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Surrunary: Introduction of random row effects in Rasch's item 

analysis model (or the two-way logit-additive model for binary 

data), followed by a (not very controversial) extension of this 

model leads to a model which is shown to be equivalent to a condi

tional multiplicative Poisson model. This result gives som new 

insight in the structure of Rasch's model and suggests, in parti

cular, some goodness of fit tests which are applicable also to 

the original "fixed effects" Rasch model. 
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1. The Rasch model. 

Suppose that each of n subjects (typically persons), labelled 

i = 1, ... , n, are exposed to k items (typically questions to be 

answered, problems to be solved etc.), labelled j = 1, ... , k. For 

each item and each subject, a binary response x .. = 1 or 0 (e.g. 
1J 

yes or no, correct or incorrect etc.) is recorded. Thus, a two-way 

table (table 1) is obtained, with 

item 

1 2 .. '. k 

subject 1 1 0 0 r 1 

2 0 1 1 :r:2 
~ . x ij . 
n 0 0 0 r --',n 

sl s2 sk s 

Tabel 1 

row marginals r l , •.. , rn' the socalled raw scores, column margi-

nals SI' ... ' S'k and total sum s = SI + ... + sk = r l + ... + rn· By nr 

(r = O,l, ... ,kl we denote the number of subjects in the r'th 

score group, i.e. the number of subjects with raw score r. Thus, 

we have n = nO + n l + ... + nk and s = 0 nO + 1 n l + ... + k nk · 

Rasch's ,item analysis model (see e.g. Rasch 1960, 1961) assumes 

that the x .. 's are independent random variables with 
1J 

p .. = p (x .. = 1) = 
1J 1J 

~. A. 
1 J 

(l+~.A.) 
"'1 J-

where ~. > 0 is the subject parameter (expressing, e.g., person 
1 
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no. i's ability in solving problems of the type considered} and 

A· > 0 is the item parameter (expressing, e. g. , the difficulty 
J 

of problem j , small values of A' corresponding to a high degree 
J 

of difficulty) . The main idea is that the probability p .. of a 
1.J 

positive response is a function of a product (or:, equivalenty, a 

sum) of an item parameter and a subject parameter. This function 

is given by the above equation, or, equivalently, by 

logit p .. = log ~. + log A .• 
1.J 1. J 

The last equation shows that the model is a linear logistic model 

(see Cox, 1970), with a linear structure similar to the structure 

of additivity in an ordinary two-way ANOVA-model. 

The model is symmetric in items and subjects (and also in the 

responses 0 and 1, in fact), but we are mainly interested in the 

situation where n is large compared with k. Emphasis will be put 

on goodness of fit tests and estimation of the'item parameters, 

while the subject parameters, are regarded as nuisance. The rele-

vant asymptotic assumption in this situation is n + 00. Standard 

asymptotic theory for maximum-likelihood fails in this case, 

because the number of nuisance parameters increases as n + 00. It 

is known that the maximum likelihood estimates of the item para-

meters are inconsistent in this case, even under the nicest pos-

sible assumptions about the variation of the subject parameters 

(see e.g. Andersen, 1980). However, this problem has a nice solu-

tion (see Rasch 1960, 1961, Andersen 1973a, 1980) ~ 

Consider the row sums r l , ... , rn. Obviously, these numbers con

tain very little information about the differences between speci-

fic items. Consequently, we loose very little by conditioning on 
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these row sums (an idea which can be supported by more general 

inference principles, see Andersen, 1973a), and the subject para-

meters do not occur in the conditional model. To see this, let 

A. denote the (random) set of items responded to by subject if J. 

i.e. 

A. = {j I x .. = I} • J. J. J 

For a fixed subset A of {l, ... ,k}, the probability that subject 

i obtains exactly this pattern of responses is given by 

P(A. J. = A) = (IT p .. ) (IT (I - PJ.· J. ) ) 
j EA J.J j EAc 

r 
~ . IT A. 

= --:-_J.----=!.j_E_A_J_ 
k 
IT (1+~.A.) 

j=l J. J 

where r = #:' A = the number of elements in A., Conditionally on the 

row sum r. = =#: A., the probability of this event is J. J. 

P (A. = A I r. = r) J. J.' 

r 
~. ( IT A.) 

J. 'jEA J 

r' 
I: ~.( IT A.) 

J. , E J 
B::/fB=r J B 

IT A. 
jEA J 

I: IT A. 
·EB J B::#:B=r J 

/ 

/ 

= 

k 
IT 

j=l 
k 
IT 

j=l 

P (A. = A) J. 
I: P (A. = B) 

B: #B = r J. 

(1+~.A.) J. J 

(1+~.A.) J. J' 

IT A. 
jEA J 

Y r ( A I ' ••• I Ak ) 

= 

= 



L 
H:#H=r 

used throughout the paper) . 
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IT 
jEB 

~. (th~s short notation is 
J 

This is the probability that a subject i obtains response pattern 

A when its raw score is known to be r, and the point is that this 

probability does not depend on the subject parameter t; .• The 
1 

likelihood function L (c for conditional) of the conditional 
c 

model, given rl, ... ,rn , is obtaim~~d by multiplication over i: 

= k 

n 
IT 

i=l 

IT ~. 
jEA. J 

1 

n 
IT Y r ( ~ 1 ' ••• , ~k ) r 

r=O 

It requires only slightly more than standard asymptotic theory 

to see that the maximum-likelihood estimates obtained from this 

conditional likelihood are conditionally consistent as n + 00, 

under the obvious assumption that the increase of n is not only 

due to increase of the trivial score groups corresponding to 

r = 0 and r = k. In fact, the estimates based exclusively on 

scoregroup r, 1 < r .:: k - 1, are conditionally consistent by 

standard asymptotic theory, provided that nr + 00. Consistency 

(and asymptotic normality) of the conditional estimates holds 

also with respect to the original (unconditioned) distribution, 

under suitable restrictions on the behaviour of the increasing 

set of subject parameters, see Andersen (1973a). 
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2. The Rasch model with. random row effects. 

In many applications of the Rasch model it is reasonable to think 

of the set of subjects as a random sample from a larger popu1a-

tion. It seems permissible, then, to introduce an underlying com-

mon distribution of the subject parameters, thus expressing the 

fact that any information about specific subject parameters is 

regarded as nuisance. This idea is known from latent structure 

analysis, see e.g. Andersen (1980). Thus, let us assume that 

~l' •.. '~n are independent, identically distributed random vari

ables from some (completely unknown) distribution IT on the posi-

tive half line. In this model, the rows of table 1 are!independent, 

identically distributed, but x .. 's in the same row are no longer 
1J 

independent. Let QO,Q1, ... ,Qk denote the point probabilities in 

the distribution of an arbitrary row sum, i.e. 

- ! L. 
A:#A=r 

r 
~ IIjEA Aj 
II(l+~ A.) 
. J 
J 

IT (d 0 = Y r (A l' ••• , Ak )! ~ ( 1 + ~ A j lIT (d 0 
J 

For any response pattern A c l, ..• ,k with r = #= A we have then 

P (A. = A) = q P (A. = A I r. = r) 
1 . r 1 1 

Now, according to the previous section, the conditional proba-

bility P (A. = A I r. = r) is independent of c:-. in the model with 1 . 1 sl 

fixed subject parameters. Mixing with respect to the distribution 

IT of ~. does obviously not affect this conditional probability, 
1 

which means that the formula 



P (A. = A I r. = r) = 
1, 1 

-, 6 -

( IT A.) / Yr (AI' ... ,Ak ) 
jEA J 

holds also in the model with random row effects. Thus, the un...,. 

conditiopal distribution of the ilth row is given by 

P(A. =A) 1 . = q ( IT A.) / Yr (AI' ••• , Ak ) (r = =11= A) 
r jEA J 

and the likelihood function L (r for random) becomes 
r 

Lr (A l' ••• , Ak , 'IT) = 
n 
IT 

i=l 

q" IT A., 
r t jEA. J' 

1 

= 

As we have seen, the probabilities qo' .. ·' qk are complicated 

functions of the unknown parameters Al, ... ,Ak and 'IT, and an 

attempt to maximize the likelihood directly as a function of 

(Al, ..• ,Ak,'lTl would hardly be successful. However, the form of 

the likelihood function shows that our model is a submodel of a 

more attractive model, namely the one obtained by allowing the 

vector (qo' ql'···' qk) to vary freely on the k-dimensional proba

bility simplex. 

This "extended random model" (as we shall call it) is thus given 

by a likelihood function equal to the expression above, but now 

regarded as a function L (e for extended) of the A.'S and the 
e J 

q 's 
r ' Aj > a, qr 2. a, Lk q = 1. o r 

Notice that we have 
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Le ( AI' ... ,Ak ' q 0 f q 1 ' ... , q k ) = 

in agreement with the fact that the extended random model has an 

alternative interpretation as a randomized version of the condi-

tional Rasch model. Suppose, namely, that the whole experiment 

can be simulated as follows: First, the row sums rI' ... ,rn are 

generated as random numbers with distribution P (r i = r) = qr. Then, 

the contents of the rows (with given row sums) are generated ac-

cording to the conditional distribution found in section 1. This 

would obviously lead to the likelihood function L above. e 

While the Rasch model with random row effects is a usual statisti-

cal construction, it is, perhaps, less obvious what the extended 

random model really states about data. Martin-Lof (1970) has dis-

cussed this model and characterized it as the exponential family 

in which the column sums and the empirical distribution of the 

row sums (i.e. sl, ... ,sk and nO' nl, ... ,nkl are sufficient. An 

analogy with_ a simpler and more familiar model may help to settle 

the ideas: 

Consider an ordinary two-way ANOVA-model, i.e. 

2 x .. IV N(~. +A. , a ) , i=l, ... ,n, j =l, ... ,k . 
1J 1. J -

Introduction of a random row effect in this model can be carried 

out in two different ways, namely 

1) by introduction of an unknown normal distribution, 

d-e-scrihimg the V'aria:t:.ion of tht3. rtS};J;iI f{<:lra~,te,J:.:"~ ~i'" an~ 
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2) by introduction an unknown normal distribution, describing 

the variation of the row sums r. = ~x." the remaining 
1 . 1J 

J 
random variation being described by the original conditio-

nal distributions, given the row sums, which (also in this 

casel are independent of the parameters ~ .. 
1 

!t is wellknown that the second model is an extension of the first 

one, namely the extension obtained by allowing for negative cor-

relations in a two-way ANOVA-model with random row effects. 

Mathematically, the second model is the more attractive, but a 

negative correlation may be diffecult to explain in certain ap-

plied situations. 

3. A multiplicative Poisson model. 

Consider the following alternative way of representing data like 

those given by table 1: Each item j = l, ... ,k is regarded as a 

classLfying factor according to which subjects are classified 

into two groups. Cross-classifying the n subjects according to 

these k factors, we obtain a 2k_ contingency table, the cells of 

which we may label by subsets A of l, ... ,k. The count nA Q:f th~ 

A'th cell is simply the number of subjects with response pattern 

A. 

The data reduction (x .. ) + (nA) is obviously a sufficient trans-1J . . 

formation in the extended random model of the previous section. 

Hence, it is possible to consider this as a model for the counts 

nA, without really changing anything. But it is more tempting to 

search among models related to those usually applied to conting-
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ency tables, namely the multiplicative Poisson models and the 

models derived from these by conditioning on suitable marginals. 

However, the multiplicative Poisson models usually applied to 

contingency tabels are not relevant. The simplest model (the 

model of "independence"), stating that the counts nA are inde

pendent, Poisson distributed with 

= 11 IT A. 
jEA J 

is only relevant if the population of subjects can be assumed 

homogeneous. Indeed, independence of the responses of a random 

subject to different items can only be assumed when the subject 

are known to be equally "clever", otherwise we would certainly 

expect a posit±ve correlation. This is also true in the more 

precise sense that (nA) is a sufficient reduction in the Rasch 

model with a common subject parameter £ = £1 = ... = £n' and 

this reduction of data leads to the model obtained by conditioning 

on n = I: nA in the Simple multiplica ti ve Pois son model above. 

Thus, what we need is an extension of this model, taking "ability" 

of subjects into account. An explicit introduction of higher order 

interactions would not be easy to justify from this point of view. 

A more constructive idea is to extend the model by an additional 

factor, classifying subjects according to "ability", as far as 

this property of subjects is reflected by data. The obvious candi-

date for such a factor is the classification into raw score groups. 

This leads to the multiplicative model obtained by letting the 

constant ~ in the independence model above depend on the score 

group, i.e. 
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This is the model which we shall study in the following. 

The model has 2k+l parameters, namely the item parameters 

1 1 a d th " t " H Al,···,Ak n e raw score parame ers ~o' ~l'."'~k. owever, 

the model is overparameterized, since replacement of Aj by Aj/C 

and ~r by ~r er, c > 0, leaves the distribution unchanged. Apart 

from this, no overparametrization occurs, which means that the 

intrinsic dimension of the model is 2k. The overparametrization 

can be avoided by assuming IT Aj = 1 or ~k = 1, but there will be 

no need for such normalizations in the present paper. 

Our main observation is this: Apart from the randomness imposed 

on the total number n of subjects, this multiplicative Poisson 

model is equivalent to the extended random model of section 2. 

In order to prove this, consider the following transformation of 

the likelihood function L (p for Poisson): p . 

IT exp(-~*A IT 
A~:J 1, ... , k} j EA 

A . ) 
J 

IT A. 
jEA J 

= 

(~.u..A IT A.) 
rr j EA J-

(L ~ JJ.A IT 
A 1t jEA 

n! 

:h 
A 

= 
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n 
IT( IT A.) A 
A jEA J 

The formal proOf of this identity is straightforward, when it is 
k 

noticed that L P-II,A IT A. 
A 11" j EA J 

= Lp, Y ,(AI" .. ,A k ). The intui
r'=O r r 

tiv~ content of the formula is this: Apart from combinatorial 

constants (which are collected in the first pair of brackets) , 

the right hand side is simply the way we would write the likeli-

hood function if the experiment was carried out by fi'rst observing 

n (the second pair of brackets), then observing the numbers n of 
r 

subjects in the score groups in their conditional distribution 

given n (the third pair of brackets), and finally observing the 

distribution of response patterns within score groups, given the 

n 's (the last pair of brackets). 
r 

Now, define 

A = L P #A IT A. (= the parameter of -the ·.Poisson distribution of n} 
A jEA J 

and 

1 
qr = A PrYr(Al'· .. ,Ak l (= the probability that a given subject 

falls in scoregroup r when n is given}. 

If we parameterize the model by AI'···' Ak ' A , qo ' ql' ... , qk in

stead of AI' ... ' Ak ' Po ' PI' ... , Pk , the likelihood becomes 
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[
-A An] [ nO e r qo n. 

n n ] ql 1 •.. ~k k = 

Thus, apart from the factor e- A An/n!, which can obviously be 

cancelled by conditioning on n, and a combinatorial factor re-

flecting the fact that only counts of subject with given response 

patterns are described by the contingency table, we have the same 

likelihood as in the extended random model of the previous section\ 

The reparamEdtrizatiorr~ (AI"'· ,Ak , 110 ,11 1 ,.,. ,11k ) -+ (A l ,··· ,Ak , 

qo' ql,···,qk' A) is one-to-one, and the induced domain of varia

tion for the new parameters is given by the obvious conditions 

A j > 0 , qr ~ 0 , A > 0 , qo + ql + ... + qk = 1. Indeed, for AI"'·' Ak 

fixed it is easy to see that any A , qo ' ql' ... , qk can be obtained 

by sui table (unique) choice of 11 0 ' 11 1 , ... , 11 k . This proves the 

desired result. 

Notice. that the likelihood function L decomposes as a product p 

of the function L of the item parameters and a function of c 

the remaining parameters. From this it follows immediately 

that the maximum likelihood estimates of the item parameters 

(and also the second derivatives of the log likelihood with 

respect to the item Parameters) in our multiplicative Poisson 

model coincide with those of the conditional Rasch model. This is 

computationally convenient, because it means that estimation in 

the conditional Rasch model can be carried out by means of stan-

dard algorithms for estimation in multiplicative Poisson models, 

like those available in the Rothamsted programming languages GLIM 

and GENSTAT (described in Nelder andWedderburn (1972)) and the 
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program FREQ described by Haberman (1979). The more slowly conver-

gent (but computationally easy) algorithm of iterative proportio-

nal scaling (see Haberman (1978» is also applicable, and is, in 

fact, equivalent to an iterative algorithm for estimation in the 

conditional Rasch model suggested by Martin-Lof (1970), based on 

the iteration 

A . : 
J 

k 
=s "(I: n 

j I r=O r 

Similar remarks apply to the goodness of fit tests suggested in 

the following sections, since these are stated primarily as like-

lihood ratio tests in multiplicative Poisson models. 

4. Control of the Rasch model, general remarks. 

The subsumed idea behind the Rasch model is that the k items 

represent ways of measuring the same property of subjects. Devia-

tions from the model will typically occur when the response to 

a single item (or a small group of items) depend.s on other subject 

properties than do the responses to the main body of items. 

It should be noticed, however, that acceptance of the Rasch model 

by whatever statistical goodness of fit test can never, in itself, 

prove the validity of an underlying one-dimensional structure of 

the type "ablility" of subjects versus "difficulty" of items. An 

illustrative (imagined) example is this: Suppose that the subjects 

are school-children, and that the items are simple tes.ts of basic 

knowledge, e.g. questions like "when was the s.econd world war", 

"what does a beaver eat", "how does a bear survive the winter", 
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etc. It would us.ually not be of great interest to analyze such 

data by means of a Rasch model, mainly because the structure of 

childrens knowledge is believed to be more interesting than ac

counted for by a single parameter. In particular, we would cer

tainly not expect .a Rasch model to hold for the three items sug

gested above) because the two last questions are, in an obvious 

sense, more closely related to each other than to the first 

question. Th~~ will be explained more carefully in section 5. 

However, for other choices of the questions constituting the item 

set, we might happen to observe data to which a Rasch model would 

fi t., Roughly speaking, this can happen if the qustions are "equally 

unrelated", in the sense that no pair of questions are closer 

related to each other than any other pair. In this case, the 

subject parameters would, perhaps, be interpretable as "degrees 

of general knowledge", while all sorts of topic-related knowledge 

would only contribute to the random variation of the responses. 

But the extension of the item set by a new question, closely 

related to a question already occuring in the item set, would 

tend to destroy the whole thing. 

In psychological testing it is usually not possible to apply an 

item more than once to a subject. The present study of the Rasch 

mode1 originated in a medical case-study where a number of persons 

(subjectsL were exposed to a number of grass-pollen extracts 

(items) by the socalled skin prick test. The interpretation of 

the Rasch model in this case (cfr. similar applications of logit

linear models in bio-assay, see e.g. Finney, 1971) would obviously 

be that the allergenes,behave as if th.ey were different concentra

tions of a single allergene. In this experiment it would 
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have been pos.s.ible (unfortunately it was not done). to include 

different concentrations (or even repetitions of the same con-

centration) of the same allergene as different items. In such 

situations - and only in such situations - where some of the items 

are known to measure the same prO,perty of subjects, does a statis-

tical acceptance of the Rasch model really confirm the hypothesis 

of an underlying one-dimensional logit-additive structure. 

5. Control of the multiplicative Poisson model. 

The immediate suggestion for a goodness of fit test of the multi-

plicative Poisson model of section 3 is the likelihood-ratio test 

of this 2k-dimensional model against the full 2k-dimensional 

model specified by a separate Poisson distribution of each count 

nA. However, approximate X2-distribution (with f = 2k - 2k) of 

the statistic 

-2 log Q 

requires fitted cell means which are not too small. Since the 

average of all the counts nA is n/2k , this approximation is only 

reliable for small values of k and/or very large values of n. 

One way of tackling this problem is to set up a smaller alterna-

tive hypothesis somewhere in between our multiplicative Poisson 

model and the full model. An appropriate choice is a multiplica-

tive Poisson model with a separate set of item parameters for 

each score group, i.e. 

= 1l.J,L A IT A. .ll A 
-tt JEA J,* 
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The number of parameters in this model is (k+l) + (k+l) k = (k+l) 2, 

but the intrinsic dimension of the model is only (k+l) 2 - (k-l) -2k 

2 = k --k + 2, because the parameters 11 for r =1= 0, k and A' for r J,r 
r = 0, k can be set to 1 without changing the model. Thus, the 

-2 log Q -statistic for test of our original multiplicative Poisson 

model against this extended model (which we shall not write down 

explicitely, since the expression would be rather uninformative) 

is approximately X2 -distributed with (k 2-k+2) - (2k) = (k.-l) (k-2) 

degrees of freedom, and this approximation is obviously less 

sensitive to small cell counts. This test (or rather, the cor-

responding conditional test in the Rasch model, see section 6) 

was suggested by Martin-Lof (1970) and Andersen (1973a, 1973bl. 

Another way of avoiding the problem of small expected counts is 

to test the model against the full model, restricting to selected 

smaller subsets of the item set. It :i3s easy to show (and intui-

tively not surprising) that validity of our multiplicative Pois-

son model implies validity of the same model for any subset of 

the item set (with the same item parameters, but with raw score: 

parameters)1 depending in a more complicated way of the para
r 

meters of the big model). k= 3 is the smallest number of items 

for which a test of the model makes sense (for k = 2, the model 

coincides with the full model), so it may be a good idea to ~ta~t 

by looking for deviances from the model restricting to triples of 

items. For k = 3, our multiplicative Poisson model is specified by 

table 2, which for each A c {1,2,3} 
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(2) 

110 

{I} {2} {3} 

1111 Al PI 1..2 11i -1.. 3 

-{1,3} {2,3} {1,2} 

112 Al 1..3 . 112 1..2 1..3 112 Al 1..2 

-{1,2,3} 
. .', -

-p-. ;\ _ A: ;\ . 
.3 12.3 

Table 2 

gives the parameter in the Poisson distribution of nAo The model 

is 6-dimensional, so the likelihood-ratio statistic -2 log Q is 

approximately X2 -distributed with 23 -6 = 2 degrees of freedom. 

Looking closer at table 2, we see that this model implies inde-

pendence in certain 2 x 2 - subtables. Take, for example, th.e 

2 x 2 - table consisting of the two first cells of the two middle 

rows. This i.s given as. table 3, and we notice 

{I} {2} 

111 Al 111 1..2 

{1,3} {2,3} 

112 Al 1..3 112 1..2 1..3 

Tab1e 3 

that the two rows are proporti.onal. Thus, our multiplicative 

Poisson model has -also for k > 3 - the following property: 

For any three items, say j l' j 2 and j 3' consider thesubpopulation 
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of subjects who responded to exactly one of the two items jl and 

j20 Classify these subjects according to two criteria, namely 

1) response to jl or response to j2' and 

2) response or no response to j3' 

This gives a 2 x. 2 - table like table 4, and according to our model 

the counts in this table are Poisson distributed with 

response to jl response to j2 

but not to j2 but .not to jl 

no response 

to j3 

response 

to J 3 

Table 4 

parameters expressible as the product of a row parameter and a 

column parameter. This can be tested by the likelihood ratio 

test, or, in cas.e of small counts, by Fisher's exact test. 

The advantage of th~.s " subtest" of the model is that it has a 

very simple intuitive interpretation, which makes it well suited 

for model control when specific items are under suspicion for 

being incongruous (or "too congruous", cfr. section 4). As an 

illus.tration of this, consider table 5, where the three items 

are taken to be the three questions suggested in the imagined 

example of section 4. Having classified a large 



unable to tell 
how a bear 
spends the 
winter 

knowing how 
a bear spends 
the winter 
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knowing the years 
of world war 2, 
but unable to 
tell what a 
beaver eats 

Table 5 

knowing what a 
beaver eats, but 
unable to tell 
when world war 2 
took place 

number of children in this manner (omitting those who answer none 

or both of the two first questions correctly), we would certainly 

expect to find a significant interaction in this table. This is 

so because the classification into the two columns can be regarded 

as a rough classification of children into a group of zoologi'aally 

informed children and a group of historically informed children 

(excluding a - probably large - remainder group), and acquain-

tance with the habits of bears is almost certainly more common in 

the first group than in the second. 

It is possible to set up more general two-way contingency tables 

for whi.ch the hypothesis of independence is implied by our multi

plicative Poisson model. The most general form'of such a table 

can be described as follows: Let Aa denote a (fixed) subset of 

the item set·:Cl, ... , k}. For some r (a < r < =I/: Aa)' consider the 

subpopulation of subjects who responded to exactly r of the items 

inAO~ Now, cross-clasSify this subpopulation according to two 

criteria, namely one criterion based entirely on the response 

pattern within Aa' and one criterion based on the responses to 

the remaining items (the last classification may typically be 

according to raw score, since the raw score is a function of the 
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responses to items not in AO' when the number of responses to 

items in AO is fixedl. It ;]3S easy to show that the multiplicative 

Poisson model of section 3 implies independence in any such two

way table. Table 4 is a special case of this, with AO = {j 1 I j 2} . 

As a more sophisticated example, consider table 6, where we take 

again AO = {jl' j2}, with the first classification as in table 4, 

but with a second classification 

response to jl response to j2 

but. not to. j2 but not to jl 

raw score !.= 1 

2 

k- 11 

Table 6 

by raw score. The interpretation of a deviation from independence 

in this thble is similar to what was said in connection with 

table 4 and 5, except that the role of item ji is now taken over 

by the whole set of remaining items. Thus, our conclusion of a 

significant interaction in table 6 would be that one of the two 

items jl and j2 is "more similar" to the main body of items than 

the other, typically because the latter is "incongruous". 

6. Control of the Rasch model. 

The statistical tests suggested in section 5 have been explained 

as tests in the multiplicative Poisson model which, apart from 

the randomization of the total number n of subjects, is equivalent 
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to an extension of the Rasch model with random row effects. 

However, as we shall see now, these tests do also make sense as 

conditional procedures for control of Rasch's original model. 

Intuitively, this is not surprising, because the interpretation 

of the row effects as fixed or random is very often a matter of 

taste. Obviously, there exists no test procedure (independent of 

the ordering of subjects) that can decide whether the row effects 

"are" random or fixed. Consequently, any test for goodness of 

fit of the random effects model (and, in particular, any 

goodness of fit test for the multiplicative Prisson model) should 

also be applicable to the fixed effects model. 

The likelihood-ratio test of the 2k-dimensional multiplicative 

Poisson model against the full 2k-dimensional model can be re-

garded as a test of the conditional Rasch model in the following 

sense: Given the raw scores rl, ... ,rn , consider the 2k-contingency 

table (nA ) of gection 3. ObviousJ,y,th,e d~str~bu,tion of ~hhe nA's 

under the conditional Rasch model is equal to the distribution 

obtained under the multiplicative Poisson model by conditioning 

on the marginals nr = I: nA ' r = 0 , 1, •.• ,k. Now, in a short 
A:4\=A=r 

(but convenient) notation, the likelihood-ratio statistic derived 

in section 5 can be written (with P for probabilities under the 

multiplicative Poisson model) as 

max 

2k-dim. model 

max 

full model 

max 

2k-dim. model 

max 

full model 

= 
P ( (nA ) ) 

= 



max 

2k-dim. model· 

max 

full model 

- 22 -

The last identity follows from the fact that the maximum-likeli-

hood estimates of the parameters in the Poisson distributions of 

no' nl,···,nk are the same in the 2k-dimensional model and the 

full model, namely those corresponding to perfect fit. We shall 

not go into further details with this argument, since it is quite 

similar to arguments known from the theory of contingency tables, 

showing, for example, that the likelihood ratio test of indepen-

dence in a two-way table is the same in the Poisson model and 

the multinomial model obtained from the Poisson model by condi-

tioning on the row marginals. Our conclusion in the present 

situation is that the likelihood-ratio statistic for test of the 

2k-dimensional multiplicative Poisson model against the 2k-di-

mensional full model is equal to the likelihood-ratio statistic 

for test of the conditional Rasch model against the corresponding 

"full conditional model". By the "full conditional model" we 

mean, here, the model specified by a (k)-dimensional probability 
r 

vector (PA1Ac{1, ••• ,k}, =If A = r) for each r = 0,1, ••• ,k, giving 

the tarbitraryl distribution of the response configuration for a 

member of score group r. 

Similarly, the likelihood-ratio test of our multiplicative Pois-

son model against the model specified by a separate set of item 

parameters for each score group, is equivalent to a likelihood-

ratio test in the conditional Rasch model, namely the test 

against the product of k - 1 conditional Rasch models (with sepa-

rate sets of item parameters), one for each non-trivial score 
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group. In section 5, this test was ascribed to Martin-Lof (1970) 

and Andersen (l973a, 1973b), but it would, perhaps, be more cor-

rect to say that Martin-Lof introduced the test in the model 

referred to here as the extended random model COJ::1 even~'in the 

multiplicative Poisson model, since Martin-Lof also imposes a :: I, • 

Poisson distribution on n in order to simplify the computations) . 

Andersen derived the test in the Rasch model (and its generaliza-

tion to several response categories, cfr. section 7) as a special 

case of a conditional goodness of fit test. Control plots, based 

on a similar idea of comparison of estimates within score groups, 

were suggested by Rasch (1960). 

The test of independence in a 2 x 2-table (tabLe 4) is also 

equivalent to a conditional test in the Rasch model. Indeed, let 

Xl ,x2 and x3 denote the responses of an arbitrary subject to 

items 1 , 2 and 3. According to the Rasch model, we have (by 

straightforward computations) 

= 

= 

Hence, if we classify the subpopulation of subjects with xl + x 2 = 

1 and x3 = 0 (i.e. the subpopulation of subjects counted in the 

upper row of table 4) according to their reaction on j3' then the 

(conditional) classification probabilities are independent of the 

subject parameters, and they coincide with the (conditional) clas-

sification probabilities for the same classification applied to 

the subpopulation given by xl + x 2 = 1 and x3 = 1 (i.e. the subpo

pulation of subjects occurring in the _.lower row of table 4). 
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It follows, under the conditional distribution in the Rasch model, 

given the sizes of the two subpopulations, that the two rows of 

table 4 can be regarded as pairs of counts of success and failure 

in two binomial distributions with the same probability parameter. 

It is well known that the likelihood-ratio test for identity of 

these two parameters coincides with the usual likelihood ratio 

test of independence in the 2 x 2-table. 

Similar interpretations can be given to the tests of independence 

in the more complicated two-way contingency tables mentioned at 

the end of section 5. 

7. Extension to several response categories. 

The present study is restricted to the case of binary responses. 

It should be mentioned, however, that (apart from overwhelming 

notational difficulties) all results of this paper can be gene-

ralized and/or modified to cover the case of several response 

categories. To indicate the idea, we shall give a summary of what 

things are like in the case of three response categories. 

As in section 1, we have an n x 'k - table of reponses x, " 
1J 

but now 

the x, ,IS can take three possible values, say 1,2 and 3. Rasch's 
1J 

model for this case is 

p (x, , = x) 
1J = 

A, (x) ~, (x) 
Jl 1 

"\ (1) ~ (1) "\ (2) ~J~n'+ "\ (31~ TIT . 
/I. j c, i + /I. j c, i ,/I. j c, i 

Thus, each subject and each item is described by three parameters 

(in the binary case we had only one for each, but this was merely 
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to avoid an unnecessary overparametrization. Similarly, we might 

have taken A. (1) = ~. (1) = 1 in the present case, but we prefer 
J 1 

to emphasize the symmetry between responses here). 

By the for subject i mean the triple (1) (2) / raw score we (r. r. , 
1 1 

r ~ 3) ) with r~l) + r~2) + r~3) = k, where 
(x) 

denotes the num-r. 
1 1 1 1 1 

ber of items to which subject i gave the response x. Just as in 

the binary case, the subject parameters can be eliminated by 

conditioning on the raw scores, and the conditional maximum-like

lihood estimates of the item parameters A ~x) have desirable asymp
J 

totic properties, see Andersen (1973a). 

The analogue of the 2k -contingency table of section 3 is formed 

by cross-classification of the subjects according to their re

sponses to the k items. This gives a 3k-contingency table. As our 

model for this, we may take a multiplicative Poisson model, with 

one factor for each of the k items and with the raw score as an 

k 
additional factor. Thus, for (al, ... ,ak ) E {1,2,3} , the count 

n ( ) of the corresponding( ciel.l::is assumed to be Poisson 
aI' ... , a k 

distributed with parameter 

E n (a ) 
1, ... , a k , 

= 1. 1{ a l ) ••• 1 k( a k ) (1) (2) (3) 
A A V(r,r',r) 

where (r(l) ,r(2) ,r(3» denotes the raw score for response pat-

tern (al, ... ,ak ). This model is related to the conditional Rasch 

model with three response categories in exactly the same way as 

in the case of binary responses. 



- 26 -

Acknowledgement. 

I am grateful to Steffen L. Lauritzen for comments on the paper. 



- 27 -

References. 

Andersen, E. B. (1973a). Conditional inference and models for 

measuring, Mentalhygiejnisk Forlag, Copenhagen. 

Andersen, E. B. (1973b). A goodness of fit test for the Rasch 

model, Psychometrika ~, 123-140. 

Andersen, E. B.(1980). Discrete statistical models with social 

science applications, North-Holland. 

Cox, D. R. (1970). The analysis of binary data, Methuen & Co. 

Finney, D. J. (1971). Probit analysis, Cambridge University Press. 

Haberman, S. J. (1978). Analysis of qualitative data, vol. I, 

Academic Press. 

Haberman, S. J. (1979). Analysis of qualitative data, vol. 11, 

Academic Press. 

Martin-Lof, P. (1970). Statistiska modeller, lecture notes by 

Rolf Sundberg, Institutet fo'r forsakringsmatematik och mate

matisk statistik vid Stockholm universitet (in Swedish) . 

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear 

models, J.R.S.S. (A) 135,370-384. 

Rasch, G. (1960). Probabilistic models for some intelligence and 

attainment tests, Danmarks P~dagogiske Institut, Copenhagen. 

Rasch, G. (1961). On general laws and the meaning of measurement 

in psychology, Proc. fourth Berkely symp. on math. state 

and prob., vol. IV, 321-333. 



PREPRINTS 1979 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE 

INSTITU'l'E OF MATHEMATICAL STATISTICS f UNIVERSITETSP,n.RKEN 5 I 

2100 COPENHAGEN 0 f DENr-1ARK. 

No. 1 Edwards, David: Large Sample Tests for Stationarity and 
Reversibility in Finite Markov Chains. 

No. 2 Andersson, Steen A. Distribution of Maximal Invariants 
Using Proper Action and Quotient Measures. 

No. 3 Johansen, S~ren: A Note on the Welch-·James Approximation 
to the Distribution of the Residual Sum of Squares 
in a Weighted Linear Regression. 

No. 4 

No. 5 

No. 6 

No. 7 

Bj5rnsson, Ott6: Four Simple Characterizations of Standard 
Borel Spaces. 

Job.ansen, .SiM:en: Some Cornrnents on Robustness 

HaId, Anders: T.N. Thiele's Contributions to Sta tics. 

Jacobsen, Martin: Markov Chains: Birth and Death Times 
with Conditional Independence. 



PREPRIN'l'S 1980 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE 

INSTITUTE OF lYIA'l'HEJ!.1ATICl',L STA.TISTICS; UNIVERSI'I'E'TSPARKEN 5, 

2100 COPENHAGEN {Zl, DEm/ll'l.RK. 

NO. 1 01kin, Ingram and Vd2th, Michael: Maximum Likelihood 
Estimation in a Two-way Analysis of Variance with 
Correlated Errors in One Classification. 

No. 2 Skovgaard, rb M.: Transformation of an Edgeworth Expansion 
by a Sequence of Smooth Functions. 

No. 3 Asmussen y S~ren: Equilibrium Propert.ies of the M/G/l Queue. 

No. 4 Johansen, S~ren and Keiding, Susanne: A Family of Models 
for the Elimination of Substrate in the Liver. 

No. 5 Skovgaard, Ib M.: Edgeworth Expansions of the Distribu
tions of Maximum Likelihood Estimators. 

No. 6 Tjur j Tue: A Connection Between Rasch's Item Analysis 
Hode1 and a Mul t.i.plica ti ve Poisson Model. 


