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Abstract 

A time- and age-continuous multistate projection model with exo­

geneously determined entries is presented. vJhereas most other 

approaches are based on intuitive reasoning in terms of averages, 

our procedure is purely probabilistic in character. The survivor­

ship proportions of the mul tistate life table come out as genuine 

probabilities and the demographic projection method is interpre­

ted as a prediction by mean values. The stocastic unreliability 

of the projection is described in terms of exact distribution and 

variance. As a practical illustration, an example from the lite­

rature on manpower analysis is reconsidered. Finally, fertility 

aspects are introduced to provide a wider perspective. 

Key words Demography; Multistate demographic population; Projec­

tion methods; Survivorship proportions; Continuity in time and 

age; Manpower systems. 
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1. Introduction 

Population forecasting involves a great many problems and is sub­

ject to various levels of error. A comprehensive discussion of 

these issues including extensive bibliographical notes has been 

presented by Hoem (1973). In the present paper we consider the 

stochastic variation within the framework of a given projection 

model belonging to a certain class of models. Thus we deal with a 

specific aspect of the general forecasting question. 

The traditional demographic projection problem may briefly be sta­

ted in this way: Assume that the state distribution of each co­

hort is known at time t l . Given this information we want to make 

a qualified guess of the corresponding distribution at some fu­

ture time t 2 . 

Entry into the population may be determined endogeneously (e.g. 

through birth) of exogeneously (e.g. through immigration). It may 

also have both endogeneous and exogeneous components. The time 

and age parameters of the population process may be either dis­

crete or continuous. The state space is usually finite (with 

states corresponding to geographical regions, for instance). The 

projection period [tl ,t2 J may be thought of as a fixed period 

which is shorter or not very much longer than the average life 

time of an individual. 

Our description of the projection problem leaves out studies of 

population trends as time approaches infinity, even though others 

sometimes call them projections as well. Some central probabili­

stic references concerning the asymptotic properties of demogra­

phic populations are Pollard (1973), Keiding and Hoem (1976), 
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Braun (1978) and Cohen (1981). 

In the time- and age-discrete case, the projection problem has 

been subject to treatment in a probabilistic setting by Pollard 

(1968, 1970), Sykes (1969), Schweder (1971) and others. A stocha­

stic approach to projections with continuous time and age aspects 

was given by Chiang (1972). The model of Chiang is not strictly 

continuous in time and age. For instance, all members of an age 

group observed in a given state at a given time are treated on an 

equal footing. This means that the central question of the age 

distribution inside each age interval is disregarded. Other 

authors such as Keyfitz (1968) f Rogers (1975) and Leeson (1980) 

have used deterministic or semistochastic approaches to the con­

tinuous case. A common feature of the conventional continuous 

time approaches is the formation of what could be called projec­

tion coefficients. These coefficients determine the projection of 

the cohorts existing at the initial time tl and are usually taken 

to be survivorship proportions of the stationary population. 

In this paper we present a stochastic population model with con­

tinuous time and age parameters and exogeneously determined en­

tries. The population consists of independent individuals whose 

movements in the finite state space are determined by age-inhomo­

geneous Markov processes. The entrants are all of the same age 

and arrive according to one or several time-inhomogeneous Poisson 

processes. We note that the model may be seen as a time- and age­

continuous counterpart to the discrete model of Pollard (1967). 

Some aspects of time continuous population models with Poisson 

recruitment have been discussed by Bartholomew (1973, pp. 157-160) 

and McClean (1976,1978,1980). Within the framework of the model the 
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traditional demographic projection problem is shown to have the 

nicest possible solution. The above-mentioned projection coeffi-

cients (survivorship proportions), for example, turn out to be 

genuine probabilities. Likewise the conditional mean and variance 

of the cohort vector at time t2 are easily computed since the 

associated conditional distribution is a convolution of multino­

mial distributions. 

After the theoretical exposition an example from manpower analy­

sis given by Leeson (1980) is reconsidered as a practical illu­

stration. A procedure for stochastic model control is expounded. 

Furthermore, as the traditional matrix multiplication method is 

found to be inconsistent for this model, a modification of Leeson's 

projection technique is suggested. In the given situation the 

practical (numerical) effect of the modification turns out to be 

small, however. The variance of the projection is calculated and 

is found to be so small that it can only account for a minor part 

of the total unrealiability of the projection. This is a conco­

mitant feature of this kind of projection models and the example 

accentuates the need for model improvements. 

The paper will be closed by some remarks on a time continuous 

stochastic model for multistate populations with endogeneously 

determined entries. For such a model the traditional projection 

problem is considerably more difficult, both theoretically and 

computationally. 
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2. Theoretical Part 

2.1. Model 

Consider a population where entrants arrive at exact age (seni-

ority) ° according to a Poisson process. During some time inter-

val [0,6] the Poisson process has a constant intensity A. Every-

body starts in a common state k. The individuals are mutually 

independent and each member of the population moves in the finite 

state space S = {I, 2, ... ,n} according to a Harkov process with age 

dependent intensi ties (lJ" (x) ), , E [0 ] and associated transi-1J l*J,X ,w 

tion probabilities (P" (x,y)), 'E·S" <' The intensitites 1J l,J, \..)~x;;"y=w 

are the same for all individuals who arrive during the time in-

terval [0,6].The entry process is independent of the processes 

of movement in the state space. 

2.2 Specification of the Projection Problem 

Suppose that we know the cohort parameters A and (lJ,' (x)) and the 
1J 

distribution of the individuals over the state space at time 

tl~ 6 i.e. (ci(tl))iES' where ci(t) denotes the number of indi­

viduals in state i at time t among those arrived during time 

[0,6]. We wish to make a qualified guess of the corresponding di-



- 5 -

A. Lexisdiagram for projecting an existing cohort. 

Age x 

L----I£..----I~----!---~--~Ti me t 

Note that it is allowable to specify the projection problem sepa-

rately for each cohort since the model implies that the cohorts 

are mutually independent. 

2.3 Basic Results 

Let c ij (tl ,t2 ) denote the number of individuals who are in state 

i at time tl and in state j at time t20 We have the following 

theorem. 

Theorem 1 Conditional on (c i (t l ) ) iES ,the variables 

(c ij (t l ,t2)) jES' (c 2j (t l ,t2 )) jES"'" (cnj (tl ,t2 )) jES are mutually 

independent and (cil (tl ,t2 ) ,ci2 (t l ,t2 ) , ... ,c in (t l ,t2 )) follows 

the multinomial distribution with parameters c. (t l ) and 
1 --
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(k) (k) 
( s '1 , ... , s , ) where 

1 1n 

It follows that the conditional distribution 

L ((cl (t2 ) , ••• ,cn (t2 )) I (cl (tl ) , ... ,cn (t l ))) is the convolution of 

the n multinomial distributions with parameters 

(k) (k) 
(c,(tl),(s'l' ... 's, )), iES . 

1 1 1n 

Thus 

and 

n (k) 
= 2: c. (tl)V, 

, 111 1= 

where v~k) 
1 

(k) (k) 
is the matrix (s" (<5, 0 - s, 0 )), 0ES' 1J J~ 1~ J,~ 

The proof of Theorem 1 is based on a number of theorems cone er-

ning point processes (cf. Appendix). The point processes are ei-

ther Poisson point processes or unnormalized empirical distribu-

tions of a given number of independent and identically distribu-

ted random variables. An exposition of the theoretical background 

may be found in Tjur (1980). 

Proof of Theorem 1 The entry times in the time interval [O,~] 

constitute a Poisson point process M with intensity measure given 

by the constant density A with respect to Lebesgue measure. From 

Theorem A3 (see Appendix) we then get that the age distribution 

at time tl is a Poisson point process on [tl - 6., t l ] with intensi­

ty measure given by the density A (see Fig. A). The state i 
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at time tl of an individual of exact age x at time tl is the out­

come of an experiment with sample space {1,2, ... ,n} and point 

probabilities Pkl(O,x), ... ,Pkn(O,x). Applying Theorem Al we see 

that the state/age-distribution at time tl can be represented by 

n independent Poisson point processes Ml , ... ,Mn on [tl - /:', tl ] I 

where Mi has intensity measure given by the density Pki(O,x)A. 

From Theorem A4 we get that the conditional distribution of 

(Ml,···,Mn ) given (Mi[t l -/:"tl])iES= (ci(tl))iES is equal to the 

distribution of n independent point processes Flf ... /Fn, where Fi 

is the unnormalized empirical distribution of ci(tl ) independent, 

identically distributed random variables on [tl - /:', t l ] with di­

stribution given by the density 

For an individual of exact age x and in state i at time t l , the 

state at time t2 is chosen by an experiment with sample space 

{1,2, ... ,n} and pOint probabilities Pil (x,x + (t2 - t l )), ... , 

P in (x,x + (t2 - t l ) ). From Theorem AS we then get that 

(cil (tl ,t2 ) ""/cin (tl ,t2 )) follows the multinomial distribution 

(k) (k) 
with parameters (c, (t l ) , (s 'I I'" ,S, )) where 

1 1 ln 

The independence of 

follows from the independence of Fl/ ... /Fn . 0 
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In demographic terminology the s~~) 's are survivorship proportions 
lJ 

of the multistate life table and they are sometimes called projec-

tion coefficients. The projection (ci (t2 » is given by 

n (k) (k) 
= L:c,(tl)(s'l'···'s. ) 

i=l 1 1 ln 

or, if only the individuals in the nonabsorbing states (those 

"alive") are counted, by 

m (k) (k) = L: c, (tl ) (s, I , ... , s , ) 
i=l 1 1 lm 

wi th L = {I, 2, ... ,m} being the set of nonabsorbing states. Within 

the framework of our model the demographic projection procedure 

may be characterized as a prediction by mean values. 

The entry intensity A does not appear in the formulas of the pro-

jection coefficients, in agreement with the fact that (ci(tl » is 

sufficient for A in the distribution of 

((ci1 (t l ,t2 ) , ... ,c in (tl ,t2»). Consequently A need not be known 

for cohorts existing at time tlo 

By contrast, knowledge of A will be required to project cohorts 

not yet born at t l . To handle this situation imagine that the time 

interval [O,~J is located between tl and t2 (see Figure B) . 
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B. Lexis diagrarnfor projecting a future cohort. 

Age x 

~~----------~~----~----~Timet 
t1 
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From the proof of Theorem 1 we immediately get that 

c l (t2 ), ••• ,cn (t2 ) are independent and that c i (t2 ) follows the 
t2 

Poisson distribution with parameter A J t -I'::, Pki (O,x) dx. The pro-
2 

jection then becomes 

The unreliability of the projection expressed by the variance of 

t 
Var ( c 1 (t 2) , • . • , c n (t 2)) = d i a g {A J t 2 _ I'::, P k i (0 I x) dx I i = 1, 2 , • • . ,n} 

2 

2.4. A Generalization 

By relaxing the model assumptions (cf. section 2.1) we get the 

following straightforward generalization: 

1. The entry process is Poisson, now with intensity 

2. The entrants may be born into different states. The 

allocation of the entrants arises from a random classi-

fication according to a known, time dependent probabi-

lity (1T l (t), ... ,1Tn (t)). 

Comments: 

(0,0, ... ,1, ... ,0) we get the model presented in Section 2. In 

practical applications we presume that 1T. == ° for i E S ........ L. 
1 

In the generalized model the projection coefficients are given 

by 
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s .. 
1J 

n tl 
k~l ftl-I'1VO(tl-X)TIk(tl -x)Pki(O,x)Pij(x,x + t 2 -t1 )dx 

=~~--~----------------------------------------------------
n tl 
L: f t -1'1 Vo (t 1 - x) TI k (t 1 - x) P k i (0, x) dx 

k=l 1 

and the projection for a cohort not yet born is 

if j E S 

(2.1) 

iES 

(2.2) 

The properties of distributions etc. are strictly parallel to 

those earlier derived in section 2.3. The proof proceeds along 

the same lines as the proof of Theorem 1. In the passing it is 

worth noting that it is fairly straightforward to extend the re-

suIts to a not necessarily Markovian case (with modified formulas 

for the projection coefficients, of course) . 

In the light of conceivable applications it may appear a little 

strange to construct the entry from a collective "birth" process 

and a subsequent allocation procedure. However, for the model 

where the entries follow n state-specific independent Poisson 

processes with intensities vl, ... ,v n ' the above mentioned conclu­

sions hold if we replace A· v 0 • TIk by vk for k = 1, ... , n in the for­

mulas (2.1) and (2.2). 

2.5. The Effects on the Coefficients of Projection of a Change 

in the Initial State Allocation 

Let us consider the special case where Vo and (TIl, ... ,TIn ) remain 

constant during time [0,1'1]. With (TIl, ... ,TIn ) representing the 

constant value the projection coefficients are 



- 12 -

and this, again, is equal to 

i,j E S . 

Thus the projection coefficient s .. turns out to be a weighted 
1J 

(k) 
average of the projection coefficients (sij )kES of the trivial 

initial allocations. It is easily seen that the projection coeffi-

cients will normally depend on the classification probabilities. 

This conclusion is fundamentally different from a finding by Ro-

gers (1975, pp.78-8l) based on a deterministically oriented ana-

lysis of the projection problem for multistate populations. Our 

result is equivalent to a conclusion made by Ledent (1980, pp.546) 

stating that the survivorship proportions of a multistate sta-

stationary population are dependent on the chosen radix. 

2.6. A Note on Generality 

It is not our concern in this paper to present results in the 

widest possible generality. However, we should like to mention 

that the intensity measure(s) of the entry process(es) need not 

be absolutely continuous with respect to Lebesgue measure. In 

fact we may take any finite measure on [0,6] as the intensity 

measure(s) of the Poissonian entry process (es) and still-derive 

the nice results of Theorem 1 (with obvious modifications of the 

expressions for the projection coefficients). This observation 
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is important in relation to applications where some, or all, 

admission takes place at specific moments, provided of course 

that the Poisson assumption is reasonable. (Note that we use a 

wide definition of Poisson processes. Some authors only define 

the Poisson process for a non-atomic intensity measure.) It 

should be possible, moreover, to relax the assumption of homo­

genity of the transition intensities inside each cohort. The in­

tensities could then, beside age, depend on exact time of birth. 

In this situation it would be necessary to make some regularity 

assumptions about the family (M t ( • ) ) tE [0, f.,] of time dependent 

intensity matrices. 
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3. A Numerical Example 

An example given by I.eeson (1980) will nmv be reconsidered to 

illustrate the features of the simple projection model from our 

theoretical section. 

3.1. Background 

The example is concerned with a manpower system for a group of 

English County Police Constabularies. There are two occupational 

states. State 0 embraces constables, and state 1 is entered 

through promotion from state O. Demotion is not permitted. State 

2 (wastage) may be reached from any of these states. A flow dia­

gram showing states and possible transitions is given in Figure C. 

C. Flow diagram of possible transitions in the manpower 

system. 

State 0 

constables Promotion 

State 2 

wasted 

State 1 

all higher ranks 

Entry into the police force leads into state O. The approximate 

age of the recruits is 20 years. Starting with a known rank/ 

length-og-service structure as of mid-year 1970 and assuming a 

simple police-to-population relationship Leeson's objective is to 

determine the trends in the internal rank/length-of-service 
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structure of the police force. Estimates of future county popu-

1ation sizes are obtained from (unpublished) official projections. 

The rank/length-of-service-distribution as of mid-year 1970 is 

shown in Table 1. In reality these figures have been established 

through interpolation. For the sake of illustration, however, we 

consider the rounded figures as the result of an authentic enume-

ration. 

1. Rank/Length-of-service distribution for a group of English 

county Police constabularies as of mid-year 197 0 . 

Service interval Constables All higher ranks Total 

k [xk,xk+l [, 
k (1970) k (1970) k (1970) years Co cl c 

0 0-5 1662 0 1662 

1 5-10 1053 121 1174 

2 10-15 657 316 973 

3 15-20 499 367 866 

4 20-25 486 557 1043 

5 25-30 158 150 308 

6 30-35 7 61 68 

Total 4522 1572 6094 

Source: Leeson (1980) 

On the assumptions of a Markov chain on the individual level with 

constant intensities over five years service intervals, stochastic 

independence between individuals and homogenity Leeson computes 

the intensity estimates displayed in Table 2 (see also the fi-

gures D and E) based on experience from the period 1968-72. The 

estimates are (approximate) occurence/exposure rates. Since our 

purpose is to illustrate the stochastic projection model rather 
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than to present a complete statistical account we will not discuss 

the estimation procedure or the properties of the estimates 

any further. The maximum possible service length is 35 years. 

2. Transition intensities based on observed experience in 

1968-1972. a 

Service interval 

k [xk 'xk+1 [ 
"k 
fO 

"k 
fOl 

"k 
fl 

0 0-5 0.1191 0.0026 0.0000 

1 5-10 0.0665 0.0320 0.0115 

2 10-15 0.0863 0.0707 0.0108 

3 15-20 0.0534 0.0497 0.0050 

4 20-25 0.0485 0.0392 0.0094 

5 25-30 0.1218 0.0107 0.1095 

6 30-35 0.1122 0.0000 0.3017 

a fO is the total intensity for state 0, whereas f~l is the pro­

motion intensity. f~ is the total transition intensity for state 

1. 

Source: Leeson (1980) 
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D. Estimated promotion intensities (see Table 2) 

PER YEAR 

5 10 15 20 25 30 35 

SERVICE LENGTH J YEARS 



- 18-

E. Estimated vJastage intensities (see Table 2) 

PER YEAR 

-- Constables 

---- All higher ranks 

5 10 15 20 25 30 35 

SERVICE LENGTHJ YEARS 

Leeson takes the five-year projection coefficients to be survi­

vorship proportions of the stationary population. The projection 

is carried out by a stepwise procedure on a five-year basis in 

resemblance with the conventional demographic matrix method. 

Since the future size of the police force is predetermined as 
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described above, the appropriate number of recruits may be deter­

mined for each five-year period (Table 3) 

3. Reguired recruitment in five-year periods 1970-"1990. 

Period Number of recruits 

1970-75 3824a 

1975-80 3509 

1980-85 3852 

1985-90 4043 

a Reconstructed by the present author. 

Source: Leeson (1980) 

3.2. A supplement to the Manpower Model 

To provide a stringent foundation for the projection method used 

for each cohort the model must be supplemented with some further 

assumptions. According to our theoretical part (Section 2) and 

disregarding that intensity estimates are used and that there 

are some special problems connected with the stepwise procedure 

(cf. Section 3.6), it will be sufficient to add: 

The recruitment takes place according to a Poisson process which 

is independent of the processes of movement in the state space 

and have constant intensity over five-year periods. 

3.3. On the App1icabili tyof ther.10del 

The model clearly is not a realistic description of the mechanisms 

of recruitment, promotion and wastage in the police force. From a 

pragmatic standpoint, however, the model might be applicable in 
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certain situations. Considerations concerning this pOint should be 

based on thoroughgoing studies of institutional conditions and the 

given purpose, if possible supplemented with informative analyses 

of numerical data. For a discussion of institutional conditions 

a b and problem formulations cf. Leeson (1979 ,1979 (1980). As far as 

informative analyses of numerical data are concerned a straight-

forward stochastic model control will be carried out in the fol-

lowing section. Test results concerning time independence of tran-

sition intensities within the estimation period 1968-72 are given 

by Leeson (1979 a ,1979b ). Final conclusions on the applicability 

of the model in the given situation lie outside the scope of our 

study. A wider perspective of manpower analysis may be found in 

Bartholomew and Forbes (1979). 

3.4. Model Control 

We now perform a simple control of that part of the model which 

refers to the time period prior to mid-year 1970. First imagine 

that the transition intensities of Table 2 are the model intensi-

ties in stead of estimates. 

k 
Let c. (1970) denote the number of constabularies in service in-1 . 

terval k and in state i at mid-year 1970, k = 0,1, .•• ,6; i = 0,1. 

The assumptions of the projection model clearly imply that the 

pairs 

o 0 1 1 6 6 (cO (1970) ,cl (1970)), (cO (1970) ,cl (1970)), ... , (cO (1970) ,cl (1970)) 

are mutually independent. Furthermore, 
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are independent and follow Poisson distributions with parameters 

A~,A~. These parameters fulfill the condition 

k k 5 k k A. = A J 0 PO' (0, 5 k + x) dx = A r 0 . I 1 1 . 1 i = 1,2, 

where ,k . f 1 d k . k f . 1 2 A var1es ree y an r . 1S nown or 1 = , . 
01 

We notice that the variable 

(ck (1970)) = (c~(1970) + c~(1970)) 

is a sufficient statistic, since 

L ((C~(1970) ,c~(1970)) Ick (1970)) 

is the multinomial distribution with parameters 

k k k k 
c (1970) and (r 00 (1970) / (r 00 (1970) + r 0 1 (1970)) , 

k . k k r Ol (1970) / (r OO (1970) + r Ol (1970)) 

no matter what the value of Ak is. In addition, since L(ck (1970)) 

is the Poisson distribution with parameter 

k k k k 
A (rOO+r Ol )' A varying freely, 

the model for (ck (1970)) is universal (Barndorff-Nielsen, 1978). 

Then there is some basis (Barndorff-Nielsen, 1978, pp. 62-63) for 

k examining the projection model by testing that c O(1970) has the 

binomial distribution with parameters 

k k k k 
c ( 1970) and r 00 (1970) / (r 00 (1970) + r 0 1 (1970) ) 

016 for k=0,1, ... ,6 (c O(1970),c O(1970), ... ,c O(1970) being indepen-

dent) . 

The calculations for the model control are displayed in table 4. 
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4 . Computations for model control. 

Service k 
rOO 

interval k k c k (1970) 
k k 2 

k x k - x k +l rOO+rOl Co (1970) E (cO (1970» Deviation X (1) 

0 0-5 0.9929 1662 1662 1650.22 11.78 11. 9 

1 5-10 0.9065 1174 1053 1064.29 - 11. 29 1.3 

2 10-15 0.6970 973 657 678.19 - 21.19 2.2 

3 15-20 0.5121 866 499 443.50 55.50 14.2 

4 20-25 0.4106 1043 486 428.22 57.78 13.2 

5 25-30 0.3617 308 158 Ill. 41 46.59 30.5 

6 30-35 0.4442 68 7 30.21 - 23.21 32.1 

105. 

Since the 99,95 percent fractile of the X2-distribution with 7 

degrees of freedom is equal to 26 we are forced to conclude that 

there is a notable deviation from the model. So far we have been 

reasoning as if the transition intensities in Table 2 were the 

model intensities. Recalling that they are only estimates as de-

scribed in Section 3.1 the interpretation of the model control 

of Table 4 becomes more involved. However, it will be safe to 

conclude that the estimated model fails to explain the Rank/ 

Length-of-service distribution as of mid-year 1970. If we look at 

the single service intervals we observe that with the exception 

of the lower service interval the X71) -value tends to increase wi th 

length of service. Thus we get the largest deviations for cohorts 

with recruitment far back in time. This observation is quite under-

standable, of course. The signs of the deviations may be of inte-

rest. The over- or underrepresentation of promoted persons in the 

various length of service intervals could perhaps be explained 

from the historical development of the police force. 



- 23-

3.5. Calculation of Projection Coefficients 

We carry out the projection as described in theory in Section 2. 

The projection coefficients are given by the following formulas: 

- POO{Xk,xk+1)e~~+m:5) ]/e~~:5 

fk 

= [POO(O,xk)Pll (xk+l,xk+m) kOlk (P ll (xk,xk+l)e~' :5 
f O-f12 k+m 

POO(xk,xk+l)Pll(xk+m,xk+m+l)-Pll(xk,xk+l) 
----------------~--~~~----------------) 

fk _fk_fk+m 
12 0 12 

For the future recruitment cohorts we have the coefficients 

k 00 
rO 0 = Po 0 (0, x k ) e 5 x k : , 

( (s .. (xk ' s) ) ., denotes the coefficients used for a s year proj ec-
lJ lJ 

tions of the cohort with seniority [xk,xk+l ] at tIt and e!~t is 

the expected time spent in state j between seniority x and seni-
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ori ty x + t by a person present in state i at age x) . 

The derivation of the formulas is based on repeated use of the 

Chapman-Kolmogorov equation as described by Leeson (1980). Ob-

serve that the entities included in the formulas are conventio-

nal computation results from standard demographic computer pro-

grams based on piecewise constant intensities (cf. e.g. Hansen 

1981). Access to such a computer program considerably facilitates 

the computational work. 

3.6. The Inconsistency of the Matrix JllIultiplication Method for 

the Calculation of Projection Coefficients 

As far as the coefficients for five-year projections are concern-

ed there is a complete agreement between Leeson's formulas and 

ours. For time horizons of 10,15 and 20 years Leeson's projection 

coefficients are obtained by matrix multiplication. For these 

projection periods there is a deviation from our results. This 

is connected with the fact that the movement process (St)t~6 

(St = state at time t) of an individual whose time of entry is a 

random variable on [0,6J, normally is non-Markovian (Pollard 

1966,1969). It is easily seen that the matrix multiplication 

method is consistent for competing risk models (including the 

traditional single decrement life table), but it does not hold 

in the case of the police force model. 

As a numerical illustration the projection coefficients of a 

time horizon of twenty years have been computed by both methods. 

The results are shown in Table Sa. In this example the deviation 

on the projection coefficients may amount to some 10 percent 

(consider sll(10,20) in Table Sa). A guess of the number remain-
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ing in state 1 by mid-year 1990 among the 316 promoted persons of 

seniority [10,15] by mid-year 1970 (cf. Table 1), would be 77 if 

based on the direct method and 85 if based on matrix multiplica-

tion. 

5. Projectiohcoefficients foratitne horizon of twenty years. a 

a. Coefficients for existing cohorts. 

soo (xk ' 20) 
b 

sOl(xk ,20) s 11 (xk ' 20) 

k x k Direct Matrix Direct Matrix 
method mult. method multo 

0 0 0,231707 0,326617 0,326615 0,846179 0,846460 

1 5 0,246364 0,371043 0,367011 0,617984 0,657092 

2 10 0,200004 0,143910 0,133455 0,244613 0,268664 

b. Coefficients for future recruitment cohort. 

k [xk ,xk+1 ] 
k k 

rOO r 01 

0 0-5 3,767533 0,026905 

1 5-10 2,345011 0,241733 

2 10-15 1,605498 0,697928 

3 15-20 1,126828 1,073475 

a Computed on basis of the transition intensities of Table 2. 

b For this coefficient no deviation should be found since it is 

computed in a pure decrement table. 

If, like Leeson, we restrict the projection to embrace the total 

numbers of constables and promoted persons in each service in-

terval, the bias on the guess will be considerably reduced since 

the errors on SOl and sll are counteracting. Thus the guess of 
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the number of promoted persons of service length [30,35] by mid-

year 1990 will be 171.9 and 172.6 respectively (Table 6) with a 

relative deviation of 0.4 percent. In conclusion there are only 

minor deviations between the results obtained by either projection 

method for this particular manpower system by mid-year 1990. The 

same conclusion holds for similar computations for mid-years 1980 

and 1985 (not given here). As is easily seen it will make no dif-

ference whether the future recruitment cohorts (entering after 

mid~year 1970) are subjected to direct or stepwise projection. 

The same will be valid in the situation where a recruitment co-

hort existing at mid-year 1970 has the expected relative distri­

bution on states 0 and 1 (i. e. X7l) = ° in the model control). But 

this is not likely to happen, of course. 

6. Projection of the police force to mid-year 1990 by 

each method. a 

Constables All higher ranks 

k [xk'xk+l ] Direct method ~atrix multo 

0 0-5 3046.43 21. 76 21. 76b 

1 5-10 1806.60 186.23 l86.23b 

2 10-15 1126.74 489.81 489.8lb 

3 15-20 861.80 820.99 820.99b 

4 20-25 385.10 542.84 542.83 

5 25-30 259.42 465.48 465.97 

6 30-35 131.40 171.85 172.58 

Sum 7617. 2699. 2700. 

a The future recruitment intensities are based on the entry 

figures of Table 3. 

1 
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b For these figures no deviation should be found since they refer 

to cohorts not yet recruited by mid-year 1970. 

3 .7. Projections and Variances of Projections for total Numbers 

Projections and variances on projections for (total number of con­

stables, total number of promoted persons) and for the entire 

police force as of mid-years 1980, 1985 and 1990 are displayed in 

Table 7. 



7. Projections, variances of projections etc. for total numbers. a 

Constables 

Co (t) 

All higher ranks 

cl (t) 

Total 

c(t) =cO(t) +cl (t) 

I 

~ 
E(CO(t» 

Var(cO(t» 

D ( c 0 (t) ) lE ( c 0 (t) ) 

IE(cO(t»/E(co(t» 

E(c l (t» 

Var (cl (t) ) 

D(c l (t»/E(C l (t» 

IE(c l (t»/E(c l (t» 

Cov(c O (t) ,cl (t» 

P (cO (t) ,cl (t» 

E(c(t» 

Var(c(t» 

D(c(t»/E(c(t» 

lE (c (t) ) /E (c (t) ) 

mid-year 1980 mid-year 1985 

6444 7044 

5507 6624 

1.15 percent 1.16 percent 

1. 25 " 1.19 11 

2092 2347 

1173 1665 

1.64 percent I 1.74 percent 

2.18 " 2.06 11 

- 511 - 407 

- 0.20 - 0.12 

8536 I 9391 

5659 7474 

0.88 percent 0.92 percent 

1.08 11 1.03 " 

mid-year 1990 

7617 

7438 

1.13 percent 

1.15 " 
I 

2699 

2298 

1.78 percent 

1.92 " 

- 241 

I 
- 0.06 

10316 

9254 

0.93 percent 

0.98 .. 

a The future recruitment intensities are based on the entry figures of Table 3. The variances 

are calculated inside the projection model defined by these intensities and the transition 

intensities of Table 2. 

N 
00 

I 
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It appears that the standard deviation is very small everywhere 

as compared with the mean value. The coefficient of variation 

amounts to less than two percent in all cases. By the way, observe 

that this entity approaches the ratio Iffiean-value/mean-value from 

below as the Poisson element increases. Another concomitant fea­

ture of the projection model is the decreasing correlation be­

tween the numbers of constables and promoted persons. The im­

pression of a rather small stochastic variation is sustained by 

the 95 percent contour ellipses based on normal approximations 

(Figure F) . 



F. 95 per cent contour ellipses for the total number of constables and persons of all other 

ranks, mid-years 1980, 1985 and 1990 (see Table 7). 
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Informed opinion will probably agree that not least for the longer 

time horizon the computed projection variances are so small that 

they can only account for a minor part of the total unrealiability 

of the projections. In the language of the model, there will be 

some uncertainty concerning the intensities, and this is not co­

vered by the variances. Even if we are prepared to accept the mo­

del, some unrealiability of the projection is caused by lack of 

knowledge of the real intensities, for in reality the transition 

intensities used in the computations are estimates only and the 

future recruitment intensities are based on a (hardly interpre­

table) method of assessment. By dropping the very restrictive 

assumption of time independence of the transition intensities, 

another type of uncertainty is introduced. It seems natural to 

let the model catch some of the fundamental uncertainty by assu-­

ming that the intensities themselves are stochastic. Discrete 

time studies by Pollard (1968,1970), Sykes (1969), Schweder and 

Hoem (1972) and Bartholomew (1975) address such issues. For the 

present we will not go into these questions any further. 
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4. Some Remarks on the Projection Problem in Relation to a 

Model with Entry ~hroughBirth 

For populations where entry at age 0 is through own reproduction 

the model assumption of exogeneously determined entry at age ° is 

unreasonable. To sketch some problems involved with endogeneously 

determined entries we specify a new model, as follows. 

4.1. r10del 

The individual level: The individual moves in the state space 

S ={l,2, ... ,n} according to a Markov process (SX)XE[O,w] with 

2 age-dependent intensi ties (]J .. (x) ). . E [0 ]. Furthermore n 
1J l=1=J,X ,w 

Poisson point processes B .. i,j ES on [o,w] are associated with 
1J 

the individual. The processes (S ) ,Bll, ... ,B are mutually inde-x nn 

pendent and the intensity measure of B .. is given by the density 
1J 

le . . (x) with respect to Lebesgue measure for i, j E S. The realized 
1J 

birth process (El, ... ,En ) is constructed by 

n 
'" B. = I 1 { S .} B.. . 

J i=l =1 1J 
for j E S 

and we interpret the atoms (epochs) of E. as single births into 
J 

state j. It is assumed that wi th probabili ty 1 no explosion takes place. 

(This assumption was not stated explicitly for the individual 

movement process in Section 2 but it was meant to hold there as 

well) . 

The population level: The individuals are mutually independent 

and each individual has a behaviour as described above with the 

same intensities applying to all individuals (or at least to all 

indi viduals born in the period [t l - w, t 2 ]). New individuals are 

brought into the population through birth in accordance with the 
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interpretation of the realized birth process of an individual. 

The population is left by the attainment of age w. 

4.2. A Demographic Interpretation of the Hodel 

The model may be pictured as relating to the female part of a 

closed human population. Then only girl births are considered. At 

least one of the states in S is absorbing (a state of death). In 

an absorbing state j normally no births can take place so 

A, == 0 (A, = L: A,.). Births into the absorbing states represent 
JO JO iES J1 

stillbirths. The non-absorbing states,which constitute a set de-

noted L, refer to demographic status such as marital status and/or 

region of residence. In the gross maternity function (A,.). 'ET 1J 1,J LJ 

normally some A, ' == O. If for example the states of L refer to 
1J 

marital status, everybody is born into the state jo = 'never mar-

ried' and therefore A, . == 0 for i ELand j E V-...{ j O}, If, al terna-
1J 

tively, the states of L refer to regions of residence, a child is 

born into the state of her mother and we have A, ' == 0 unless i = j . 
1J 

The age w could be thought of as the maximum age attainable if 

such a concept is accepted, or it may be the highest age cons i-

dered by the investigator. Of course, w should be higher than 

the age at menopause if the emphasis is on the population process. 

4.3. Relations to Other Models 

The model of Section 4.1, like some of the models considered by 

Braun (1978) f is a natural generalization of Kendall's age-depen-

dent birth-and-death process (Kendall 1949) and it embraces the 

major part of the time and age continuous population models of 

modern multistate demography (cf. Keyfitz 1980). On the other 

hand, the model may be seen as a simple multitype Crump-Mode-
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Jagers process and the relevant tools are those of branching pro­

cesses (cf. Jagers 1975) . 

4.4. Consideration on the Projection Problem 

A way of attacking the projection problem could be as follows: 

1. Derivation of renewal equations for first and perhaps second 

moments of the branching process started with a single ancestor 

in a given age u E [0 ,w] and a given state i E S at time t l . 

2. Aggregation of the means, and perhaps the variances, connec­

ted with single ancestors and their descendants to mean and vari­

ance of the total population vector at time t2 (here the word 

"population vector" denotes the distribution of the population on 

age groups and states) . 

Comment: Normally we only consider the population in the states 

of L (cf. Section 4.2). 

The renewal equations can be established by direct derivation. 

Concerning the aggregation described under 2 it is not clear to 

the present author how this should be carried out in the case of 

the traditional demographic projection problem, where the star­

ting point is the population vector at time tl rather than full 

information on the state-age distribution at this time. 

Assume, however, that this theoretical problem is solved (or at 

least bypassed by introducing some further assumptions concerning 

the age distribution at time t l ) so that one could think of apply­

ing the model in practical projection work. Then we would surely 

be faced with rather cumbersome computations even for a simple 

model like Kendall's age-dependent birth-and-death process (cf. 
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e.g. the renewal equations given by Doney (1972)). 

The introduction of endogeneously determined entries in the time 

and age continuous model makes the traditional demographic pro­

jection problem considerably more difficult, both theoretically 

and computationally. This circumstance probably explains the wide­

spread use of time and age discrete counterparts to the model of 

section 4.1 for projection purposes (compare the discussion of 

Pollard 1973, pp. 112-113, 130-133). 
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Appendix: Some Theorems on Point Processes 

Theorem Al Let M denote a Poisson point process on [a,b] with 

intensity measure given by the density v(x) with respect to Le­

besgue measure, and let p = (Pl"" rPn): [a,b] -7 [O,l]n denote a con­
n 

tinuous function with L: p. (x) = 1 for all x. We make a partition 
i=l 1 

of M into n point processes Ml, ... ,Mn using the following pre-

scription: Every atom (epoch) x of M is to become atom of exactly 

one of the point processes Ml, ... ,M . The point process M., where 
n 1 

the atom is placed, is chosen by letting i be the outcome of an 

experiment with sample space {1,2, ... ,n} and pOint probabilities 

Pl(x) , ... ,Pn(x). The experiments are performed so that the out­

comes for the different atoms are stochastically independent. 

The point processes Ml, ... ,Mn are then stochastically independent 

and Ml is a Poisson pOint process on [a,b] with intensity measure 

given by the density v. (x) = p. (x) • v (x) . 
1 1 

Theorem A2 Let Ml, ... ,Mn denote stochastically independent 

Poisson point processes on [a,b] with intensity measures given by 

the densities vl(x) , ... ,vn(x) with respect to Lebesgue measure. 

Define M = Hl + ••. + Mn' Then M is a Poisson pOint process with in­

tensi ty measure given by the density v (x) = v l (x) + ..• + vn (x) . 

Theorem A3 Let M denote a Poisson point process on [a,b] with 

intensity measure given by the density v(x) with respect to Le-

besgue measure. Let 8 denote the affine mapping given by 8(x) = 

8 - x, x E [a,b]. Define ]111 by Ml = 8 (M) . 

Ml is then a Poisson point process on [8 - b, 8 - a] with intensity 

measure given by the density vl(x) =v(8-x) with respect to Le-

besgue measure. 
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Theorem A4 Let Ml, ... ,Mn denote stochastically independent Pois­

son point processes on [a,b] with intensity measures given by the 

densities Vl(x) , ... ,vn(x) with respect to Lebesgue measure. Con­

sider the conditional distribution of (Ml, ... ,Mn ) given 

(Ml[a,b], ... ,Mn[a,b]) = (cl' ... ,cn ). In the conditonal distribution 

Ml, ... ,Mn are still stochastically independent and 

L(Mil (Ml[a,b], ... ,Mn[a,b]) = (cl'···,cn )) 

= L (M. I M. [a, b] = c. ) , 
111 

which is the distribution of the unnormalized empirical distribu'-

tion of c. independent, identically distributed random variables 
1 

with distribution given by the density 

b f. (x) = v. (x) / J v. (y) dy 
1 1 a 1 

with respect to Lebesgue measure. 

Theorem AS Let F denote the unnormalized empirical distribution 

of c independent, identically distributed variables on [a,b] with 

distribution given by the density f(x) with respect to Lebesgue 

measure. Let (PI' ... ,Pn) : [a,b] -+ [Q,U n denote a continuous func­
n 

tion with L: p. (x) = 1 for all x. We make a partition of F into n 
i=l 1 

point processes Fl, ... ,Fn using the following prescription: Every 

atom x of F is to become atom of exactly one of the point pro­

cesses Fl, ... ,Fn . The point process Pi' where the atom is placed, 

is chosen by letting i be the outcome of an experiment with sample 

space {1,2, ... ,n} and pOint probabilities Pl(x) , ... ,Pn(x). The 

experiments are performed so that the outcomes for the different 

atoms are stochastically independent. Define (cl' ... ,cn ) = 

(E\ [a,b], ... ,Pn[a,b]). Then (cl' ... ,cn ) is multinomially distri-
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buted with parameters (c, (ql, ... ,qn))' where 

b q. = f f (x) p. (x) dx 
1 a 1 
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