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Abstract 

We give a survey of examples of so-called extreme point models in 

statistics, i.e. statistical models that are given as the extreme 

points of the convex set of probability measures satisfying (in a 

general sense) a symmetry condition. 

Some of the examples are only partially solved, some are classical 

and some are recent. A sketch of the general theory is also provided. 

Key words: exchangeability, de Finetti's theorem, Rasch models, 

sufficiency. 
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o. Introduction and summary 

Many statistical models have the common structure that they, in a 

given'repetetive structure', are given as the extreme points of 

the convex set of probability measures satisfying a certain symme

try condition or, which amounts to the same, have certain given 

systems of statistics as sufficient. In particular this includes 

models given by i.i.d. repetitions of exponential families. 

The aim of the present paper is to give examples of this, to point 

out some unsolved problems and to indicate the possibility of 

constructing new models deserving interest in theoretical stati

stics. 

The proofs of the various results are omitted and the interested 

reader is referred to the cited works for those. 

An important aspect of the considerations here is a kind of 'dua

lity' between model and analysis. 

In textbooks in theoretical statistics it is common to consider 

only a one-way connection among a statistical model and a stati

stical analysis, namely the way of deducing the statistical ana

lysis from the model and some general inference principles. 

Through examples we want here to indicate a 'dual' relation. From 

a specified symmetry or specified systems of calculations to be 

performed (the sufficient reduction) it is possible by mathemati

cal construction to generate a corresponding statistical model in 

a canonical fashion. Thus the role of the statistical model can 

be said to be the way in which we express what we do when making 

a given analysis. 
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It is the opinion of the author that this way of thinking is use

ful, conceptually as well as for statistical practice where it is 

quite important to realise that the model certainly is not given 

beforehand. 

There are many other examples in the literature than those given 

here and the reader is in that respect advised to consult the re

ferences to the present paper. 
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1. De Finetti's theorem 

The starting point of the present survey is the following form of 

de Finetti's theorem: 

Let Xl' ... ,Xn".' be a sequence of random variables taking values 

in {O,l} and suppose that their jOint distribution is exchange-

able 

for all n E:IN" and all permutations n E S (n), the symmetric group 

of order n. Here X Q Y means that X and Y have the same distri-

bution. 

Then there is a unique probability measure ]J on [0,1] such that for 

all n E :IN" 

n 
1 L: x. 

i=l 1 
P{Xl=xl, ... ,x =x }=! 8 

n n 0 

Moreover, the limit 

Xl + 
X = lim 

00 n 
n+oo 

(1 - 8) 

+X 
n 

n 
n- L: x. 

i=l 1 
fl(d8) 

exists almost surely and fl is the distribution of X . 
00 

We can twist this result slightly by realising that 

if and only if for all tE{O, ... ,n} 

( 1.1) 
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(1. 2) 

and thereby noticing that the class of exchangeable probability 

measures on {O,l}lli exactly is the largest class of probabilities 

for which 

t n 
n {a,l} -+ {a,l, ..• ,n} 

for each n is sufficient with (1.2) as conditional distributions 

given t (Xl' ... ' X ) = t. n n 

Further, that this class is a convex set, with the independent 

Bernoulli measures as extreme points, i.e. those where the ~epre-

senting measure V is degenerate and equal to the one-point mea-

sure se at e and we can write 

where 

p{o}=J Pe{oht{de) 
[0,1] 

n 
L: x. 

i=l 1 
Pe{Xl =xl '··· ,Xn =xn } = e (1- e) 

n 
n- L: x. 

. 1 1 1= 

such that, according to P e ,xl ,X2 , ... are just independent Ber

noulli trials with probability of "success" equal to e. 

Moreover, since the representing measure exactly is "the limiting 

distribution of the sufficient statistic", the probability P can 

be identified from complete observation of the entire sequence 

(Xl ,X2 , ... ) if and only if P is an extreme point, since for only 
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a single outcome (X l ,X2 , ... ) only a single value of Xoo is even 

approximately observable. 

The fact that the independent Bernoulli measures are the extreme 

points of the convex set of measures i for which xl + ... + xn for 

all n is sufficient and (1.2) are the corresponding conditionals, 

shall in the sequel be expressed as 'the model of independent 

.identical Bernoulli trials is an extreme point model I • 

We shall see that such extreme point models in fact occur quite 

commonly in statistics and that results like the above integral 

representation and interpretation of the representing measure as 

the limiting distribution of the sufficient statistic, are of a 

quite general nature. 

Generalisations of de Finetti's theorem can be made in several 

directions. One is to exchange the spaces {O,l} with more general 

measure spaces, as done by Hewitt and Savage (1955). 

Another is to consider different groups like e.g. the group of 

rotations of mn where the random variables Xl' ... 'Xn all take 

values in m, cf. e.g. Kingman (1972). 

Again, to specify other sufficient statistics than xl + ... + xn 

is one way of generalising de Finetti's theorem. 

All these lines are special cases of the same general theory that 

we shall return to after having considered some examples related 

to statistics, where we shall focus on the last version of de 

Finetti's theorem. 
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2. Exponential families (discrete case) 

A large class of examples well known to statisticians are the 

exponential families of distributions. 

d Let X be a discrete I almost countable sample space, t : X -+ JR 

a statistic and a : X -+ JO,oo[ a fixed function. Consider the 

family of distributions on the infinite product space Xlli with 

marginal point probabilities 

n (a(x.) < 8,t(x.) > \ 
= IT 1 e 1)~ 8 E D 

i=l 4>(8) 
(2.1) 

where < , > is usual inner product and 

d < 8 t (x) > 8ED={8EJR : <t>(8)=L: a(x)e' < +oo} • 
x 

According to P8' Xl""'Xn are i.i.d. with distribution 

a(x) < 8,t(x) > 
= --e 

<t> ( 8 ) 

for all n 

t (xl' ... ,x ) =t(xl ) + ... +t(x ) n n n 
( 2. 2) 

is sufficient and the conditional distribution of Xl"."Xn 

given t (Xl, ... ,X ) = t is given as n n 

n 
IT a(x.) 

. 1 1 1= 
(2 .3) 

where b*n(t) is the n'th convolution of the measure b=a at-I, 

i.e. 
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The extreme points of the convex set of nrobabilities having t 
• L n 

as a sufficient statistic and (2.3) as conditionals, consists 

exactly of the exponential families (2.1) plus weak limits of 

these (Martin-Lof (1974)). That is, the extreme point model corre-

sponding to the statistics (2.2) and the conditionals (2.3) is the 

so-called extended exponential families, introduced by Barndorff-

Nielsen (1973,1978). 

In general, Lauritzen (1975), one can show that the so-called 

generalised exponential families are examples of extreme point 

models, these being given by a countable set X, a statistic 

t : X -+ S where S is a commutative semigroup, an a : X -+ [0,00 [ as the 

family of probabilities on Xlli with marginal point probabilities 

n [a(x.) ] 
P ( ) = L __ 1 8 (t (Xl. ) ) 8 xl,···,xn i=l cp(8) 8 E D (2.4) 

where D is a subset of EXP(S), the exponential functions on the 

semigroup S, i. e. those satisfying for s, t E S 

and 

8(s)8(t) =8(s+t) 

D = {8 E EXP (S) cp ( 8) = L a (x) 8 (t (x)) < oo} • 
x 

For these families 

t (xl' ... ,x ) =t(xl ) + ... +t(x ) n n n 

is sufficient (+ denotes the semigroup composition), and the con-

ditional distributions are also given by (2.3), where convolution 
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is the convolution on the semigroup. 

These examples include families like the uniform distributions on 

{1, ... ,S}, where the corresponding semigroup operation is maximum. 

It is important that the 'repetitive structure' in these exponen-

tial family cases are that of identically distributed repetitions. 

Consider the following family of exponential models. Let 

XI, ... ,Xn , ... be a sequence of independent random variables with 

distribution 

S 
7T e 

p{X =l}=l-P{X =o}= n 
n n 1+7T e S 

n 

S E IR 

where (nn)nElli is a fixed and known sequence of positive real 

numbers. 

The jOint distribution of XI' ... 'Xn is thus given by the point 

probabilities 

n 7T. 
X. 

1 

Pe (x I' ••• , X n ) = IT 1 e 
i=I(I+7T.e ) 

1 

• e 

n 
e E x. 

. I 1 1= 

such that we for each n have an exponential family of distribu-

tions with 

being sufficient and the conditional distributions 

n 
IT 'TT.xi 

{ . I 1 } P (xl' ... , xn I Xl + ... + Xn = t) =. _. ----,,-1_·= ____ -.-
Yt( 7TI'···,7Tn ) 

if Xl + ... + xn = t, 0 otherwise 
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where Yt(nl, ... ,nn) are the elementary symmetric functions 

n x. 
yt(nl, ... ,nn) = 1:: ( IT n. 1) 

X + + x = t l' =1 1 1 . . . n 

( 2 .5) 

x. E {O,l} 
1 

It follows from the results of Pitman (1978) that the above model 

is an extreme point model if and only if 

00 n 
1:: n = 00 

n=i (1+'lfn )2 
(2.6) 

Again, this fact implies that e is consistently estimable from 

one realisation of xl, ... ,Xn , ... if and only if (2.6) is ful

filled. 

Condition (2.6) is easily seen to be equivalent to 

00 00 

v e ( 1:: Xn) = 1:: 
n=l n=l 

e n e 
n = 00 

A related example is the model given by xl, ... ,Xn , ... independent 

and Poisson distributed with 

Again the marginal point probabilities become 

n 
1:: ix. 

i=l 1 e 
n 
IT x. ! 

. 1 1 1= 

n 
- 1:: en 
i=l e 

and we have for each n an exponential family with the statistic 
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t (xl' ... ,x ) n n 

n 
= L: i x. 

. 1 l l= 

as sufficient and the conditional distributions given as 

where 

c (t) 
n 

The situation is here slightly more complicated, but one can show 

(Lauritzen (1980» that 

i) Pe is an extreme point if and only if e ~ 1 

ii) The distributions Py, y Em obtained by conditioning as 

Py { .} = Py { • I Y = y} 
~ 00 

where 

are extreme points as well. 

00 

Y = 2: i X. 
00 i=l l 

It is an open problem whether these are all the extreme points. 
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3. Models for 0 - 1 matrices 

An interesting class of examples different from the usual class 

of exponential families are extreme point models for ° -1 matrices. 

We consider a doubly infinite array (X,,) i, j E:IN" of random vari-
1J 

abIes taking values in {O,l}. 

Aldous (1979) has investigated the class of row-column exchange-

able (RCE) arrays, i.e. arrays where 

(X, "i = 1, ... ,m,j = 1, ... ,n) 
1J 

V (X (') (,),i=l, ... ,m,j=l, ... n) = 'IT 1 0' J 

for all m,n,'lTES(m) O'ES(n). 

Or, equivalently where the maximal invariant under this group is 

sufficient and the conditional distribution given this statistic 

is uniform on the corresponding orbit. 

The extreme points of this class of distributions are given as 

those RCE-arrays that are dissociated, i.e. 

(X .. ,i <m,J' <m) and (X, "i >m,J' >n) 
1J = = 1J 

are independent for all m and n. 

Further, any such array can be matched in distribution by choos-

ing 

i) a measurable function h JO,l[~JO,l[xJO,l[ 7{O,1} 

ii) independent sequences (t;,,) 'EThT (n ,) 'EThT (>C, ,), 'EThT ThT 1 1 ~ J J ~~ 1J 1J ~ x~ 

of i.i.d. uniform JO,l[ random variables. 
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and letting 

h x .. =h(t;. ,n· lA .. ) 
1J 1 J 1J 

i.e. X~. is composed by h from a random 'row-effect' t;., 'column-1J 1 

effect' nj and 'interaction' or 'error' A ..• 
1J 

An open problem is in which sense the model here is overparametri-

sed by hi since 

distribution of 

obviously different his can give the same joint 

h 
(X .. ). 'EJN IN. 1J 1,J x 

In fact Aldous' result is not restricted to the state spaces {O,l} 

but holds for rather general spaces (Polish). 

A different, but clearly related model is Rasch's model for item 

analysis. In this model, the random variables X .. should be inter-
1J 

preted as the response of a person j to a question i and the mo-

del is that the X .. are all independent with 
1J 

a.S· 
P Q{X .. =l}=l-P{X .. =O}=l: J S a,~ 1J 1J a .. 
~ ~ 1 J 

where a = (a i ) iEJN and,@. = (Sj) j EJN are sequences of unknown non

negative parameters. The marginal point probabilities for 

(X ) are given as 
ij i:::.m, j.:sn - -

m 
P (.({(x .. )}= IT 

£K. 1J i=l 

m 

x .. 
n (a.S.) 1J 
IT 1 J = 

. l(l+a. P .) 
1= l~J 

m 
IT a. 

i=l 1 

m n 

r. 
1 

n s. 
IT S. 1 

j=l J 

IT IT (l+a.S·) 
i=l i=l 1 J 

(3.1) 

n 
where r. = L: x .. 

1 j=l 1J 
s. = L: x.. are the row- and column sums of the 

J i=l 1J 

matrix {x .. } . -1 . '-1 . 1J 1- , ... ,m, J- , ... ,n 

The conditional distribution of the matrix given the sufficient 
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statistics, the row- and column sums is uniform on the set of 

o - 1 matrices with the given row- and column sums. 

It is not completely clear at present what the corresponding ex-

treme point model is. Some positive results can be stated (Laurit-

zen (1980)). 

The following condition is necessary for P to be an extreme 
a,S 

point: 

00 an 
A: L: = L: 

n=l (l+a)2 n=l 
n 

'" '" 

and the condition below is sufficient 

co ctn Sn 

B: n-: 1 (1+ a ) (1 + S ) (1 + as) n n n n 
= 00 

Note that B =*A, since 

(1+a)2 (l+a) (l+S) (l+aS) = a(1+S2) ---.,,-..:.--'---'---- ,; 0 
(l+a) 2 (l+S) (l+aS) 

a. S. 
Thus, the ratios (~ ) and (-2 ) are consistently estimable as 

a. , S. I 
1 J 

m + 00, n + 00 if B is satisfied and they are not if A is viola-

ted. 

If we consider the modified version of this Rasch-model where m 

is fixed and only n+ 00, the P Q are not extreme points. The 
Z:,,~ 

corresponding extreme point model can be shown to be the conditio-

nal model, i.e. the model obtained from the above by conditioning 

on the column sums sl, ... ,sn'.'. and considering these as fixed, 

to obtain the probabilities 
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p {x .. =x .. , i=l, ... ,m; j=l, ... ,n} 
a,sl'···'s , ... lJ lJ .... n 

= 
n 
IT 

j=l 

m x .. 
IT lJ a. 

i=l l 

y ( aI' ... , a ) s. m 
J 

where y (., ••• ,.) are the elementary symmetric functions. s 

To be exact, the above probability measures have to be supple-

mented by certain degenerate ones to make up all the extreme 

points, see Lauritzen (1980). 

Note how in this example, the idea of looking for the extreme 

point model leads to conditioning on the statistics (sl, ... ,sn)' 

a procedure also supported by other inference principles, since 

those conditional distributions now are free from the nuisance 

parameters (S l' ... , Sn' ... ) . 
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4. "Exponential" models for Markov chains 

Consider an array (X,), i = 0,1,2, . .. of random variables taking 
1 

values in the countable set X. 

Consider the statistics for i < j 

where n are the transition counts xy 

Diaconis and Freedman (1980) have shown that the extreme points 

of the class of probability measures, for which t is sufficient 
n 

for all n, and the conditional distribution of (Xk)k-' , 
-1, ••• ,J 

given tn is uniform on the set of strings (xO, ... ,xn ) with the 

given first and last value, and the given transition counts, fall 

in three classes 

1) Recurrent Markov chains 

2) Processes starting with a fixed string of transient 

states and continuing as recurrent Markov chains 

3) Totally transient processes. 

Results of Hoglund (1974) indicate that a similar result can be 

obtained by considering the statistic 

n-l 
= (x O' L t(x. ,x_+1),x ) 

i=O 1 1 n 

where 

t : X x X -+ zd 
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is a fixed statistic and the corresponding extreme point model 

consists then of the 'exponential families' of homogeneous Markov 

chains with initial distribution degenerate at Xo and transition 

probabilities given as 

< e,t(x,y) > e P e (x , y) = -"------,--;-:--;----cp ( e ) 

where cp(e) is the maximal eigenvalue of the matrix 

{ e< e,t(x,y) >} 
(x,y) E X x X 

and ee is the corresponding eigenvector. To get all the extreme 

points, certain probabilities of the type 2) and 3) in the case 

considered by Diaconis and Freedman should no doubt be added. 

It seems also plausible that these models could be generalised to 

semigroup valued statistics. 
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5. General theory 

We shall here give a sketch of the general framework unifying the 

examples given previously in the paper. 

The way of expressing the repetitive structure is to start with a 

projective system of sample spaces and maps, i.e. and indexed 

family 

of spaces that we assume to be Polish (complete, separable and 

metrisable), where I is partially ordered «) and directed to the 

right, i.e. 

Vi,jEI3kEI i<k, j<k. 

The spaces X. are connected with continuous maps (p .. ). < . 
l lJ l J 

p .. : X. + X. 
lJ J l 

that are coherent in the sense that 

The maps p .. are called projections. 
lJ 

We further consider another system of Polish spaces (Y i) i E I and 

a system of statistics, i.e. continuous surjective maps 

t l. : X. + Y. 
l l 

iEI 

We then consider probability measures on the projective limit 

1 im X. = {x Co! (x. ) i E I I x. EX. : p. . (x .) = x. Vi < j } 
-- l '" l l l lJ J l 
iEI 
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for which the conditional distribution of X., where 
1 

given 

X.(x) =X. 
1 ""' 1 

y. = t. (X.) = y 
111 

are given by a specified system of continuous Markov kernels 

B. is the Borel a-algebra of X. and the Q. 's satisfy the following 
1 1 1 

consistency conditions: 

i) -1 
Q. (y, t. {y}) = 1 for all y E Y., i E I 

1 1 1 

ii) 
-1 

Q.(z,p .. (B)) =f y Q.(y,B) v .. (z,dy) 
J lJ . 1 lJ 

1 

for all i < j, z E Y ., B E B. , 
J 1 

where for C being a Borel-subset of y. 
1 

-1 v .. (z,C) =Q. (z, (t. op .. ) (C)). 
lJ J 1 lJ 

In words, conditions i) and ii) ensure that Q. is the conditional 
1 

distributions of X. given t. (X.), calculated in any of the mea-
111 

sures on X. 
1 

-1 
fl . . (z,B) =Q.(z,p .. (B)) 
lJ J lJ 

If we now assume I to contain a cofinal sequence (i ) i.e. - n nEJN' 

a sequence satisfying 

ViEI3nEJN:i >i, 
n 
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one can show the following: 

The set of probability measures P on X = lim X. for which Q. is 
-- +-- l l --

iEI 

the conditional distribution of X. given t. (X.) is convex and each 
l l l 

member of P has a unique representation by a probability measure 

on the Polish space C of extreme points of P, considered in the 

weak topology, i.e. 

P(B) = J S(B)v(dS) 
SEC 

for any Borel subset B of X. 

The representing measure v is determined as the limiting distri-

bution of the random variables 

where B E B. 
l 

as 

Z (B) = lim Zn (B) 
n+oo 

P{Z(B) ~x}= J 8(B)v(dS) 
- {S:S(B)~X} 

such that, in particular, if P E E, 

Z (B) +Z(B) =P(B) a.s. 
n 

implying that Z (0) is a strongly consistent estimate of p(e) if 
n 

and only if P is an extreme point. 

For further details of the theory the reader is referred to 

Lauritzen (1980). 
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