameter A(]s,t]). We shall call A the intensity 

measure of X. 

We define the mll.l ti var ia te counting proces s Nx ' x E IN = {I, 2 , ... } 

by Nx(tj = l: 
s<t 

l{L1X(s) =x} and N(t) = l: N (t). Thus N (t) counts x x x 

the number of x-jumps of X on [O,t] and N(t) the total number of 

jumps. 

Note that X (t) = l: xN (t), such that x x 

Ft = 0{X(U),u ~ t} = 0{Nx (U) ,u ~ t,x Em} 

The predictable compensator for the counting process N with re
x 

spect to the family {Ft} is given by 

X 
V A ([O,t] ,x) = J A (~u) 

it [O,t] x. 

if x=1,2, ... 

This notation means that 

VA([O,t],l) = l: A{u} e-A{u} +A ([0 t]) 
it cont ' 

and 

u,;;t 

VA([O,t],x) = l: 
us:t 

We also define 

A{u}x -A{u} 
e , x=2,3, ... x! 
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\)A([O,tJ,O) = L e-A{u} 
u<t 

We shall use the distribution PA for the multivariate counting 

process {N } in the next section by specifying densities with rex 

spect to PA. The representation of X as a multivariate counting 

process is just a device for transforming the problem, such that 

the results for counting processes can be applied. 

Note that if A(A) =JAA(u)du then \)A([O,t],x) =0 for x=2,3, ... 

which means that only Nl has jumps and that Nl = X. Thus for A 

absolutely continuous we get that X is a counting process. 
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3. The generalized Aalen model for counting processes. 

We shall here define a class of models each of which has parame

ters (S, 11.), S E Rk, 11. E M+ (R+) , with the property that they reduce 

to Aalen models if 11. is absolutely continuous. 

Let ~ be the space of coun~ing processes {N } which have no common 
x 

jump point and let Ft be the a-field induced by {Nx (u) ,u ~ t}. 

Let now Y be a non-negative predictable process, i.e. Y: ~ x R+-+R+ 

such that Y is measurable with respect to the a-field generated 

by Z: ~ x R+ -+ R+ with the property that Z ( • ,t) is measurable Ft 

and Z(w,·) is left continuous. We shall assume that Y(u) is bound-

ed on [O,t] for all t. 

We want to describe a probability measure Py lI. for the counting 

processes {N } or X with the property that X has predictable com
x 

pensator J Y(u)lI.(du) with respect to the a-fields {Ft}. The 
[0, t] 

necessary results are taken from Jacod (1975). 

We define 

(3.1) 

then 

( 3 • 2) 

x 
vy lI. ( [ 0 , t] ,x) = J (Y (u) 11. (du) ) 

x~ [O,t] 

-Y (u) 11. (du) E IN 
e ,x ° 

VYII.(du,x) =Y(u)x e-(Y(u)-l)lI.(du) 
VII. (du,x) 

We can now apply Proposition 4.3 and Theorem 5.1 of Jacod (1975) 

and we find that there exists a probability measure PYII.' which is 

given by the density Z(t) with respect to PII. on Ft' where 

dP 
(3.3) Z (t) = ~ I = IT IT 

dP 11. Ft u~t xEJN 

N (du) . I-N(du) 
vYII.(du,x) x vYII.(du,O) 

( ) ( ) 
VII. (du,x) VII. (du,O) 
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such that the predictable compensator for Nx is given by 

VyA([O,t],x) for the measure PYA with respect to the a-fields Ft' 

We have used the product integral notation for a measure V on 

IT. (l-·v(du)) = IT. (l-v{u})e-vcont([O,tJ) . 

This notation simplifies the expression given by Jacod and sug~ 

gests the following interpretation of the process X or {Nx }' We 

can think of {N } as a continuum of multinomial random variables 
x 

{LN }, such that the distribution of {LN (u)} at time u given F -x x u 

is multinomial with parameters 

where 

or alternatively a continuum of Poisson variables LX(u) where the 

parameter of LX(u) given F - is Y(u)A(du). The choice (3.1) re
u 

duces (3.3) to 

(3.4) Z(t) = IT. 
u<t 

t 
X(du) -fO(Y(u)-l)A(du) 

Y (u) e 

Finally note that since X=L xN we find the predictable compenx x 

sator for X with respect to {Ft} by 

L xVyA([O,t],x) = f Y(u)A(du) 
x [O,t] 

Aalen (1978) formulated the multiplicative intensity model for 

counting processes as follows: Let X(t) be a counting process 

with intensity 
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( 3 .5) Y(t)A(t) 

where A (t) is locally integrable J~A (u) du < 00, and Y is predict

able with respect to some increasing sequence of a-fields. We 

want to make inference about A from the observation of X and Y. 

He suggested using Jt X(du) to estimate Jt A(u)du. o Y(u) 0 

If in our generalized Aalen model we assume that A is absolutely contin-

uous with density A then Xwill indeed be a counting process (X =Nl ) and 

hence the model reduces to Aalen& mul tiplica ti ve intensity model. 

The general model depends on the choice of Y, which can depend 

on the sample path X in a complicated way. From a given Aalen model 

YO(U)A(U) the function YO is only defined on counting processes 

and one can in general find many Y which equals YO when the mea

sure A becomes absolutely continuous. 

Thus an Aalen model can in general be extended in many ways. 

He can now formulate the general Aalen model as the family 

( 3.6) 

Let us conclude this section by giving a heuristic argument for 

the choice (3.1) which contains the Poisson probabilities. The 

choice is in my opinion justified by the results in the next sec-

tions, but intuitively one can argue as follows: If we think of 

A as being approximated by a sequence JA (u) du, n -+ 00 then if A 
n 

has an atom at to' we may have An(tO) -+00, which would indicate 

that jumps could pile up around to. In the limit we would allow 

jump sizes larger than one and therefore leave the probabilistic 

framework of counting processes and work with integer jump size 
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processes, which can be formulated as multivariate counting pro

cesses. 

We thus have to specify the probabilities of jumps of size x given 

the past, that is vyA(du,x). We choose the Poisson probabilities 

because if Y =1 then the jumps are in fact Poisson distributed, 

and because they give the proper reduction of the likelihood 

function. 

By making the parameters depend on Y and A as they do, we make 

sure that the observation process X has compensator fY(u)A(du), 

thus generalizing the Aalen model. 

The above extension has the property that the increment X(dt) has 

an exponential family as distribution given Ft -. The "number of 

parameters" increase continuously. One could call this a dynami

cal exponential family to emphasize that time enters into the ob

servation scheme and the model building as well as in the ana

lysis in an essential way. 

Heyde and Feigin (1975) and Feigin (1976) have introduced the 

notion of a conditional exponential family via a property of the 

derivative of the log likelihood. 

It appears that the formulation via multivariate point processes 

is the proper tool to discuss the distribution of the increments 

directly, even allowing the number of parameters to increase. 
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4. Statistical analysis of the general Aalen model 

Let x = {x (t) , t E [O,l]} be the observation of X with jump times 

m m 
{tj}l' 0 < tl < ••• < tm ~ 1 and jump sizes {x j }lo We want to esti-

mate A in the model {PyA ' A E M+ (R+) }. 

We shall use the method of maximum likelihood as discussed by 

Kiefer and Wolfowitz (1956), which in this case amounts to fin-

ding a A such that 

The natural guess is the Nelson-Aalen estimator 

(4.1) A (A) = J X (du) = L: Xi 
A Y(u) Y(t.) t. EA 1 

1 

We find the following expression 
X. 1 

m (Y(t.)A{t.}) 1 -JOY(u)A(du) 
PYA (x) = IT 1 1 e 

i=l Xi ! 

X. 
m (Y(t.)A{t.}) 1 

= IT 1 1 
X. ! 

1 i=l 

-Y(t.)A(t.) _BJY(u)A(dU) 
1 1 e e 

This is clearly maximized for 

A { t. } = X . /Y ( t . ) 
111 

and 

which is precisely A. 

Thus the Nelson-Aalen estimator is the maximum likelihood esti-

mator in the Aalen model. The statistical properties of A have 

been investigated when A is absolutely continuous by Aalen (1978). 
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5. The extended Cox model 

We shall formulate the Cox model as a model for counting proces-

ses as follows: Let X., i = 1, ... ,n be independent counting pro-
1 

cesses with compensators 

(5.1) 
t S'zi(u) - + 

fOe (1 - Xi (u » A (u) du . 

S S'Zj(u) _ + 
We define Y. (u) =e - (l-X. (u» and we see that (5.1) is a 

1 1 

special case of the Aalen model (3.5). 

Cox (1972) suggested estimating S from 

S'Z. (t.) 
1 1 

L (S) =IT e IT IT S'z.(t.) = c i u.sl i 
L: e J 1 

jER(ti ) 

t and to estimate fOA(u)du by 

ft L:i Xi (du) 
o A 

S L:iYi(u) 

Y~(u) X.(du) 
( 1 ) 1 

L: Y~(u) 
j J 

The pOint of this section is to show that if we extend the Cox 

+ model, we obtain a model depending on S and A E M (R+), with the 

property that Cox's estimate for S and A are the maximum likeli-

hood estimates. Notice that the way we have defined Y. allows us 
1 

to define it for any integer valued process. Thus we consider the 

model 

n 
{® PS' A E M+ (R +), S E Rk} . 
i=l Y.A 

1 

The probability of an outcome of the processes X. (u) u E [0,1] , 
1 

i=l, ... ,n, then has the form, see (3.4), 

(5.2) L= IT { IT 
i u.sl 

X. (du) 
(y~ (u) A (du» 1 

1 

X. (du) ! 
1 

- flOY~ (u) A (du) 
e 1 } 



= IT 
u,:::l 

x 
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Y~ (u) 
IT ( 3. ) 

i I.Y~(u) 
J J 

X. (du) 
3. 

IX. (du) 
3. 

1 B 
B X(d) -fOI.Y.(u)A(du) 

IT (I. Y. (u) A (du) ) u e 3. 3. 

u,;;;l J J 

where X(u) = I.X. (u). 
3. 3. 

The last factor is exactly the likelihood in the general Aalen 

model and thus gives the estimate 

A X (du) 
AB (A) = f B 

Al:. Y. (u) 
3. 3. 

which inserted into (5.2) gives 

max 
A 

L(B,A) =Lc(B) IT 
u,;;;l 

t 
X(du) -f.OX(du) 

X(du) ·e 

IT Xi (du) ! 
L 

Thus the maximum likelihood estimate of B is found by maximizing 

Hence we have seen that (B,A) are the Cox estimates of B and A 

respectively and in this extended model the estimation procedure 

can be explained by the method of maximum likelihood without 

having to invoke a notion of partial likelihood. 

If we consider the model as a dynamic exponential family we can 

analyse it as follows: {X. (du)} are independent given F - with 
3. u 

parameters 

B'zi(du) _ + 
e (l-X.(u)) A(du) 

3. 

which shows that 

U(du) =I.z.(u)X.(du) 
3. 3. ~ 

and X (du) 

are sufficient for Band A(du) . 
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If we introduce the mixed parametrizations, see Barndorff-Nielsen 

(1978), i.e. Sand T =E(X(du) IF -) then it follows from results 
u 

about exponential families that these parameters are variation 

independent and that the likelihood splits into a product of fac-

tors depending on Sand T respectively. Thus in this sense X(du) 

is S-ancillary for S in the conditional experiment of {X. (du) } 
l 

given F -. 
u 

Now arguments can be given for conditioning on X(du) when making 

inference about S. Hence from this dynamic point of view one can 

"justify" Cox's partial likelihood by the concept of S-ancilla-

rity. 
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6. Discussion and relation to other approaches 

The idea that L is a partially maximized likelihood can be found 
c 

in the paper by Breslow (1974), who fitted an intensity function 

A(t) which was constant between the observed jump times. 

Although this procedure could be a reasonable smoothing it is not 

derived from a model in a natural way. 

The same type of idea has been forwarded by Bay and Mac (1981) who 

suggested fitting an intensity A(t) which is zero except for an 

E-interval just before each observed jump time. This way of esti-

mating A has the same quality as that suggested by Breslow, but 

tries to take into account that one really wants a measure fA(u)du 

which reflects the fact that jumps are only observed at discrete 

points of time. 

What we have done here is to point out, that these attempts to 

estimate A correspond to the idea of extending the model to allow 

for A to be discrete and then apply standard methods. It should 

also be mentioned that Andersen and Rudemo (1980) have construc-

ted a discrete time model where jumps are Poisson distributed. In 

this framework it corresponds to the models we get for A discrete. 

Throughout we have concentrated on extensions which preserve the 

property that S and A becomes the natural estimates. Cox (1972) 

and Kalbfleisch and Prentice (1980) have discrete versions of the 

Cox model, but they do not have the same simple estimates. Finally 

one should perhaps point out that the estimation procedure can be 

carried out in two steps. First we observe that the estimates of 

A is zero except for atoms at the observed jump pOints {t.}. Thus 
1 
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one only need to consider the likelihood for such t .. For a dis-
1 

crete A, however, the variables X. (dt.) are Poisson distributed 
1 J 

given the past with mean 

(3'z. (t.) 
e 1 J (l-X.(t-:-»+A{t.} 

1 J J 

which shows that the likelihood is nothing but a multiplicative 

Poisson model (with dependent observations) or a log-linear model. 

Thus standard programs for estimating in these models can be app-

lied, see Holford (1980) ° We shall conclude by a few comments of a 

more negative kind on the proposed model. The sample paths in the 

extension of the Cox model have the property that they have only 

one jump, since after the first jump the intensity equals zero. 

Thus each individual dies only once, but the jump size has no 

obvious interpretation in relation to the experiment that Cox's 

model was constructed to describe. To get a feeling for the con-

tent of the result it is instructive to consider the simplest 

possible Cox model, namely for S =0. In this case we have i.i.d. 

waiting times T. and the natural extension is to consider their 
1 

distribution F to be an arbitrary probability on R+o 

In this model it is easy to see that F is the empirical distribu-

tion and hence that the survivor function G = 1 - F. Since we can 

define the intensity measure A (A) = F (du) / (1 - F (u -» we have that 

A{t} < 1, and that 

G (t) = 1 - F (t) = IT (1 - A (du) ) 
[0, t] 

This shows that in the natural extension we have 

G (t) = IT (1 - A (du» = IT (1 - N (du) ) = 1 - ~ (t) 
[O,t] [O,t] n-N(u) 
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In the extended Poisson model we get that the survivor function is 

t 
-JOA(du) 

G (t) =e 

and hence that the estimate is 

A 

A 

G(t) =e-A(t) * IT (l-A(dt)) 
[0, t] 

The reason for bringing in this property of the model is to point 

out the essential difficulty in the extension. If we want the ex-

tension of the counting process to be a counting process then we 

must be sure that the atoms in the intensity measure are bounded 

by 1. The reason for this is that a counting process is also a 

dynamical exponential family, namely a family of two point mea-

sures where A(dt) is the probability of succes given the past. 

For S = 0 it is easy to consider this extension but for S * 0 the 

constraint imposed is that 

S' Z. (t) 
e 1 A {t} < 1 

which gives a strange relation between the parameters. By consi-

dering a Poisson extension we avoid this and the term appears as 

a meanvalue instead which does not impose any constraints on the 

parameters. 
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