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ABSTRACT. In this paper we use the method described in Skovgaard 

(1980) to derive Edgeworth expansions of the distributions of 

maximum likelihood estimators in the general (non i.i.d.) case. 

Comparatively simple sufficient conditions for the validity of 

the expansion are derived and further simplification obtained in 

the non-linear normal regression models. A precise description 

of how to compute the expansion is given, and the first four 

terms of the corresponding stochastic expansion are given in an 

explicite form. In case of a smooth hypothesis of an exponential 

family, also an explicite version of the approximate cumulants, 

needed to compute the first four terms of the Edgeworth expansion, 

is given. It is shown that corresponding results for functions of 

the estimator are easily derived from the original expansion. 

Key words: approximate cumulants, Edgeworth expansion, exponen

tial family models, maximum likelihood estimator, non-linear 

normal regression. 
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1. Introduction. 

The purpose of the present paper is to derive simple sufficient 

conditions for the validity of an Edgeworth expansion of the maxi

mum likelihood estimator in the non - i.i.d. case, and to compute 

the quantities needed for this expansion. The expansion is ob

tained by formally calculating moments of a stochastic expansion 

which is a Taylor series expansion of the maximum likelihood 

estimator. 

The proof of the main theorem is based on the results of Skovgaard 

(1980), the method being similar to the one used in Bhattacharya 

& Ghosh (1978). In the i.i.d. case the moments used in the 

expansions may be identified with those given in a number of 

papers, e.g. Shenton & Bowman (1977). 

In Section 2 we present the notation and the regularity condi

tions used in this paper. Section 3 contains the main results as 

Theorem 3.5 and Corollary 3.10 proving the validity of Edgeworth 

expansions of the maximum likelihood estimator and functions of 

this. Also a method of obtaining theStoch.astic expansion of the 

MLE is described. In Section 4 we relate these results to smooth 

hypothesis in exponential families, since in this (very common) 

case, the cumulants can be given in a more explicit form. 

In Section 5 we condider an important class of models, namely 

the non-linear regression model with normally distributed errors. 

Here the conditions of Theorem 3.5 may be replaced by one simple 

condition, and the results also simplifies considerably. 
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In Section 6 we state in an explicit form the first four terms 

of the stochastic expansion in the general case, some of the 

approximate cumulants needed for the Edgeworth expansion in the 

case of an exponential family model and in the case of the non

linear normal regression model. 
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2. Notation and basicassumptions. 

Let V , W be :E:ini te dimensional Euclidean vector spaces. If v 1 ' v 2 

belongs to V, then < v 1 ' v 2 > denotes their inner product and 

= < vI ,vI"> ~ (2.1) 

( 2 .2) 

B(V) is the Borel system on V and Bk that on illk. Hom(V,W), the 

class of linear mappings of V into W, and B (V,W) , the class of 
p 

p-linear, symmetric mappings of vP into W, are in the natural 

way given the structure of Euclidean vector spaces, e.g. the 

norm of A E Bp(V,W) is given by 

11 A 11 = sup{ 11 A (v'p) 11 I 11 v 11 < l} ( 2.3) 

We shall use the usual isomorphisms between vector spaces, e.g. 

B (V,W) ~ B 1 (V, Hom(V,W)) without distinguishing between p p-

these. If A E Hom(V,W), then A* denotes its adjoint, i.e. 

< A(v), w > = < v, A*(w) > , v E V, w E W. (2 .4) 

Cp(V,W) denotes the class of p times continuously differentiable 

functions of V into W. The pIth differential of f E CP(V,W) at 

Vo is the function in Bp(V,W) given by 

d P 
dhP f (v O-fl1V) 1 

h=O 

, v, Vo E V ,h E ill (2 .5) 

Cumulants and moments of a distribution on V will, if they exist, 

be considered as multilinear, symmetric forms on V, e.g. the pIth 

moment, V , of a random vector X in V is given by 
p 
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(2.6) 

where E{ ... } denotes expectation. 

The normal density on V with mean zero and variance equal to the 

inner product on V will be denoted ~ (V is understood), and 

rh will denote the normal density with mean ]l und variance L. 
'I']l,L 

The Cramer-Edgeworth polynomials (P ) are as usual defined by 
r 

the formal identity 

00 

L 
r=O 

r 
u P (v:{X'}) 

r J 

00 

= exp{ L u r Xr+2(v,r+2)/(r+2)~} 
r=l 

( 2. 7) 

where {Xj}' j E IN are .thedumularrts of a idistribution. Also, if 

L E B2 (V, JR) is regular P (-~ " :{ X .}) is the density of the 
r ]l,£.. J 

finite signed measure with characteristic function 

P (iv : {X .. }) exp{ - ~ L (v ,v) + i V]l} obtained_by formally substi tu-
r J 

ting the differential operator for (-iv) in P (iv: {X.}) and 
r J 

using this on ~ ". In particular P (-~ 0 ,,: {X . }) (v) is a poly-
]l,£.. r ,£.. J 

nomial in v E V multiplied by ~O (v). ,L 

The order symbols 0 and 0 are unless otherwise stated used in 

the sense "as n ~ 00" 

Let (E,E) be a measurable space, and (Pe)' e E 8 S V a family of 

probability measures on (E,E) dominated by a measure ]l. V is a 

finite dimensional Euclidean vector space and 8 is open in V. 

Denine 

(2 .8) 

as some version of the Radon-Nikodym derivative of Pe with 
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respect to ~. Throughout the paper the following regularity 

conditions will be assumed to hold. 

Assumptions 2.1. A version f(.;.) of the Radon-Nikodym deriva-

tives (2.1) exists, such that for each fixed 8 0 E 8 the following 

conditiotis hold: Define 

( 2 .9) 

Then for some integer p ~ 2, 

I. f(x;8) is p times continuously differentiable at 80 with 

respect to 8 for all x E EO 

11. (2.10) 

Ill. (2.11) 

IV. is regular (2.12) 

Here and in the sequel X is a random variable having distribution 

P8 ,E{·} and V{·} denote expectation and variance in this 
o 

distribution. 

Remark 2.2. Condition (2.11) is the identity obtained by dif-

derentiating the integral of the density with respect to 8. The 

assumption that this may be done inside the integral holds, if 

11 D f. 11 and 11 D2 f 11 are bounded on E x U (8 0 ) by functions 

independent of 8 and with finite expectations (~.r.t. P8 ), where 
o 

U(8 0 ) is a neighbourhood of 80 . 

Neither (2.11):nor (2.12) are necessary assumptions, but they are 
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assumed to avoid technical problems. Notice, that (2.10) makes 

sence because Dj log f (X; 80 ) is defined with probability one. 

Define 

Ej = E{D j log f (X; 80 ) }E Bj (V, JR) 

S. = Dj log f (X; aO) - E. E B. (V, JR ) 
J J J 

L J. = V{S.} E B (B. (V, JR ) , IRJ 
J 2 J 

By (2.11) we have 

3. Main results. 

(2.13) 

(2.14 ) 

(2.15) 

(2.16) 

In this section we consider a sequence of experiments indexed by 

N E IN, each setup of the form introduced in Section 2. All the 

quantities used except the parameter thus depend on n, but for 

notational simplicity we shall not always wrete the index n. The 

index n E IN may be replaced by any i E I, where I is a set 

directed to the right, indexing a system of statistical"fields 

with the same parameter space 8. The purpose of this section 

is to derive an Edgeworth expansion of the distribution of the 

maximum likelihood estimator (MLE) of 8 E 8, based on the as-

sumption, that the first p derivatives of the logarithm of the 

likelihood function at 80 may be approximated in distribution 

by an Edgeworth series when 80 is the true value of the parameter. 

The notation used is coordinate-free, but the main results of 

the paper are summarized in terms of coordinates in Section 6. 

, 
r 
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Assumptions 3.1. Integers s ~ 2 and m E IN exist, such that 

(Sl""'Sp) has absolute moment of order Sf and a sequence of 

linear mappings An: B 1 (V, JR ) x ... x Bp (V, JR) ~ lRm exists, satis

fying 

I. (3.1 ) 

II. (3 .2) 

uniformly in the system of Borel-subsets of the linear 

space spanned by (Sl" .. 'Sp)' where 

(
S-2 ). . 

E; (t) = L P (-cpdx }) (t) (3.3) 
n r=O r v 

< v < 
s-2 . 

s}) , If s > 3 
(3 .4) 

1 ifs = 2 

Assumptions. 3.2. An Cl, > 0 and a sequence (An)' n E IN, of 

positive real numbers exist, such that 

I. (3 .5) 

11 (-~),j+l II/j 
, O(A j-l) 2 < j < 1 E j + 1 0, Ll . = f P -n - -

-k f 2j k O(A j-l) 11 Lj o(Ll 2} 11 2/(j-l)! = , 2 < j .2 p n -

IV. ~A sequence (D), n E IN ;of sets exists f Isuchthat 
n 
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= 0 (S ) 
n 

Rn (a) = {z E V I 11 z 11 < Q. ,( a) } - -n 

p (a) 
n 

-1 1: = (( 2 + a) log S ) 2 
n 

(3 .8) 

(3.9) 

Remark 3.3. Assumption 3.1 assure that an Edgeworth expansion 

of the distribution of (Sl""'Sp) is available, and Assumptions 

3.2 that the derivatives of the MLE of e w.r.t. (Sl""'Sp) are 

sufficiently well behaved. 

Remark 3.4. Notice, that since Ll is regular, we have 

11 ( -1:2) ,J'+l 11 { 1 ( -1:2 ( ) 'J'+l) Ej+10 Ll . = sup E j +l Ll u u E V} 

= sup{ Ej + l (v' j+l) 1 / Ll (v,v) (j+l) /2 1 v E V} 

such that (3.6) and (3.7) are not as hard to prove as it may 

seem; see the exponential regression example in Section 5. 

As in Skovgaard (1980) we define the formal cumulants (and formal 

moments) of polynomials of (Sl""'Sp) as the cumulants (and 

moments) computed in the usual way in terms of the cumulants of 

(Sl""'Sp)' except that the cumulants of (Sl""'Sp)of order 

higher than s are defined as zero. 

~heorem 3.5. Suppose Assumptions 2.1, 3.1 and 3.2 hold. Then a 

sequence e of estimators of e exists, such that with probability 
n 
A 

1 - 0 (Sn)' en is a unique maximum of the likelihood function in 
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-k 
the interior of 80 + L12 Hn(a), and the following expansion holds 

where 

= J B-K nn (t) d t + 0 (Sn) uniformly in B E B (V) 
1 

B - K 1 = {t I t + K 1 E B} and 

n (t) = n 

q-2 
L P (-<PO :{K,)) (t) 

r=O r ,K 2 

q = max {p,s} 

and {KV} are approximate cumulants of the polynomial 

(3.10) 

(3.11) 

(3.12) 

(3.13 ) 

where Aj is a homogeneous polynomial of degree j in (Yl'.' .,Yj ) 

computed as described in Remark 5.6, and {KV }' 1 ~ v < q are 

computed as described in Remark 5.7. Al through A4 are given in 

Section 6. 

Remark 5.6. Computation of the A's. 

Consider the Taylor - series expansion of the likelihood equation 

(3.14 ) 

A 

Considering (S2"" ,Sp) as fixed the derivatives of (8 n - 80 ) 

with respect to Sl at Sl = 0 may be expressed in terms of the 
A 

derivatives of Sl with respect to (8 n - 8 0 ) at zero. These 

(former) derivatives are easily derived recursively and it is 

-1 
seen, that they are polynomials in ((1v ~ y 2) , Y 3' ... , Yp) . 

Expanding 
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= (3.15 ) 

A 

we obtain an expansion of (en - eo) as a polynomial in the y's 

around (Yl ,Y2 ) = (0,0). In particular the Taylor series expansion 

of (en-eO) with respect to (yl, ... ,Yp ) around (O, ... ,O)isob

tained as (3.13) by equating A. (Yl ' ... , Y ) to the sum of the 
J p 

terms of power j in (Yl , ... ,Y ). It is easy to see that A. only 
p J 

depends on (Yl , ... ,Y j ). 

Remark 3.7. Computation of the K'S. 

By the results of Leonov & Shiryaev (1959) and Skovgaard (1980) 

it follows, that the approximate cumulants (K ), 1 < v < q may v -
be calculated as follows. Recall, that q = max {p,s}. 

To calculate K , 1 < v < q, raise (3.13) to the power v and v - -

consider each term, omitting terms of power greater than v + p - 2 

in the Y' s, and also of power v + p - 2 if this is odd. For each 

of the remaining terms compute its mean in terms of the cumulants 

of the Y's, and omit terms for which 

I. The "partition" corresponding to the cumulants is decompos-' 

able; see Leonov & Shiryaev (1959) or for a short description 

Brillinger (1975). 

II. The number of cumulants entering the term is strictly less 

than x - (v+q-2)/2, where x is the degree (in Y) of the term. 

KV is then obtained as the sum of the remaining terms. 

Using this method, KV may be written down almost immediately from 

(3.13), although the final expression may be rather involved. 
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Remark 3.8. l'Jotice, that 8 n need not be the maximum likelihood 
A 

estimator (MLE) of 8 ; it is only proved that 8 is a maximum in n 
A 

a neighbourhood of 80 , To prove that 8 is the MLE other (non-n 

local) techniques must be used, e.g. as in Wald (1949) or Ivanov 

(1976). If the likelihood equation has a unique solution, then 
A 

8 must obviously coincide with the MLE. 
n 

Remark,3.9. Then inversion of a power series ff which is locally 

one-to-one may be obtained recursively by differentiation of f- l , 

expressing the derivatives in terms of the derivatives of f. An 

explicit formula in the one-dimensional case is given in Skovgaard 

(1980). In the multivariate case Bolotov & Yuzhakov (1978) gives 

an explicit formula in terms of coordinates even for implicit 

functions, but no coordinate - free version seems to be known. 

Corollary 3.10. Let the assumptions of Theorem 3.5 be fulfilled, 

and let g E CP (8,W) be a fixed function satisfying 

Dg (8 0 ) is non-singll1ar (3.16) 

If also 112:-1 11 = 0(1) then the distribution of g(S) may be 
1 n 

expanded in an Edgeworth series of the form (3.10) replacing 

(3.13) by the stochastic expansion 

(3.17) 

where 

A. (Yl , ••• , Y . ) 
J J 

!fl· Ffll ,fl· j 
2: D l g(80 )[Yl , ... ,AJ.(yl, ... ,y.) J]/ IT fli! 

flET(j} J i=l 
(3.18 ) = 
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where 

Proof of Theorem 3.5. The likelihood equation 

D log f(Xi81 = 0 (3~19) 

may be expanded around 8 = 80 yielding 

SI + ~ (E . + S .) (8 - 8 0) , j -1 / (j -I)! + RI (8 - 8 0 ) = 0 ( 3 . 20) 
j=2 J J 

where RI (9-8 0 ) is stochastic. Write 

where B: Bl (V, JR.) x ... x Bp (V, JR.) -+ V 2 is a linear mapping into a 

Euclidean space V2 , and (Ul 'U2 ) is a normalization of (Sl' ... 'Sp)' 

i.e. dim V + dim V2 equals the dimension of the support of 

(Sl' ... 'Sp) and the variance of (Ul 'U2 ) is the identity on V x V2 · 

Define 

(3.21) 

-k -k 
where R2 (Z) = ~12 Rl(~12(z» and (SI' ... ,Sp) (u l ,u2 ) is the solu-

tions of (Ol'U2 ) (Sl' ... 'Sp) = (Ul ,U2 ) belonging to the affine 

support of (Sl' ... 'Sp). Thus (3.20) may be written 

g(Z,Ul ,U2 ) = 0 

Using Assu~ptions 3.2 (and 2.1) we obtain 
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k < P (3.23) 

Here we have used the fact that, since the variance of (Ul ,U2 ) is 

-l.: k 
the identity, then the differential, Dk say, of Sk (U:li~U2,)o (L~ 2) , 

with respect to (ul ,u2 ) satisfies 

11 Dk 112 = 

= 11 r 0 0:: - ~) , 2k 11 
k 1 

Using (3.23) and (3.8) in (3.21) we obtain 

(3.24) 

because m 
p (a)A = 0(1) for any a > 0, m > O. Thus for any fixed 
n n 

(11(u l ,u2) 11:::" Pn (a)) and n sufficiently large there is 

with probability 1 - o(i3n ) at most one solution Z E Hn (all to the 

likelihood equation, a l < a . 

Let cS :;> 0 be fixed. Then if 11 (u l ,u2 ) 11 2 Pn (all, a l < a , 

11 Z - u l 11 < cS and n is sufficiently large we have Z E Hn (a) . 

To prove the existence of a solution Z E Hn(a) of (3.22) we apply 

Brauer's fixpoint theorem to the function 

g (y) = g (u 1 +y , u 1 ' u 2) + y , 11 y 11 < E: , 0 < E: < cS. 

By the remark above and (3.25) we have 
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proving, that g has a fixpoint in {II y 11 < s}, implying the 

existence of a solution z (= y + u l ) E Hn (a) to the likelihood equa

tion when X E D and n is sufficiently large. 
n 

By the uniqueness of power series expansions, (3.l3) must be the 

"'- -k 
p-l order Taylor series expansion of 8 = ~ 2 Z in terms of n 1 _.n 

(Sl, ... ,Sp_l) around zero, where Zn is the solution of (3.22), 
"'-

and hence 8 a solution of the likelihood equation (3.19). Thus, 
n 

it only remains to be proved, that the: derivatives of Z with 
n 

respect to (Ul,U21 satisfies Assumptions 3.1 of Skovgaard (1980), 

since the expansion (4.5) of Skovgaard (1980) then implies that 
A' 

8 locally maximizes the likelihood function. 
n 

Write u = (ul ,u21 and let z = ~(u) be the solution (in Hn(a» of 

the equation (3.22). Also, if w(u) = (~(u) ,u) 

(3.26 ): 

and using a general formula (see Federer (1969), 3.1.11) 

k k 
D (gow) (uO) (u' ) 

HI . , V 1 k k ,v k k ~V . 
T I: k!D 19(zO'UO) [Dw(u ) (u) , .. . ,D w(u )((u·,·· )" J/ llV.~:(inl 

VET (k) 0 0, i=l 1 

(3.27) 

Where T(kl is given in Corollary 3.10. From (3.27) and (3.23) we 

obtain by induction 
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D \jJ(0) (u) = u l 

11 Dk 1/J (0) 11 < 2: k! 
!jJ. 

11 D 1 g(O,O) 11 
jJET'(k) 

= 
2:jJ.-l k . 

2: O(A 1 ) IT O(A 1 - l ) 
pET' (k) n i=l n 

2 < k < P - 1 (3.28 ) 

where T' (k) = T(k)'J (0, ... ,O,l)}. 

Using (3.8) and (3.21) it is seen that, if 11 ull, 11 z 11 < p (a), 
n 

then 11 Dk g (z,u) 11 = O(Ak - l ), k < p ~ 1 and 11 DP g (z,u) 11 = o(S ) 
n - n 

if X E D , and as above it follows, that 
n 

11 DP1/J(u) 11 = o(S ) uniformly in {lIull < p (a)} 
n - n 

(3.29) 

By (3.28) and (3.29), Assumptions 3.1 in Skovgaard (1980), and 

hence our Theorem 3.5,is proved. 0 

Proof of Corollary 3.10. 

The formula (3.18) is easily obtained using the formula for deri-

vatives of composite functions, see Federer (1969), 3.1.11. By 

this formula and the assumption 11 2:~1 11 = 0 (1), which says that 

the eigenvalues of the Fisher-information tends uniformly to 

infinity, it follows, that the assumptions of Theorem 3.2 in 

Skovgaard (1980) are fulfilled, proving the corollary. 0 
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4. Exponential family models 

In this section we consider (for each n E ill) a setup of the form 

given below. Assume that E is a finite dimensional Euclidean 

space, E the Borel a-field on E and ~ a measure on (E, E). Define 

1jJ(n) = log J exp{<n,x>}d ~(x), n E H ~ E (4.1 ) 

where H is the subset of E for which the integral is positive and 

finite. Define the family (P ), n E H of probability measures on 
n 

(E, E) by 

(dP n/dl1) (x) = f (x;n) = exp{<n,x>-1jJ (n)} 1(4.2) 

The model we shall consider is given by a differentiabel parame-

trization 

13 E cP ( 8, H ) , n = S ( e ) , e E 8 c V (4 .3) 

where V is a finite dimensional Euclidean space independent of 

n, and usually of lower dimension than E. The cumulants of 

(4 .4) 

Also 

(4 .5) 

and accordingly 

- E = 
k 

,V l k ,vk k v. 
L k! X LV . 0 [ (Jj SO) , ••• , (D SO) ] / IT v. ~ (i!) 1 

vET' (k) 1 i=l 1 
(4 .6) 

(4 .7) 
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where Ek , Sk amd Lk are defined in (2.13), (2.14) and (2.15), 

Dk 13 0 = Dk J3 (8 0) and T' (k) = T (k)' ,{ (0 , ... , 0 , 1) } . 

(4.8) 

Thus the approximate cumulants in Theorem 3.5 may be expressed 

k 
explicitely in terms of (Xk)' (D 13 0 ), k ~ 1. Some of these cumu-

lants are given in Section 6 in a coordinate version. The expres-

sions may be somewhat simplified using a coordinate-free notation, 

but for computations this is not useful. Recall, that for fixed 

p in (3.13), only the first p cumulants are needed. 

Remark 4.1. There are a number of situations, where the expres-

sion (3.13) and its cumulants are considerably simpler. These 

include 

(a) A canonical model, i.e. 13 is affine. Then 

(4 • 9) 

(b) An affine mean value structure, i.e. (D~)of3 is affine 

Then 

(4.10) 

;whereEk :isunderstood to be ,'symmetric. 

(c) The normal case (with fixed variance), where 

Xk = 0 , k 2. 3 

The normal regression models will be discussed further in 

the next section. 
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If, in particular, both (a) and (b) are fulfilled, then the MLE 

is an affine function of the minimal sufficient statistic SI' and 

the transformation of an Edgeworth expansion of SI to an Edgeworth 

expansion of the MLE is trivially valid. 

5. Normal non-linear regression. 

Consider a sequence x l ,X2 , ... of independent random vectors, Xi 

normally distributed on JR m with mean ]1. (8) E JR m and variance 
1 

2 2 m 
L = 0 LO' 0 > 0, LO E B2 (JR ,JR). LO is supposed to be known, 

8 E V unknown. Whether 0 2 is known or unknown is immaterial, when 

considering maximum likelihood estimation of 8. We shall consider 

0 2 as known for simplicity. With notation as in the previous 

sections, we have 

log f(x;8) 
n 

= const - !:z L L- l (x.-]1. (8), x. -]1. (8)) 
i=l 1 1 1 1 

from which we derive 

- E 
k 

1 n k-l k -1 j j 
=-2 L L (]')L o(D]1.(8 0 ),D]1.(8 0)),k>2 

i=l j=l 1 1 

n 
L- l (X. - Pi (8 0 ) ,J)k]1'" (8 0 )) Sk = L k > 1 

i=l 1 I" 1 ~ 

n -1 k k 
Lk = L L o(D]1i(8 0 ), D ]1. (8 0 ) ) , k > 1 

1 -
i=l 

(5.1) 

(5 .2) 

(5.:3 ) 

(5.4) 

Since this class of models is widely used, we shall in somewhat 

more details investigate under which conditions Assumptions 3.2 

are fulfilled. Notice, that Assumptions 3.1 are fulfilled wtth 
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Sn = 0, because (Sl' ... 'Sp) are exactly normally distributed. Of 

Assumptions 2.1 only IV needs to be checked. 

Lemma 5.1. Let (Ekla.nd (Sk) be given by (5.2) and (5.3). Then 

(3.5) and (3.7) implies (3.6). 

Proof. We shall prove, that 

I Ek +l (v,k+l) 1= (2:1 (v,v» (k+l)/2 OCX~-l), 2 < k < p--l, v E V (5.5) 

By (5.2) and Cauchy-Schwarz inequality we have 

= (2:1 (v ,v) ) (k+l) /2 0 C\~-l) 0 

Notice, that since (SI'.' .,Sp) is exactly normally distributed, 

the sequence (A ) may be chosen as any sequence, which is 0(1). 
n 

Next, we shall prove that also (3.8) may be deduced under simple 

conditions. 

Lemma ;5.2. Suppose, that the functions (M.) are analytic in a 
l 

neighbourhood of 8 0 , and that (3.7) holds uniformly in j > 2, 

then Assumptions 3.2 hold with Sn = An p - 2 
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Proof. For sufficiently large n, log f(x;8) will coincide with 

its Taylor series expansion around 8 = 80 , when 118 - 80 11 is less 

than the radius of convergence. Hence 

=DP log f(x;eo)o(L~~) ,P+ ~Dj 10gf(x;8 0 ) 
j=p+l 

on the set 

(5.6) 

MC ={8 EV IIII}(8-e o'Jll j - p IIDj.10gf(X;80)O(L-~),jHj-(j-P)~ <c j - p } 

(5.7) 

for anyc E ]0,1[. Rewriting (5.6) we obtain 

. (5.8) 

where 

By a slight modification of the proof of Lemma 5.1 it follows, 

that (3.6) holds uniformly in j > 2, hence the first sum in (5.7) 

is 0 (;\p-l) if z E H (a). 
n n 

The next step is to obtain bounds on (S.), j > p holding with 
J -

probability 1 -r ,0 (13.) = 1 - 0 (;\p-2). Let d be the dimension of V. 
n n 

j mn Then D ~(80) E Bj (V,JR ), l::,(8) = (11 1 (8), ... ,11n (8)), spans a 

dj-dimensional subspace, Lj say, of ]Rmn. Let Pj denote the 
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projection on Lj w.r.t. the metric ~ on ~mn induced by the metric 

E- l on each component mr· Then, using (5.3), 

(5 .8) 

and 

(5.9) 

The first factor is the ~-norm of a dj-dimensional normally 

distributed random vector with mean zero and variance ~-l restric-

ted to L .. Thus by Lemma 4.1 in Skovgaard (1980) we have for any 
J 

K. > 0 
J 

2 k 
P{~((p.(X-]1(eO)))' )2> K.} 

J '" '" J 

Chosing Kj = K IXn-(j-P) , K > 0, we obtain 

00 2 p.u {~ ( (p j (~-~ ( eO) ) )' ) > K..} 
J=p+l J 

~ exp{- ~ K2 II p-j }(K~j-2/r (a j /2) + I~dj) 
j=p+l n J 

< 

/1 -1. which decreases towards zero at exponential rate in VA 
n 

Combining this with (5.9), we have 

(5.10) 

(5 : 11) 
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11 SJ' 0 (L-l~) ,j 11 = K IX p-j 0 p)-l) 
n . n 

with probability 

(5.8) is O(AP-~) 
n 

P-2 
1-00. ) 

n 
implying that the second sum in 

= o(Sn) with probability 1-0(13 ), S = AP- 2 , on n n n 
-k 

the set eO + L12 Hn (a) • 0 

Remark 5.3. The conditions of Lemma 5.2 may be stated in the 

following form. The functions (~.) are analytic, and (by Remark 
1 

3.4) 

= O(A j - l ) uniformly in v E V and j > 2 
n 

(5.12) 

Remark 5.4. Another interesting case, closely connected with the 

one discussed above, occurs if, in the non-linear regression 

models discribed above, we fix n, and consider the limiting beha-

. 2 
Vlour as 0 + O. It is quit trivial to check, that Assumptions 

3.2 are fulfilled with A = 0, and hence that the conclusion of 

Theorem 3.5 holds. This proves that the asymptotic results may be 

applied if the variance is small, even if the number of observa-

tions is small. 

An example: exponential regression. 

Let Xl'.'.'Xn be independent, Xi E m normally distributed with 

mean 

(5.13) 

and variance 0 2 > O. The conditions of Lemma 5.2 are verified as 
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follows. First note that the functions (~.) and hence the likeli-
1 

hood f.unctions are analytic. Let n = (n l ,n 2 )E JR2, 11 n 11 = 1. 

Then for any 8 = (8 1 ,8 2 ) 

= 

I . 2(j-l) -:- j-l 
< (max { t . 1 = 1, ... , n } ) / Ll ( n , n) 
- 1 

(5.14) 

where Ll(n,n) = 

of n. Thus if 

n 2 2 
L (D~i(8) (n)) / 0 is the Fisher-information 

i=l 

An = (max{ti I i=l, •.. ,n}) 11 L~~ 11 = 0 (1) 

then Theorem 3.5 is applicable. E.g. if 82 > 0 and ti = i, then 

An will decrease exponentially fast. Thus, if one has observations 

at equidistant points (t's) a very good agreement between the 

correct distribution and the approximations may be expected with 

relatively few points, but, of course, this can only be proved 

by estimating the difference. 

Although this example is of practical interest in itself, it is 

unusually simple. The condition (5.12) is however so simple, 

that further simplification of importance is hardly obtainable. 
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6. A coordinate version of the results. 

We shall use a notation commonly used in tensor calculus. An array 

(M .. ), il, ... ,imE {l, ... ,k} belonging to (]Rk)m will be writ-
1.1 ". ·1.m 

ten M. ..' without explicitely stating the range of the indices. 
1.1 •• ·1.m 

Some indices will be written as superscripts some as subscripts. 

These corresponds to contravariant and covariant tensors, but the 

destinction is not important for this application. We also use 

the standard summation convention, i.e. if an index appears twice 

in a term, summation w.r.t. this index over its range is under-

stood. 

First we shall give the first four terms of the expansion (3.13). 

Define 

i l ... i 
E m = 

where e 

i 2 ···i 
Y. m .1. 

i 2 ••• i 
F. m = 

1. 

~ log f (X;8) , } 
d8 im 

8=8 o 

log f (X;i;) , 
8=8 

sji2·· .im 

= gij 

j i2 ... im 
- g .. E 

1.J 

) _ E 11 •.• im 

o 

(7 .1) 

(7.2) 

(7.3) 

(7.4) 

where (g .. ) is the inverse of (gij) = (_Eij ) 
1.J 

i.e. the inverse 

Fisher-information. 
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The first four terms of (3.13) 

= 

= 

= 

= 

y. 
1. 

j k 1 1 j k Im j kl _~ Ijk 1 _~ 
Y'Y'YkYl --2 Y.Y.Fk YIY -Y.F. YkYl·Y --2 F. Y'YIY'kY 1J 1J m 1J m 1 J m 

- ~ FIklYjYk~Ym +i YIklYjYkYi+~ YIF~lYkF~l'lYmYn 

+ 1: F~ky~y Fmny Y + F~ky . Flmy yny +1: F~ky .ylFmny Y 
2 1 J 1 k m n 1 J k 1 m n 2 1 J k 1 m n 

1 yJ.·kY.Flmy Y _1 jk Im 1 jklm . - 2'. 1 J k 1 m 2 Fi YjYk YIYm -2'4 Fi YjYkYIYm 

+ 1 F~ky . Flmny Y Y + 1 F~kly. Y Fmny Y 
6 1 J k 1 m n 4 1 J k 1 m n 

(7 .5) 

Approximate cumulants in the exponential family models. 

Using the method described in Remark 3.7 it is straight forward 

to calculate the approximate cumulants (Kj) of (7.5). Let 

(Km)il •.. i j denote the jlth cumulant of the mlth approximation, 

i.e. with q = m+l in (3.11) Thus {Kl)i and {Kl)ij denote mean 

and variance in the first (normal) approximation. With obvious 

modification of the notation in section 4 we define 

_ X3Ci S y (Df3 ) i (Df3 ) j (Df3 ) k 
00',013 Oy 

[i,J'k] = O', f3 (Df3 )i(D2Q )jk 
X2 0 a iJO 13 etc. 



m = 1: 

m = 2: 

(K 2 ) , ' 
1J 

m = 3: 

(K3 ) , , 
1J 

- 26 -

= G , (K1 ).. = g.. = [i, j ] 
1J 1J 

= (K1 ) .. = g .. . 1J 1J 

= - s ym {g . 1 g, gk ( 2 [ 1 , m , n ] + 3 [ 1 ,mn ]) } 
1 Jm n 

= g, , + g, k g 'I ([ km, n1] - [k1, mn] - [k, m, n, 1 ] ) g 
1J 1 J mn 

+ sym{g'k g 'l g (- [k,lmn] - [k,l,mn] - [m,n,k1] 
1 J mn 

- 2[k,m,n1]) + g'k g 'l g g ([k,l,m][n,o,p] 
1 J mn op 

3 + 2 [k,m,o][l,n,p] 

+ [k,l,m][n,op] + [k,lm][n,o,p] + [m,k1][n,o,p] 

+ 2[k,m,o][1,np] + 2[k,m,o ][n,lp] + 2[k,mo][n,lp] 

1 [m,ko][n,lp] + 2 [k,mo][l,np] + [m,k1][n,op] 

+ [k,lm][n,op])} 
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- l2[a,S,yo] + l2[a,S,m]g [n,y,o] + l2[a,S,m]g [n,yo] mn mn 

+ 24[a,S,m]gmn[y,on] + l2[a,Sm]gmn[n,yo] 

+ l2[a,Sm]gmn[y,on])}. (7 .6) 

where sym{ ... } means the avarage over all permutations of the 

indices appearing on the left hand side on the equation. Actually 

taking this avarage is not necessary in applications, because the 

appearance of the cumulants in (3.11) is symmetric in their 

indices. This fact is a considerable relief in calculations. 

,-- .. 
I _" i 

The variance term for m - :3 may be identified with that given in 

Efron (1975) in the one-dimensional case and with its multivariate 

generalization in L.T.Skovgaard (1979). That our formula seems 

more complicated is only because of the less directly computable 

terms appearing in the above mentioned papers. All the terms, 

except K 4 , may be found in Shenton & Bowman (1977). Notice, how

ever that their square brackets have a meaning different from 

ours. 

An interesting feature of the correction terms for m = 2 (i.e. 

the first correction to the normal distribution) is, that since 

Yil Yjm Ykn [l,m,n] is invariant under reparametrizations in the 

one-dimensiona;l- case:t and;::- in;::.the-~mu]:;Jtivar:tate0case::-.its~·range±s 

e~g. if the third cumulant.of the exponential family is zero. 
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In the case of a non-linear normal regression model (Section 5) 

the cumulants (7.6) are still valid, but important simplification is 

achieved, because only the square bracket factors of the form 

[i l ···i2 , jl ... j~] are different from zero. Thus [i,j,k],[i,j,kl], 

etc. vanish. 
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