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Abstract 

Given a Markov chain in discrete time with stationary transition 

probabilities, consider random times T determined by the evolution 

of the Markov chain such that conditionally on the transition per-

formed by the chain from time T - I to time T either the pre - T or 

post - T process is Markov with stationary transition probabilities 

that may depend on the value of the transition at time T. Such 

random times are called death times, respectively birth times with 

conditional independence. Various characterisations of all such 

random times and of some particularly interesting subclasses are 

given. 
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1. Introduction and notation 

This paper contains generalisations and ramifications of the re-

suIts presented in Jacobsen and Pitman [3] and is thus concerned 

with characterisations of certain classes of birth times and death 

times for a given Markov chain in discrete time with stationary 

transition probabilities. 

The setup and notation to be used are very much like those of [3]: 

given a countable state space J, let ~ denote the space of all 

sequences w = (wO' wl ' .•. ) in J indexed by the non - negative inte

gers N, let (X , n E N) be the coordinate process on ~, i.e. 
n 

Xn(W) = wn' and denote by (Yn , n E N+) the sequence of transitions 

Yn = (Xn_l,Xn ) defined for n E N+ = {1,2, •.• }. Writing F for the 

usual (J - algebra on ~, a probabi.lity P on (n, f) is said to be 

Markov or Markov (p) if P makes (X ) a Markov chain with stationa-n 

ry transitions p. If 11 is theP - law of XOI pll may be written in-

stead of P and, as is the custom, px if 11 is degenerate at x. The 

following convention is adapted throughout: the same letter is 

used to denote a Markov probability (capital letter) and its tran-

sLtion function (small letter). 

Adjoining a state/:, to J, write J/:, = J U {/:,} and let ~/:, be the 

space of all sequences in J/:, that remain in /:, once they get there. 

The life time of a sequence W E ~/:, is 1: (w) =inf {n EN: Xn (w) = /:,}. 

The space ~/:, will be used mainly in Section 4 on death times. For 

objects pertaining to Q/:,I the same notation will be used as for 

the corresponding objects on ~. 
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For n E N, the killing operator Kn D ~ D6 and shift operator 

e D ~ n are defined by 
n 

A random time is a measurable mapping from n to the extended time 

set N = N U {oo}. Given a random time TT X , Y , K , e are defined 
T T T T 

by local identification, e.g. X = X on (T = n). Also, X I K I e TnT T T 

are defined only on the set (T < 00) and Y on (0 < T < 00). As a 
T 

consequence, for instance (Y = (a,b)) will 
T 

be the notation for 

the subset {w : 0 < T (w) < 00, Y (w) = (a,b)} 
T 

For a fixed n E N the pre -·n er - algebra Fn 

ned by (XO I , X ) • The atoms An are the n 

A= (XO = x O' ... ,X = x ). For T a random n n 

of D. 

is the er - algebra span-

sets of the form 

time, the pre - T 

er - algebra F consists of the sets which are countable unions of 
T 

sets of the form (i) A (T = n) where n EN, A E A or (ii) one
n 

point sets {w} where T(W) = 00. 

A random time T splits the process (X ) into two parts, the 
n 

pre";'T process, conveniently identified with and therefore label-

led K , given as 
T 

(X 0 K I n T 
n E 

and the post.,;. T process 

(Xn 0 eT' n E 

N) = (XO I ... ,X 1,6,6, ••• 1 I T-

e given as 
T 

N) = (X T ,XT+l , ~ • If» ~ 

To avoid misunderstandings it is finally stressed that the inclu-
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sion symbols c, :J always are used to denote non - strict inclusions, 

allowing for equality_ 

The purpose of this paper is to study random times such that with 

respect to a given Markov probability P and subject to a condi-

tioning on Y either K or 8 is Markov with stationary transi-
T T T 

tions. The main difference between the results to be presented 

here and those contained in [3] consists in allowing the transi~ 

tion function of the Markovian K or 8 ~. fragment to depend on the 
T T 

value of the condLtioning variable Y . 
T 

In the paper three different types of definitions of random times 

will be used: (i) operational definitions, (ii) implicitly alge-

braic definitions and (iii) explicitly algebraic definitions. The 

firs·t of these three types defines the properties of a random time 

relative to a Markov probability, while the other two are concern-

ed exclusively with the properties of a random time as a function 

on Q .~The difference between the implicit case (ii) and the expli-

cit case (iii) may amount for example to a description of the ran-

dom time involving a collection of parameters which may be chosen 

independently of each other in the explicit case, but are interre-

lated in the implicit case, or to a functional equation in the 

implicit case and the solution to that equation in the explicit 

case. 

For an example, consider stopping times. Firstly, given a Markov 

probability P, T is an operationally defined stopping time for P 

if conditionally on F within (T < 00), the post - T process is 
T 

Markov with the same transition function as P. 
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Secondly, a random time T is an implicitly algebraically defined 

stopping time if (T = n) E Fn (or if (T ~ n) E Fn) for every n E N. 

(Writing F 
n 

< = (T = n), (G = (T = n)), the side conditions on the 
n 

F , (G ) are of course that they be mutually disjoint (increase 
n n 

with n)). 

Thirdly, a random time T is an explicitly algebraically defined 

stopping time if there is a sequence (F , n E N) of sets F E Fn n n 

such that T(W) = inf {n EN: W E F }. 
n 

The characterisation theorems to be given here, as those presented 

in [3], provide probabilistic equivalences between operationally 

defined classes of random times on the one side and implicitly al-

gebraically or explicitly algebraically de£ined classes on the 

other. 

For instance, for stopping times the following result is valid: a 

random time T is an operationally defined stopping time for the 

~1arkov probability P, if and only if it is P - equivalent to an 

implicitly or an explicitly algebraically defined stopping time. 

(This may be readily verified from the results in Section 3 of 

[3]1 • 
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2. cr ..;..birthtimesand cr.;,.. death times 

The paper [3] contained characterisations of regular birth times 

and regular death times. A random time T is called a regular birth 

time for the Harkov probability P if I relative to P, the post - T 

process is Markov (q) for some transition function q with the 

pre ~. T and post - T processes being conditionally independent given 

T < 00 and X . Similarly T is called a regular death time for P if 
T 

the pre -. T process is Markov (r) for some transition function r 

wi th the pre.,.. T and post - T processes being conditionally indepen-

dent given o < T < 00 and X l' 
T-

An alternative characterisation of regular birth times is of course 

the following: T is a regular birth time for P iff there is a 

transition function q such that conditionally on F within (T < (0) , 
T 

the post.,.. T process is Markov (q) (with initial law trivially de-

generate at X ). 
T 

The class of birth times to be considered in this paper is now ob-

tained by still conditioning on FT but allowing the transition 

function of the conditional post - T process to depend on 

Y = (X l' X ) • 
T T- T 

Before presenting the precise definition and the analogous defini-

tion of the relevant class of death times, r need the following 

generalisation of Definition 3.11 of [3]. 

( 2 . 1). Definition. A random time T is called a Conditionalinde-

pendence time for the~1arkov probability P, if under P the pre - T 

and post - T processes are conditionally independent given Y , i. e. 
T 
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if there is a conditional distribution of eT given (X O' ... ,XT ) 

within (0 < T < 00) or equivalently of K given (X l'X, ... ) 
T T- T 

within (0 < T < 00)1 which is a function of Y alone. 
T 

Conditioning on (X O' ••• ,XT ) is equivalent to conditi

oning on F and involves in particular the conditioning on the 
T 

Remark. 

value of T. By contrast, conditioning on (X l'X, ... ) does not 
T- T 

imply knowledge of the exact value of T, 'itlhich implies in particu-

lar, as is essential, that the conditional pre - T process has a 

random life time. 

Whereas two different forms of conditional independence were need-

ed to define regular birth times and regular death times respecti-

vely, this new definition applies to both situations. 

(2.2). Definition. A random time T is a birth time withcondi-

tional independence (in short a Cl ..:.. hirth time) for the Markov 

probability P if it is a conditional independence time for P and 

if conditionally on Y within (0 < T < 00) the post - T process is 
T 

Markov with a stationary transition function (depending possibly 

on Y ). 
T 

(2.3). Definition. A random time T is a death time with condi-

tionalindependenCe (in short a CT ..:.. death time) for the Markov 

probability P if it is a conditional independence time for P and 

if conditionally on Y within (0 < T < 00) the pre - T process is 
T 

Markov with a stationary transition function (depending possibly 

on Y ). 
T 
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From time reversal arguments (see below) it is clear that in Defi-

ni tion 2.3 one may instead of the pre - T process cons.ider the 

pre - T process run backwards from time T - 1. 

The main motivation for introducing cr - birth times and cr - death 

times comes from the basic path decompositions established by 

Williams [7] for the one _. dimensional Brownian motion. 

Considering for instance a Bro'irmian motion starting at 0 and kil-

led at the time it hits 1, Williams showed that if T is the time 

where the killed path attains its ultimate minimum, then conditio-

nally on the value X of that minimum the pre - T and post - T pro
T 

cesses are independent, both being Markov with stationary transi-

tions depending on X . Thus, ignoring the discrepancy between the 
T 

continuous time Brownian motion and the discrete time setup used 

here, T is both a cr - birth time and a cr - death time. 

The discrete time analogue of Williams l result is not covered by 

the theory developed in [3J, the reason being simply that in the 

Brownian motion case I although both the conditional pre - T and 

post - T processes are Markov, neither of the unconditional proces-

ses are. Hence the need for objects like cr - birth times and 

cr - death times. 

While in the Brownian (continuous path) case, the transitions of 

the conditional post - T or pre - t process depend on X alone, they 
T 

will in general for a real valued right continuous process with 

left limits (still considering the time T of the ultimate minimum) 

depend on the transition (X ,X 1. Translating this into the dis
T- T 
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crete time situation makes it natural to study K and 8 given the 
T T 

transition Y . 
T 

For more general results in continuous time that the time of the 

minimum is a cr .... birth time, see Jacobsen [2] and Millar [5]. 

While it is quite clear that any regular birth time is a cr - birth 

time, the analogous statement about death times is not so transpa-

rent and requires an argument. 

Recall that if R is a Markov probability on D6 with initial mea

sure v and transition function r, such that (X ) has positive pro
n 

bability of having finite life time, then the process reversed 

from the lifetime defined by the reversal transformation 

x 0 p n 

x 
= { s-l-n 

6 

if n < s < 00 

otherwise 

A 
is again Markov with a substochastic transition function r on J 

given by 

r(y,x) 
eV(y) 

A J e V (x) if 
(2.4) r(x,y) = 1 anything if 

where e V is the occupation measure 

(2.5) e v( z) = L R(X = z) 
n~O 

n 

= L v(u) Gr(u,z) 
uEJ 

writing Gr for the potential kernel 

G (u,z) = 
r 

L 
n~O 

·r(n).( ) u, z . 

eV(x) > 0 

eV(x) = 0 

(z E J} , 
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Therefore, if T is a regular death time for the Markov probability 

P on rl, the reversed pre - T process p 0 K is Markov with stationa-' 
T 

ry transitions and for this process conditioning on XT- I simply 

amounts to freezing the initial state, so that p 0 K , and therefore 
T 

also pop 0 K = K , conditionally on X I is Markov with stationary 
T T T-

transitions. By the conditional independence property shared by all 

regular death times it nOvl follows that any regular death time is 

a cr - death time. 

Consider the Markov probability P~ on rl and let T be a regular 

death time for P~. The unconditional pre - T process is then Markov 

with initial law v and transition function r, where for x, y E J, 

n E N 

v (x) 

(2.6 ) 

r (x, y) 

= P~ (X o X, T > 0) , 

= P~(Xn+1 = Y IT> n + I I X = x, T > n) • n 

Now condition on XT- I = a, 0 < T < 00. By computation it is readily 

found that the conditional pre - T process has transition function 

r(x,y) 
Gr (y,a) 

if Gr (x, a) > 0 

{ 
Gr (x, a) 

ra (x,y) = 
anything if G (x, a) = 0 r 

A 
for x, y E J, while the transition function r of the conditional 

pre - T process reversed is just that of p 0 K 
T 

itself and therefore 

given by (2.4) with v as in (2.6) and eV as in (2.5). 

Thus the transition function of K given X I = a is determined by 
T T-

r and a alone while that of p 0 K depends on v and r but not on a. 
T 
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These considerations are relevant to Definition 4.19 below. 

The following result provides a useful characterisation of condi-

tional independence times. 

(2.7). Lemma. A random time T is a conditional independence time 

for the Markov probability P iff for every n E N+ and every 

(a,b) E J2 there exists events F E F , G b E F respectively such n n a 

that 

(2.8) (T = n,Y = (a,b» = (F ,Y = (a,b),8 E Gab) P-a.s. T n n n 

or equivalently iff for every n E N+ and every (a,b) E J2 there 

exists FIb EFl' G E F such that n- ,a n-

(2.9) (T = n,Y = (a/b) = 
T 

= (a,b), e 1 E G) P,- a.s. n-

Proof. Proceeding exactly as in the proof of Lemma 3.12 of [3] 

one finds that T is a conditional independence time for P iff for 

every choice of n E N+, (a,b) E J2 there exists FIb EFl' n- ,a n-

Gab E F such that 

(T=n,Y = (a,b» = 
T (Fn-l,ab'Yn = (a,b) , 8 E G b) n a 

This is equivalent to (2.8) and (2.9) being valid with 

F = n u 
(a,b) 

(F 1 b' Y = (a/b», n- ,a n 

G = U (Yl = (a,b),8 E Gab) 
(a ,b) 

and the lemma is proved. 

P-a.s. 

o 

Remark. Conditional independence times satisfying (2.8) or (2.9) 

exactly are not splitting times as originally defined by Williams, 
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see [2], equation (3.3). It appears most natural to generalise the 

definition there and call T a splitting time if 

(T = n) = (F,8 1 E G ) n n- n 

for some F E F ,G E F. n n n 

This definition is implicitly algebraic. It may be shown that for 

a }1arkov probability P, a random time is a conditional independen-

ce time iff it is P-a.s. equal to a splitting time defined in 

this manner. Thus the definition of conditional independence times 

may be viewed as the operational definition of splitting times. 

3. Cl - birth times and the class BO 

The definitions of regular birth times and Cl-birth times are 

both operational. The main result of Section 3 of [3], Theorem 

3.9, provides a probabilistic equivalence between regular birth 

times and an explicitly algebraically defined class B of random 

times (with an implicitly algebraic description of the times in B 

provided by (3.16) of [3]). 

The main purpose of this section is to give similar characterisa-

tions of suitable classes of cr - birth times. 

The first results, Propositions 3.7 and 3.8 below, provide impli-

ci tly algebraic characterisations of the class of all ct - birth 

times for a given Markov probability. To obtain explicitly alge-

braic characterisations it is necessary to restrict attention to 

Cl - birth times satisfying a condition relating the properties of 
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the random times to the structure of the state space of the pro-

cess. The basic definitions and the main result appear as Defini-

tion (3.22) and Theorem (3.24) below. 

The entire section relies heavily on the theory presented in [3], 

and it is therefore necessary to recall some of the results from 

there. 

Given a Markov probability P on Q, consider an event D E F with 

P(D) > 0 and let PD denote the conditional probability P(o I D). 

It was shown in [3], Theorem 2.3, that PD is Markov iff D is P

equivalent to an event of the form (XO E H,e) where H c J and e 

is coterminal, i.e. 

e = e e 
V 00 

for some V c J2 and some invariant (under 8) event e E F. In 
00 

particular for any x E J, pX is Markov iff D is pX - equivalent to 
D 

a coterminal event. 

The reader is reminded that if all states are recurrent for P, 

then all coterminal events are P - equivalent to Q or 0 T see eorol~ 

lary 2.4 of [3]. 

If D is an event such that PD is Markov, denote by J D the (pro

babilistic) range of the conditional chain given by 

J D = . {x E J: ~ PD (X = x) > O} • 
n:?O n 

Then the transition function q of Po is stochastic on J D and uni

quely determined there. The following fact is implicit in Section 

2 of [3], but is stressed here for later reference. 
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( 3 . 1). Lemma. Suppose that D E F is such that PD is Markov (g) 

and let J D denote the range of PD" If C is any coterminal event 

such that 

(3.2) D = (Xo E H,C) P-a.s. 

for some H c J, then for all x E J D 

x 
P (C) > 0, 

proof. Suppose C satis£ies (3.2) and let x E J D" For n E N 

chosen so that PD(Xn = x) > 0, 

QX = PD {en E • x = x) = p(e E· X = x,D) /P(X = x,D) • n n' n n 

But C = (F , e E C) for a sui table F E F and hence 
n n n n 

o < P(X = x D) = 
n ' 

x in particular P (C) > 0, and 

x = x IF ) P (C) I 
n 

QX = P(Xo E H,X = x,F,e E. n C) /P(Xo E H,X = x,F,e E C) n n n n n n 

= pX (. n C) / pX (C) = pX (. I C) . 0 

Given a transition function p, a state b E J and a coterminal 

event C E F, write 

(3.3) 

for the pair consisting of the range J c of the Markov probability 

b P (. I C) and its transition function q. This makes sense if 

pb(C} > 0, but it is convenient to define S for all b, p and C, 

simply letting J C = o and g be the 'empty transition function' on 

0if pb(C) = o. 
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Note that b E J C if pb(C) > O. Also note that S(b,p,C) = S(b,p,C') 

if and only if C = Cl pb - a. s . 

Assume that pb (C) > o . By Lemma 3.1, pX (C) > 0, QX = pX (. I C) for 

all x E J c and 

representation 

(3.4) 

from this it follows easily that if C 

of C with V c J2 and C E F invariant, 
00 

PY(C) 
q(x,y) = p(x,y) lv(x,y) 

px (C) 

= C C is a 
V 00 

then 

no matter which of the possible V and C 's representing C are used. 
00 

The result on conditioning events quoted above was used in [3] to 

establish Theorem 3.9 on the characterisation of regular birth 

times. Defining B to be the class of random times of the form 

(3.5) 

where C is an arbitrary coterminal event, TC is the associated 

coterminal time 

T C = inf· {n EN: en E C} I 

and p is a stopping time for the family (F + ' n E N) of (5 - al
TC n 

gebras, it was shown that T is a regular birth time for p iff T 

is P - equivalent to a random time in B. (For the analogous result 

in continuous time, see the recent paper by Pittenger [6]). 

It is not difficult to see that (3.5) alternatively may be expres-

sed as follows: T E B iff there is a coterminal C and events 

F E F , n E N such that 
n n 

(3.6) 
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The first characterisation of cr - birth times to be given is an 

observation due to J.W. Pitman (private communication). 

(3.7). Proposition. A random time T is a cr - birth time for the 

Markov probability P if and only if, for every (a/b) E J2 the ran-

dom time Tab defined by 

T = ab 

is a regular birth time for P. 

on (Y = (a,b)) 
T 

otherwise 

Proof. rf T is given with the Tab defined as above one finds 

that 

on the set (Y = (a,b)) = (T b < 00). Appealing to the definitions 
T a 

of cr - birth times and regular birth times, the re suI t now follows 

immediately. o 

This characterisation of cr - birth times is implicitly algebraic 

because although each Tab may be described in an explicitly alge

braic fashion by (3.5) or (3.6), it is not at all clear how the 

Tab may be chosen simultaneously so as to satisfy the necessary 

requirement that the sets hab < 00) for (a,b) varying be mutually 

disjoint. 

The next result is a straightforward consequence of Lemma 2.7. 

(3.8). Proposition. A random time T is a cr - birth time for P 

if and only if for every n E N+ and every (a/b) E J2 there exists 

Fn E Fn and coterminal Cab respectively such that 
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(3.9) n,Y = (a,b» = 
T 

(F ,Y = (a,b),8 E Cb) P-a.s. n n n a 

Proof. If (3.9) is satisfied, T is a conditional independence 

time for P by (2.8), and since the law of the conditional post - T 

process given FT on the set (YT = (a,b», is the Markov probabili

ty pb (. I Cab)' T is a Cl - birth time. If conversely T is a CI

birth time, (2.8) holds in particular which makes pb(o ! Gab) the 

law of the post - T process given (Y = (a/b». But Theorem 2.3 of 
T 

[3] forces Gab to be pb - equivalent to a coterminal event Cab 

whence, as is easily seen using the Markov property for P, the 

identity 

(F ,Y = (a,b),8 E Gb) = (F,Y = (a,b),8 E Cb) P-a.s. 
n n n ann n a 

follows, and the proof is complete" o 

The proposition may also be proved from the preceding proposition, 

using (3.16) of [3] to describe each Tab" 

Propositions 3.7 and 3.8 both give implicitly algebraic characte-

risations of the operationally defined Cl-birth times. It does 

not appear possible (cf. the examples at the end of this section) 

to obtain an e~plicitly algebraic characterisation of the class 

of all Cl - birth times. 

The chief object of the remainder of the section is now to intro-

duce a subclass of CI - birth times and to characterise that ex-

plicitly. 

Suppose again that T is a Cl.,.. birth time for P. Thus I as a conse-

quence of Proposition 3.8, there is a coterminal event Cab asso

ciated with each possible value (a,b) of YT such that pb (. I Cab) 
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is the law of the post - T process given F inside (Y = (a,b». 
T T 

Instead of JC(ab) I shall write Jab for the range of the 

pb (. ! C ) process whenever P (Y = (a,b» > 0 and qab for its 
I ab T 

transition function. If P(Y = (a,b» = 0, J b is defined to be 
T a 

empty. Thus using the mapping B from (3.3) I 

whenever P(Y'[ = (a,b)l > O. Also in this case, although Cab is de

termined from T only up to a pb - equivalence, the right hand side 

does not depend on the choice of Cab" 

Now define a relation >- on J2, the birth time relation forT with 
T,P 

respect to P, by 

(a,b) >
T,P 

(c,d) <* L P(Y = (a,b),Y + = (c,d» > 0, 
n~l T T n 

i.e. (a,b) >- (c,d) if it is possible to have an (a,b) transition 
T,P 

at time T and a (c,d) transition at a time (strictly) after that. 

Notice that (a,b) >- (c,d) iff 
T,P 

(3.11) P(Y = (a,b» >0, 
T 

L Q~b (Y n = ( c , d» > 0 • 
n~l 

To ease the notation I shall frequently write >- instead of >-. 
T,P 

For the next definition, the notation used so far for the various 

objects connected with a Cl - birth time is retained. 

(3.12). Def~n~t~on. A Cl - birth time for P is called transition 

reproducing if 

(a,b) 

whenever P(Y = (Cid» > O. 
T 
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Remark. If (a,b) r (c,d) I then in particular d E Jab. Assume 

that P(Y T = (c,d» > O. Then although Ccd is not uniquely deter-

mined from T, I claim that the definition is consistent in the 

sense that S(d,qab'Ccd ) does not depend on the choice of Ccdo To 

see this amounts to showing that all possible Ccd are Q~b - equiva

lent. But as noted above they are certainly pd..,.. equivalent and 

d 
since p(x,y) = 0 ~ qab(x,y) = 0 (cf. (3.4»r it is clear that Qab 

is absolutely continuous with respect to pd, whence the desired 

conclusion. 

As defined by (3.3), S(b,p,C) merely identifies the probability 

b p (. I C). Thus the requirement in Definition 3.12 is that 

(3.13) (a,b) 

whenever P(Y = (c,d» > o. 
T 

As Definition 3.12 stands it has an analogue in the death time 

case (see Definition 4.19 below), while a formulation using (3.13) 

instead would have had no obvious parallel. 

For an example, consider Williams' decomposition of a killed Brow"'" 

nian motion at the time of its ultimate minimum discussed in Sec-

tion 2. That T is transition reproducing follows because while 

loosely speaking the Brownian motion conditioned to stay above a 

given level is a three..,.. dimensional Bessel process measuring its 

origin at that level, it is also true that a Bessel process con-

ditioned to stay above a level is again a Bessel process with that 

level as origin. 
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One consequence of Definition 3.12 is the property exhibited in 

the next result. 

(3.14). Proposition. If T is a transition reproducing Cl - birth 

time for P, then the relation r is transitive. 
TIP 

Proof. Suppose that T is transition reproducing and let 

(a,b) r (c,d), (c,d) ~ (e,f). Then in particular for some 

m, n E N+ (see (3.11» 

d 
and Qab(Ccd) > 0 with (see (3.13» 

But then also 

Qb (Y _ (e, f) ) ~ Q~b(Ym .- (c, d) , e E Cd' Y + = (et f) ) ab m+n- m c m n 

= Q~b(Ym = (c, d) ) Q~b(Yn = (et f) rCcd) 

= Q~b(Ym = (c, d) ) Q~b (Ccd) Q~d(Ym = (e.,f) ) 

> 0 

so from (3.11) it follows that (a,b) r (e,f). o 

When the relation r is transitive an order relation may be indu

ced in the following manner: the relation ~ on J2 defined by 

(a,b) '" (c,d) iff either (a,b) = (c,d) or {a,o) >- (c,d), 

(c, d) r (a,.b)· is an equivalence relation and the relation 

the equivalence classes (which are subsets of J2) given by V 

r on 
"" 

iff (a,b) r (c,d) for any and hence .for all (a,b) E V. (c,d) E W 

is consequently a reflexive partial ordering. For the time of the 
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ultimate minimum of a real - valued process considered earlier this 

ordering which, it should be remembered, depends on the underlying 

probability, can of course almost be identified with the natural 

ordering of the real numbers. Thus transition reproducing CI-· 

birth times appear as reasonable generalisations of the time of 

the minimum. See also Proposition 3.31 below. 

(3.15). Proposition. A random time T is a transition reproducing 

Cl - birth time for the Markov probability P if and only if for 

every n E N+ and (a,b) E J2 there exists Fn E Fn and coterminal" 

Cab E F respectively such that 

(3.16) (T=n,Y = (a,b)) = (F ,Y = (a,b),8 EC b ) 
T n n n a P-a.s. 

and 

(3.17) 

Remark. It will be clear from the proof that (3.17) may be re-

placed by the weaker 

(3.18) (a,b) d 
P - a.s. 

Proof. (3.16) is merely the necessary and sufficient condition 

(3.9) from Proposition 3.8 for T to be a Cl - birth time for P. 

Hence it suffices to consider Cl - birth times satisfying (3.16). 

Suppose first that T is also transition reproducing. It must be 

shown that the Cab may be redefined without affecting (3.16) and 

in such a way that (3~17) holds. For each (a,b) define a new co

terminal event C:b as follows: if P(Y'[ = (a,b)) = 0 define 

C:b = 0. If P(YT = (a,b)] > 0 so that in particular pb(Cabl > 0, 
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't J f th f Qb pb(o I Cab) and defl'ne wrl e ab or e range 0 ab = 

(3.19) C* 
ab = Cab n n Cxy , 

(x, y) 

where the intersection extends over all (x,y) such that 

(x,y) > (a,b). The aim then is to show that (3.16)* and (3.17)* 

hold where the * indicates that in (3.16) and (3.17), Cab and Ccd 

have been replaced by C:b and C~d. 

If P(Y = (a,b)) = 0, (3.16)* holds trivially. To show (3.16)* 
T 

when P(Y 
T 

* = (a,b)) > 0 is, since Cab C Cab' equivalent to showing 

P(F,Y = (a,b),8 n n n * E C b) = P(F ,Y = (a,b),8 E Cab) ann n 

which by the Markov property will follow from 

(3.20) 

It is for the proof of this and (3.17)* that the assumption that 

T be transition reproducing is needed. The fact required to prove 

(3.20) is that 

(3.21) (a,b) >- (c ,d) => Cab :::> Ccd 
d 

P - a.s. 

b since this implies Cxy :::> Cab P .". a. s. for all (x, y) appearing in 

the intersection in (3.19). 

Because T is transition reproducing, if (a,b) > (c,d) and 

P(YT = (c,d)) > 0 the Markov probability Q~b(' j Ccd ) is well defi-

ned and equal to 

3.1 implies that 

and (3.21) follows. 

see (3.13). But since d E Jab' Lemma 

Cab). Thus 
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Finally (3.17)* is a trivial consequence of the transitivity of >-

established in Proposition 3.14: each C appearing in the definixy 

tion (3.19) of C:b (including Cab itself) is one of the Cxy ap-

* pearing in the corresponding expression for Ccde 

Novv suppose conversely that T is a cr - birth time satisfying 

(3.16) and (3.17). To see that T is transition reproducing, assume 

that (a,b) r (c,d) with P(Y 
T 

b = ( c , d» > o. Then P ( Cab) > 0 I 

pd (C cd) > 0, d E Jab and Q~b = d d d 
P (-ICab ), Qcd = P (-Iccd ) while 

d 
by (3.17), Cab ~ Ccd . Therefore trivially Qab(Ccd ) > 0 and 

nd (0 I C ) = Qd so that T is transition reproducing. 
~ab cd cd o 

The main result of this section, to be stated shortly, provides an 

explicitly algebraic characterisation of transition reproducing 

cr - birth times. 

(3.22). Definition. Let BO be the class of random times T such 

(3.23) 

where for each n E N+, Fn is an arbitrary event in Fn and for each 

transition (a,b) E J2, Cab is an arbitrary coterminal event. 

With the string of inclusions appearing in (3.23), this definition 

embodies an algebraic equivalent of (3.17). For an alternative de

scription of BO involving a transitive relation on J2, see Propo-

sition 3.31 below. 

Notice that in the definition nothing is saldabout the structure 

of the sets (T = 0) and (T = 00). Given only the sets (T = n) for 
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n E N+ they may be any two disjoint measurable sets, also disjoint 

from all (T = n) for n E N+, such that ~ = U (T = n) . 
O~n~oo 

Also notice that the class B (Definition 3.8 of [3], see also 

(3.6) above), is obtained by taking all the Cab to equal the same 

coterminal event C, requiring in addition that the set (T = 0) 

have a suitable form. 

(3.24). Theorem. A random time T is a transition reproducing 

Cl - birth time for the Markov probability P if and only if T is 

P - equivalent to a random time in Ba. 

Prbof. By Proposition 3.15 it suffices to show that a random 

time T satisfies (3.16) and (3.17) iff it is p ... equivalent to a 

time in Ba. 

Suppose first that T satisfies (3.l6) and (3.17). Then for N a 

sui table p ... null set, the identities 

(3.25) (T = n, Y = (a, b) ,Nc ) = (F ,Y 
. T n n 

c 
= (a,b), 8 E C b,N) n a 

hold exactly for all n E N+, (a,b) E J 2 . But since the sets appea

ring on the right of (3.25) are mutually disjoint for n or (a,b) 

varying, it is clear that for w E NC there is at most one value 

of n E N+ such that 

(3.26) 

Introducing T' by 

(3.27) 

w E F , 
n 

for nO E N+, the proof that T is P -a.s. equal to a random time in 
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BO will be completed by showing that 

(3.28) (T = n) = (T I = n) P - a.s. 

for every n E N+" 

Obviously, (3.26) with the additional requirement C ::J C-
wn_lwn wk_lwk 

for k > n has at most one solution in n E N+" Therefore for n E N+ 

n 
k>n 

(F , Y 
n n 

C (T = n , Y = (a,b) ,Nc ) = (F ,Y = (a,b) ,8 E Cab,Nc ) , 
T n n n 

and so, to prove (3.28) it suffices to show that 

(F ,Y = (a,b),8 E Cab) C n n n 

for all n E N+, k > n , (a,b) E J2, or that 

c = (a,b) IN ) 

P-a.s. 

for all n E N+, k > n, 2 (a,b), (c,d) E J . But that is an i~~ediate 

consequence of (3.16) and (3.17). 

To show the converse assertion of the theorem, it is of course 

sufficient to show that every T E BO is a transition reproducing 

CI~birth time for every Markov probability P. Hence assume that 

T satisfies (3.23) and consider the set M = (T = n Y = (a b)) 
I T I 

2 where n E N+ and (a,b) E J are given. Clearly 

where 

M = (F , Y 
n n 

n..,..l 
= (a,b),8 E C b'C b ::J Cy ,k > n) n n Ak 

n a a k k=l 

co 

~ (Yk = (x,y») = (Yk = (x,y)) n [Fkc U (8k ECX
C y ) U U (C -p Cy )]. 

f=k+l xy f 
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Suppose that W E M, fix k with 1 ~ k < n and write 

for k > neither 

(i) W E FC 
k 

n 
W E U (C t> Cy ) 

l=k+l xy l 
(ii) 

ekw E CC 
xy (iii) 

Here the first two possibilities correspond to F -measurable 
n 

or 

or 

events and since, writing C = (Yk E V ,1 ~ k ~ rn,e E C ) for xy xy - m xy 

some V c J2 and all m E N+, xy 

n 
W E Fk n n 

l=k+l 
(C => C ) n ( e E CC ) 

xy Y k xy 
l 

happens for w E M iff 

n n 
w E Fk n n (C => Cv ) n U (Yo E VC ) 

l=k+l xy ~l l=k+l ~ xy 

because enw E Cab c Cxy ' it follows that 

(3.29) 

* * for a suitable Fn E Fn and with Cab the coterminal event 

* (3.30) Cab = Cab n n (Cab => Cv ) . 
k~l -k 

* * Since clearly C => C whenever T(W) = nand k > n, it 
wn.".lwn wk-lwk 

follows from Proposition 3.15 that T is a transition reproducing 

cr ..,.. birth time for all Markov probabilities P. o 

Relnark. It follows from (3.29) that if T E BO is given by (3.23) 
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and P is Markov, then conditionally on F and (Y = (a,b» I the 
T T 

P - law of the post - T process is pb(. I C:b ) with C:b defined by 

(3.30) . 

It is possible to give an alternative description of the class BO, 
2 using as one of the parameters a transitive relation on J (cf. 

Proposition 3.14). 

First however a comment on the structure of coterminal events. If 

C = C C is coterminal, where V c J, C E F is invariant it may V 00 00 

of course be possible to use other V, C for representing the 
00 

given C. A canonical representation may be obtained in the follow-

ing manner: define 

2 Vo = {(x,y) E J : Yn(w) = (x,y) for some W E C, n E N+}, 

C = 
00,0 

U 
n~O 

(8 E C) • 
n 

Then evidently Vo c V and (by the invariance of C ) C 0 cC. 
00 00, 00 

But the definition of Vo and the fact that C c (8 n E C) for all n 

shows that C c Cv C 0 and consequently o 00, 

C=CV CO· o co, 

Furthermore Coo,O is invariant: since (8 n E C) increases with n, 

C 0 = lim sup (8 E C). 
00, n -+ 00· n 

Finally, if C = Cv Cco ' Cl = CV' C~ are coterminal events in their 

canonical representations, then C c Cl iff V c VI, C cC': the 
co 00 

'if' part is evident, so suppose that C c Cl; then from the defi-

nit ion of V, VI necessarily V c VI, while if W E C T then 
00 
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ewE C c Cl for some n and so W E Cl. n co 

Now let T E BO be given by (3.23) and let Cab = C C b be the 
Vab co,a 

canonical representation of Cab" Defining the relation ~ on J2 by 

( a , b ) ~ ( c , d) <=> ( C , d) E V ab' Cab :::> Cc d 

it is readily checked using the remarks above that ~ is transiti-

ve and that (a,b) ~ (c,d) ~ Cb:::> C d' while it is clear that co,a co,C 

T satisfies (3.32) below. The proof of the other half of the fol-

lowing proposition is straightforward and is omitted, but it 

should be noted, that for this part of the argument the compatibi-

lity condition in the statement of the proposition is required. 

(3.31). Proposition. A random time T belongs to BO if and only 

if for every n E N+ and (a,b) E J2 there exists Fn E Fn and inva

riant CbE F respectively and a transitive relation ~ on J2 co, a 

compatible with the C b in the sense that (a,b) ~ (c,d) ~ co,a 

C :::> C such that for nO E N+ co, ab co,cd 

(3.32) T(W) = nO <=> 

nO = inf {nEN+ : wEF ,wEC , (w l'W) >- (wk_l·,wk),k > n}. n =,w lW n- n n- n 

Suppose that T E BO is given by (3.32) and consider the algebraic 

analogue ~ of the birth time relation for T with respect to P 
T 

defined by 

(a,b) >- (c,d) <=> 3 wE ri,n E N+ with Y T (w) 
T 

= (a,b),Y + (w) 
T n 

= (c,d)p 

Obviously >,- is contained in >- (thinking of 
T 

>- and >- as subsets 
T 

of J2 x J2), hence compatible with the C b' and it is easily co,a 
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checked that ~ is transitive and that T is given by (3.32) using 
T 

~ instead of ~. Thus ~ is the smallest relation which can be 
T T 

used when representing T by (3.32). 

(3.33). Example. Suppose f : J2 ~ JR and consider the random 

times T and T given as the first, respectively the last time that 

the sequence (f(Yn ), n E N+) attains its ultimate minimum. Then 

.!, T E BO. 

If P is Markov, the P - law of the conditional post - T process gi-

if T - T and 

pX ( T) (. I f (Y n ) > u, n E N +) 

if T = T. 

These random times were studied by Millar [5] who proved that they 

are Cl-birth times for a wide class of Markov probabilities in 

continuous time. 

The class BO possesses a nice closure property. Assume that 0 > 0 

and T > 0 are exact Cl - birth times so that for F ,G E F and n n n 

Cab' Dab coterminal the identities 

(3.34) 

(0 = n,Y 
o 

(T = n Y , T 

= (a,b» = (F ,Y = (a,b),e 
n n n 

= (c,d}) = (G,Y = (c,d),8 E C d) n n n c 

hold exactly for n E N+, (a,b), (c,d) E J2, cf. (3.9). Now consider 

the random time p = 0 + TOe • Then o 
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(p = n,Y = (a,b) ,Y = (c,d» = (H b'Y = (a,b) ,8 E Cab Dcd ) a p n, ann 

for suitable H b E F and consequently for P Markov n,a n 

(3.35) d P(8 E· IF y = (a,b),Y = (c,d» = P (. I Cab Dcd). 
p . I p' a p 

Thus p will not be a Cl - birth time for P unless for all (a,b), 

(c,d) with P(Ya = (a,b) ,Y p = (c,d» > 0 the inclusion Cab ~ Dcd 

holds pd..,.. a. s. However with Proposition 3.15 and Theorem 3.24 in 

mind, the following result is not surprising and easily proved. 

(3.36). Proposition. If a > 0, T > 0 belong to BO and both sa-

tisfy (3.23) with the same family of coterminal events, then also 

P E Ba where p = a + T 0 8 a. 

I shall conclude this section with some examples of random times 

which are Cl - birth times for all Markov probabilities P, but do 

not in general belong to the class Ba. The times are described in 

an explicitly algebraic fashion. 

(3.37). Example. 2 
Suppose that (Cab' (a,b) E J ) is a given family 

of coterminal events with 

for some Vab C J2 and all n E N+. It is then clear that the sets 

n n 
A = [n U (Yt E V~k) ]n(8n E CYn ) 

n k=l t=k+l 

are mutually disjoint for n E N+ (for any w E Q there can be at 

most one n E N+ with 8n w E C ), and hence any random time T 
wn-lwn 

satisfying 

(T = n) = A 
n 
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is by (3.9) a cr - birth time for any Harkov probability P. 

(3.38). Example. With the (Cab) as in the previous example, take 

A 
n 

A = (8 
n n 

= !2l,1 ::;; k < n,8 
n 

Again the A are disjoint and any T with (T = n) = A for n E N+ 
n n 

or 

is a cr - birth time for all P I in the second case because for all 

(a, b) 

is a coterminal event. 

Throughout this section r have discussed cr - birth times T which 

by definition obey a strong Harkov property involving conditional 

independence of the pre - T and post ... T processes given Y . Other 
T 

authors have studied birth times where this conditional indepen-

dence occurs when conditioning not only on Y but also on some 
T 

auxiliary F ... measurable variable. 
T 

Thus, in [4] Millar has introduced (for processes in continuous 

time) randomi.sed coterminal times and shown that if T is such a 

time, . then conditionally on F the post - T process is Harkov with 
T 

a transition function depending on X and a F ..,. measurable vari-
T T 

able Z. Therefore, unless Z is a function of (X ,X), T will not 
T- T 

be a Cl -- birth time. 

Hillar's definition of randomised coterminaltimes is implicitly 

algebraic and qui-te complicated. Simpler examples of birth times 
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with a conditional independence property involving an extra vari-

able can be found in Getoor [1]. 

From (3.35) it follows that with 0, T given by (3.34), the random 

time p = 0 + TOe will be a birth time with the kind of condi tio
o 

nal independence discussed by Millar and Getoor, provided Y is o 

F .,.. measurable. Finally it may be remarked that Hillar points out 
p 

that the class of randomised coterminal times is closed under the 

addi tion (0, T) ~ 0 + TOe 0. 

4. Cl - death times and theclassVO 

This section contains characterisation results for classes of Cl-

death times (see Definition 2.3) for a Markov probability P. 

As pointed out in [3], the results on regular birth times and the 

corresponding results on death times are duals. This duality is 

prevalent also in the theory of Cl - birth times and cr - death 

times, so the death time results will be presented in the same 

order as their analogues in Section 3. 

Recall the definition of a regular death time (see [3] or Section 

2 above) and Definition 5.1 in [3] of the class V. 

The main result, Theorem 5.2, in Section 5 of [3] states that a 

random time T is a regular death time for the Markov probability 

pX iff T is pX - equivalent to a random time in V. 

A remark in [3] shows how this result. may be generalised to Harkov 
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probabilities with a non ~ degenerate start. Since I shall need 

this generalisation here, I shall redefine V and restate the regu-

lar death time theorem. 

If H c J, V c J2, let THV denote the modified terminal time 

o 
THV = { inf 

if Xo E H 

{n E N+ ; Yn E V} otherwise. 

The class V is now defined to comprise all random times T of the 

form 

(4.1) T = sup {n 1 < < n = THV ' 

for some H c J, V c J2, F E F. (By the usual convention T = 0 if 

the set in brackets is empty; in particular T = 0 on (Xo EH». 

Then the following is true: T is a regular death time for the 

Markov probability P iff T is P - equivalent to a random time in V. 

(4.2). Lemma. A finite random time T belongs to V iff there 

exists H c J, V c J2, F E F such that 

(4.3) h = n) = (Xo EH, Y k E V I 1 .:;;; k < n, 8 n ."..-1 E F) 

(For n = 1, (4.3) reads h = 1) = (Xo E H, F». 

Proof. Comparing with Proposition 5.3 (c) in [3] it is easy to 

see that if T is finite and given by (4.1), then T satisfies (4.3) 

with F = h' = 1), where using the notation from [3], T' = T 
VCF 

If conversely T is finite and satisfies (4.3), there is for each 

W at most one n E N+ such that Wo E H, (wk-l'wk ) E V, 1 ~ k < n, 
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8 lW E F. Describing this n in particular as the last n for which n-

1 < n < T c c(w), 8n _ l w E F shows that T E V. 
H V 

o 

There is a switch in notation from (4.1) to (4.3). For instance 

(4.1) forbids transitions in V prior to T, while (4.3) demands 

that all pre - T transitions belong to V. Of course (4.1) is model-

led upon the definition of V from [3], but it does seem more rea-

sonable to denote the set of possible pre - T transitions by V 

rather than Vc. 

The characterisation (4.3) of finite times in V corresponds to the 

following description of strictly positive times in B: a random 

time T > 0 belongs to B iff there exists a coterminal C and for 

every n E N, F E Fn such that (T = n) = (F ,8 E C), cf. (3.16) of n n n 

[3]. In particular the counterpart of the co terminal event C is 

the sequence T = (Tn , n E N+) of terminal events 

(4.4) Tn = (Xo E H, Yk E V, 1 ~ k < n) • 

Of course the invariant part of C matches the initial part 

(Xo E H) of each Tn. Notice that Tn E Fn _ l " 

The next two results are the duals of Propositions 3.7 and 3.8. 

The proofs are combined into one. For Hab c J, Vab C J2 the nota

tion T~b is used for the event in Fn - l given by (4.4) using Hab , 

n 
Vah instead of H, V, and Tab for the sequence (Tab). 

(4.5). Proposition. A random time T is a Cl - death time for the 

2 Markov probability P if and only if for every (a,b) E J the ran-

dom time Tab defined by 



(4.6) T = f T 
ab L 0 

is a regular death time for P. 
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on (Y = (a,b» 
T 

otherwise 

(4.7). Proposition. A random time T is a Cl - death time for P if 

2 
and only if there exists F E F and for every (a,b) E J subsets 

2 
Hab C J, Vab C J such that 

(4.8) 

for n E N+" 

n,Y 
T 

= (a,b» 
n 

= (T b'Y a n = (a,b), 8n - l E F) 

Proofs. With T arbitrary and the Tab given by (4.6), 

(4.9) 

P - a.s. 

on (YT = (a,b» = hab > 0), where (for an arbitrary random time 

T) G r"T is the sub (5""~ algebra of F generated by the sets (T = 0) 1 

(T = 00), (0 < T < 00,8 T..,.1 E F) for F E F. 

Suppose T is a Cl..,. death time for P. Then by (4.9) the pre- Tab 

and post ,,"". Tab processes are independent given 

(YT = (a,b» = (Tab> 0) = (XT(ab)_l = a). Therefore Tab has the 

conditional independence property required of regular death times. 

Furthermore, (4.9) implies that the pre _·T ab process given 

(Tab> 0) is Markov, and therefore, by the definition of the pre

Tab process as (6.,6., ••• ) on hab = 0), so is the unconditional 

pre .". Tab process. 

Thus each Tab is a regular death time for P and hence in view of 

the modified version of Theorem 5.2 of [3] quoted above and Lemma 

4.2, there exists Hab C J, Vab C J2, Fab E F such that 
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n = n) = (T b,e 1 E F b) P-a.s. 

for n € N+_ Taking F = 

(4.8) holds. 

U 
(a ,b) 

a n- a 

(y~ = 
J. 

(a,b) ,Fap) it is seen that 

If conversely (4.8) holds, the definition of Tab and Lemma 4.2 

shows each Tab to be a regular death time for P. 

Finally, if all Tab are regular death times for PT (4.9) implies 

that T is a conditional independence time and that the pre - T pro-

cess given (Y = (a,b» is Markov with transitions equal to those 
T 

of the unconditional pre - Tab process. o 

Suppose now that T is a CI~death time for P satisfying (4.8). Let 

Jab denote the range in J of the conditional pre - T process given 

(Y = (a,b» so that 
T 

Jab =. {x E J: 2: 
n~O 

P(X = X,T > n,Y = (a,b» > O}, 
n T 

in particular Jab = 0 if P(YT = (a,b» = O. (If this probability 

is strictly positive, the full range is of course Jab U {L1}). 

For (a,b) such that P (YT = (a,b» > 0 define gab: J ~ 1R by 

(4.10) 

(For n = 1 the condition Yk E Vab , 1 ~ k < n is vacuous and the 

term in the sum is just pZ(XO = a) = 1 if Z = a and = 0 other

wise). Now 

(4.11) P(X =x,T>n,Y =(a,b» = 
n T 
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= [P(X =X,Tnb+l )][ L pX(YoEV b,l~l<k-n,xk l=a) ] [pa(Xl=b,P) ] 
n a k>n -L a r-n-

a 
and consequently, if P(YT = (a,b)) > 0 necessarily P (Xl = b,F) > 0 

and in that case 

(4.12 ) x E Jab ~ P(X 
n 

= Tn+l) x, ab > 0, gab (x) > 0 • 

Als~ if ~ is the initial law of P, ~(Hab) > o. 

The aim of the next result is to describe the law of the pre - T 

process given Y . The remarks just made ensure that the denomina
T 

tors in (4.14) f (4.15) below are strictly pos~tive. 

(4.13) . Lemma. If T is a Cl - death time for P~ satisfying (4.8), 

then for every (a,b) with P~(Y = (a,b)) > 0 the (stochastic) ini
T 

tial law vab and (substochastic) transition function rab of the 

pre .... T process given (Y = (a,b)) are determined by 
T 

(4.14 ) vab (x) = ~ (x) IH (x) gab (x) / L ~ (y) gab (y) 
ab yEHab 

(x E J) , 

(4.15) 

Proof. 

rab(x,y) 
gah (y) 

= p(x,y) 1 (x,y) 
Vab gab (x) 

Clearly 

v (x) = P~(X = x j Y = (a b)) ab 0 T f 

(XEJab , yEJ). 

and vab is stochastic on Jab since given (Y T = (a,b)) the pre .... T 

process is alive certainly at time O. But 

P~ (X = o X v 
, .l-

T 
= (a,b)) b,F) 
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by (4.11) and from this (4.14) follows by normalisation. 

For the proof of (4.15) it is clear that 

rab(x,y) = P(Xn+l = y,T > n + 1 I Xn = X,T > n,Y = (a,b» 
T 

for x E Jab' y E J and any n E N such that the event conditioned 

upon has probability > O. Now by a derivation similar to that of 

(4.11 ) 

and from this (4.15) follows since 

o 

With this lemma and the remarks preceding it in mind, a mapping IS 

which is the dual of the B from (3.3) may be defined as follows. 

Suppose given a probability V on J, a (in general substochastic) 

transition function p on J, a state a 

of terminal events given by (4.4). 

Define g : J -? JR by 

n 
E J and a sequence T = (T ) 

g(x) = x 
~ P (Yk £ V,l & k < n,Xn _ l = a) 

n>O 

and write 

for the triple consisting of the set 

J T =. {x E J ~ Pp(X = XrTn+l) > 0, g(x) > O} I 

n~O n 

the probability 

(4.16) v (x) = V (x) lH (x) g (x) / ~P (y) g (y) 
yEH 
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on J T , and the transition function r on J T given by 

(4.17) r (x , y) = p (x, y) IV (x I y) ~ ~ i ~ . 

Naturally (4.16) and (4.17) only make sense and are only of in-

terest when J T * ~. In that case one should think of v as defined 

on all of J and r(x,y) as defined for all x E J T , Y E J. The as

sertions that v is a probability on J T and that r is substochastic 

on J T are then proved easily. It is also seen that for x E J T , 

r(x,y) > 0 only if y E J T so that no relevant probability mass is 

discarded by restricting r to JTo 

With the notation from Lemma 4.13 in particular 

The role of 0 is therefore to identify the law of the conditional 

pre..". T process given Y , and 0 picks out the three ingredients de
T 

scribing that law as a probability on D~: the range space, the 

initial measure and the transition function. 

Remark. For T a Cl.".,death time for p]J, Lemma 4.13 provided the 

law of the conditional pre - T process given Y run in the forward 
T 

direction of time. Following the discussion in Section 2 on time 

reversal one might of course as well have found the law of the 

conditional pre.,.. T process run backwards. Retaining the notation 

from Lemma 4.13 and conditioning on (Y = (a,b)) I it is clear from 
. T 

(2.4) that the reversed pre - T process (which of course starts at 

a) has transition function 
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A e(y) 
rab(x,y) = rab(y,x) e(x) 

on Jab' where 

e (z) = L pll(X = ZfT > nl Y = (a,b) ) 
n~O n T 

Invoking (4.15) and (4.12) it is seen that 

(4.18) 

where 

A 

rab(x,y) 

fab(z) = 

fab(y) 
= p(y,x) 1 (y x) 

Vab ' fab(x) 

L 
n~O 

P ll(X Tn+l) n = z, ab 

A 

. 

In accordance with the remarks in Section 2, rab depends on II 

while rab does not. This is the reason for considering the forward 

direction of time when defining o. 

Consider again a Cl .... death time T for P and define the death time 

relation for T with respect to P as the relation -< on J2 given by 
T,P 

(c I d) -< 
T,P 

(a,b) {:> L 
n>O 

P(Y = (c;d),T >n,Y = (a,b)) >0 , 
n T 

i.e. (c,d) -< (a,b) if it is possible to have an (a,b) - transi-
. T,P 

tion at time T with a (c,d) - transition preceding it. Usually I 

shall write -< instead of -< 
T,P 

(4.19). Definition. A Cl - death time T for pll is calledtransi-

tion reproducing if 

whenever pll(y = (cTd)) > 0 . 
T 
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For later reference it is useful to write out in detail what the 

definition means in terms of range spaces r initial measures and 

transition functions. It is seen that T is transition reproducing 

(4.20) 

(4.21) 

(4.22) 

< (a,b) implies (for P~(Y = (c,d» > 0) 
T 

=. {x E J: L 
n~O 

rv 

rcd(x,y) 
gCd (y) 

= rab(x,y) Iv (x,y) 
cd gcd(x) 

where gcd : J ~ JR is defined by 

(4.23) gcd(x) = 

(x E J) f 

c) . 

From these considerations it is easily checked that the definition 

is consistent so that although the sequence Tcd is not uniquely 

determined from Pr 8 (vab,rab,c,Tcd) does not depend on the choice 

of Tcd • 

(4.24). Proposition. If T is a transition reproducing Cl - death 

time for P, then the relation">( is transi ti ve. 
T,P 

Proof. Suppose T satisfies (4.8). In terms of the conditional 

pre - T process the condition that (c,d) -< (a,b) is equivalent to 

requiring that P(Y = (a,b» > 0 and that 
T 

RV (ab) (Y = ( c , d» > 0 • 
ab n 
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To show that -< is transitive it is therefore enough to show that 

(c,d) -< (a,b), (e,f) -< (c,d) implies 

(4.25) L 
n>O 

RV (ab) (Y = ( e , f» > 0 . 
ab n 

But because T is transition reproducing, (4.20)~ (4.22) show that 

J cd C Jab and that for x, y E J cd ' vcd(x) > 0 only if Vab(x) > 0 

and rcd(x,y) > 0 only if rab(x,y) > O. Since 

L 
n>O 

RV(cd)(y = (e,f» >0 
cd n 

by the assumption (e,f) -< (c,d), (4.25) now follows. o 

(4.26). Proposition. A random time T is a transition reproducing 

cr - death time for the Markov probability P if and only if there 

exists F E F and for every (a/b) E J2 subsets Hab C J, Vab C J2 

such that 

(4.27) (T = n,Y = (a,b» 
T 

for n E N+, and 

(4.28) (c I d) -< (a,b) ~ Hcd C Hab , 
T,P 

P-a.s. 

Proof. Suppose that T satisfies (4.27) with respect to P = p]J 

and is transition reproducing. Define 

* Hab = Hab n {x E Jab: ]J (x) > O} , 

From (4.14) I (4.15) it follows immediately that (4.27) holds with 

* * the Hab , Vab replaced by Hab , Vab and of course that (4.14), (4.15) 
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themselves are not altered by this replacement. For the 'only if' 

assertion it therefore remains to show that (4.28) is valid after 

this replacement. 

To see this assume that (c,d) < (a,b) and P(Y = (c,d» > O. By 
T 

* * assumption (4.20) - (4.22) hold (with Hab , Vab inserted through-

out) and the argument is then completed by verifying the following 

implications using also (4.12), (4.14) and (4.15), 

* * (x,y) E Vcd ~ rcd(x,y) > 0 ~ rab(x,y) > 0 ~ (x,y) E Vab . 

The 'if' assertion of the proposition is proved by showing that 

for a T satisfying (4.27) and (4.28), (4.20) - (4.22) are valid 

when (c,d) < (afb), P(YT = (c,d» > O. By (4.28)! T~~l C T~~l 

for every n so that certainly J cd C Jab. But then the three de

sired identities follow easily when appealing to (4.14), (4.15) 

and observing that the gcd from (4.23) because of (4.28) satisfies 

(4.29). Definition. 

(4.30) 

gab Cc) 

= gcd(x) gab (x) 

Let VO be the class of rand6mtimesT such 

where F E F is arbitrary and for each transition (a,b) E J2, 

Hab c J, Vab C J2 are arbitrary with 

o 
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Tn = (X E H Y E Vab,l ~ k < n) ab 0 ab' k 

determining the associated sequence of terminal events. 

See also Proposition 4.32 below. 

The main result on transition reproducing Cl - death times can now 

be stated. The proof is structurally identical to that of Theorem 

3.24 and is therefore omitted. 

(4.31). Theorem. A random time T is a transition reproducing 

Cl - death time for the Markov probability P if and only if T is 

P - equivalent to a random time in VO. 

If T satisfies (4.30) and P~ is Markov with P~(Y = (a,b» > 0, 
T 

the range space, initial measure and transition function for the 

conditional pre..,.. T process given (Y = (a,b» are determined by 
T 

* * (4.12), (4.14) and (4.15) respectively when substituting Hab , Vab 

for Hab , Vab there and in (4.10) I where 

The dual of Proposition 3.31 is the following result. 

(4.32). Proposition. A random time T belongs to VO if and only 

2 if there exists F E f and for every (a,b) E J a subset Hab c J 

and a transi ti ve relation -.( on J2 compatible with the Hab in the 

sense that (c,d) -.( (a,b) '* Hcd c Hab , such that for nO E N+ 

= n $> o 

n = o wOEH , (wk l'wk)«w l'w )Tl~k<n,e lWEF} W W - n- n n-n-l n 
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As in the birth time case there is a minimal relation -< which 
T 

can be used to represent T E DO in this manner, viz. 

(cid) -< (a,b) {=> 
T 

3 wEn, nEN+ with n < T (w) such that Yn (w) = (c,d), Y (w) 
T 

= (a,b) . 

(4. 33). Example. The random times .I, T from Example 3.33 both 

belong to DO. 

I shall conclude this section with some further remarks on time 

reversal and duality. Suppose T is a cr - death time for pJ1 satis-

fying (4.8) so that the law of the pre - T chain given (Y = (a,b» 
T 

is determined by (4.12), (4.14) I (4.15) with gab given by (4.10). 

Also, (4.18) yields the transition function for the reversed 

pre - T process given (Y = (a,b». 
T 

It is clear from (4.8) that without loss of generality it may and 

henceforth shall be assumed that 

(4.34) L PJ1(X = x) > 0 
n~O n 

(x E J) • 

The sequence (T~b) of terminal events when read backwards corre

sponds to the coterminal event 

1\ 1\ < 
Cab = (Yk E Vab , 1 k < s, X E Hab ) 

s-l 

1\ 
k ~ 1) = (Yk E Vab U (Hab x {id) U {(/:'r!::,.)}, 

in the space ~Hs < (0) to which the paths of the reversed conditi-

onal pre - T process belong. (Of course 

~ab = {(x,y) E J2 ~ (y,x) E Vab }). It is therefore natural to at

tempt to interpret the law of the reversed pre - T process given 
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(Y = (a,b)) as the conditional Markov probability 
T 

(4.35) 

" for some transition function p (not depending on (a,b)) in duality 

to p and depending (cf. (4.18)) on ~. 

lYlore precisely, I want to find !; : J ~ JR strictly positive and 

subinvariant such that with 

" (4.36) p(x,y) = 
!;(y) 

p(y,x) !;(x) , 

the identity (cf. (3.4)) 

(4.37) " p(x,y) 1" (x,y) 
Vab 

" = rab(x,y) 

holds for all (a,b) with P~(YT = (a,b)) > 0, all x E Jab' y E J 

with in particular 

(4.38) 

I shall not do this in complete generality but restrict myself to 

the case where all states x E J are transient (with respect to p) . 

Then the series (4.34) converges for all x E J and I claim that 

with the natural choice 

q;(x) = L 
n£O 

" 

P~(X = x) 
n 

(which by (4.34) is > 0), the p given by (4.36) is a substocha-

stic transition function generating a Markov chain with finite 

life time such that the requirements (4.37) and (4.38) are met. 
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It is easy and standard that 

(4.39) 2: p(z,y) ~(z) = ~(y) - ]J(Y) 
zEJ 

A 
Therefore ~ is subinvariant for p and p is substochastic. 

A A 
Since p(y,~) = 1 - 2: p(y,z), (4.39) may also be written 

zEJ 
A 

(4.40) ~(y) p(y,~) = ]J(Y) 

(y E J). 

(y E J) 

AX 
and using this it is easy to see that each P has finite life time: 

AX 
P (s < 00) = 2: 2: 

n~l yEJ 

= 2: 2: 
n~l yEJ 

= 1 . 

= y,X =~) 
n 

= x) ~ (y) ~ (y 6) 
~ (x) , 

It remains to check that (4.37) and (4.38) are valid. But compar-

ing (4.18) with (4.36) and (4.37) it is seen that for this it is 

sufficient that (4.38) holds and that 

.~. (Y) 
Ay A 
P (Cab) fah(y) 

. -
A A fab (x) ~(x) pX(Cab ) 

It is therefore enough even that for some K > 0 

(4.41) (x E J), 

since (4.38) then follows in particular because fab > 0 on Jab' 

(cf.(4.12». 

Now by the definition of f ab , 
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fab(x) = ]J (y) x) , 

while 

AX < __ 
~ ~ P (Yk· E Vb' 1 = k < n, X 1 - y, X - 6) > a n- n 

n=l yEHab 

which by (4.40) reduces to the expression for fab(x) and (4.41) 

is proved. 

5. The class BO n VO 

In [3] Theorem 6.2, it was shown that if the transition function 

P is irreducible, a random time T is both a regular birth time and 

a regular death time for P iff T is P - equivalent to a terminal or 

a coterminal time. 

As a purely algebraic analogue of this result, I shall in this 

section describe the intersection of the classes BO and VO. A cha-

racterisation result similar to Theorems 3.24 and 4.31 may then be 

obtained by showing (which is not too difficult) that a random 

time T is a transition reproducing cr ..,. birth and cr - death time 

for a Markov probability P iff T is P - equivalent to a random time 

in BO n VO. 

( 5 . 1). Definition. Two transitive relations >- and -< on J2 are 

said to behearly disjoint if it is impossible to find n ~ 2 and 

,x E J such that 
n 
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(x. l'x.) , 1- 1 

(x. l' x.) -< (x l' x ) I 1- 1 n- n 

(1 < i < n) 

(1 ~ i < n) • 

(5.3). Example. If > and -< are disjoint (as subsets of 
2 2 

J x J ) they are nearly disjoint: for (5.2) to hold it is requi-

red in particular that (xO,xl ) 

(x O ,xl) 0< (xn..,.l'xn ). 

>- (x l' x ) and n- n 

The desired result is the following proposition. 

(5.4). Proposition. If a random time T belongs to the intersec-

tion BO n VO, then there exists two nearly disjoint relations >

and 0< on J2 and for every (a,b) E J2 there exists invariant 

C E F and subsets Hab C J such that the relation > and the co,ab 

C b are compatible and the relation 0< and the Hab are compaco,a 

tible and 

2 
for n E N+, (a,b) E J . 

If conversely the relations >- and 0< and the Cco,ab' Hab are given 

with >- and ~ nearly disjoint and the compatibility conditions 

above satisfied, then the sets on the right hand side of (5.5) are 

mutually disjoint and (5.5) defines a random time T belonging to 

BO n VO. 

Remark. The compatibility requirements are of course those ap-

pearing in Propositions 3.31 and 4.32. 
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Proof. One half is very easy. With >- and -< nearly disjoint it 

is immediate that the sets, from now on denoted by M, on the right 

of (5.5) are disjoint for nand (a,b) varying, and then it is 

clear from Propositions 3.31 and 4.32 that T E BO n vO. 

Suppose now that T E BO n VO. From Propositions 3.31 and 4.32 two 

descriptions of T are available so that 

(5. 6) h=n,Y = (a,b» = (F,Y = (a,b),(a,b)>-Yk,k>n, c ) 
T n n =, ab 

= (XOEH b'Yk~(a,b) Il~k<n,Y =(a,b) ,8 lEF) a . n n-

where we may and shall assume that >- = >- and...:::: = "< are the mini-
T T 

mal relations associated with T as described following the two 

propositions. (But F E F , F E F are sets which are not the same 
n n 

as the ones appearing in the representations of T in the proposi-

tions) . 

Intersecting the two sets on the right of (5.6) it is seen that 

(T = n, Y = (a,b» cM. For the converse, suppose that w E M. 
T 

Then of course (a,b) >- (wk-l,wk ) for k > n which in view of the 

definition of >- is enough to guarantee that (Y = (a,b» * \Z5. But 
T T 

if w, E (Y = (a,b» with T w' = m, the first half of (5.6) shows 
T 

that the path 

, , , 
W = (wO' 

belongs to (T = m,Y = (a,b» and therefore, by the second half of 
T 

(5.6) I it is true that 8 lW E F. Because W E M another applican-

tion of the second half of (5.6) shows that W E (T = n,Y = (a,b». 
T 

Thus (5.5) holds and it remains only to see that '/ and < are nearly 

disjoint. Therefore assume that n ~ 2 and x o' ... ,x E J exist 
n 
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so that (5.2) holds. Then in particular (xO,xl ) ~ (x .1 ,X ) so n- n 

by the minimality of >- and -<, (YT = (xO,xl » :f: l25, 

(Y = (x l'x» :f: l25 and (5.5) implies the existence of m E N+ 
T n- n 

and aO' . . . ,am with aO E H , (a. l,a.) -< (xO,xl ) for 
XOXl 1.... 1 

1 < i < m, (am .... l,am) = (xO,xl ) and of 13 = (13 0 ,131 , ... ) with 

(13 0 ,13 1 ) = (xn- l ,xn ) , (xn..,.l'xn ) >- (B. 1,13.) for i > n, 
1- 1 

13 E C • But now consider the path 
oo,X IX n- n 

and verify that because >- and -< are transitive and 

w E (T = m, Y 
T 

which is impossible. 

=> C 
00 x x' , n-l n 

(5.5) shows that 

m + n - 1,Y 
T 

= (x l'x)) n- n 

It should be emphasized that it is necessary to consider 

o 

nearly disjoint rather than disjoint relations in the proposition. 

Due to the minimality of ::r and -<, to see this it is enough to 
T T 

give an example of aTE BO n VO and transitions (a,b), (c,d) such 

that (a,b) ~ (c,d). But let e :f: f denote two states in J and 
T 

define (0 < T < co) as the union of the two disjoint sets 

Then >- and -< are given by 
T T 

(a ,b) >- (b,e), (e,c), (c,d) I (d,d) r 
T 

(a,b), (b,f), (f,e) -< 
T 

(cid) • 

(c, d) 

= d) , 

= d) . 

>- (d,d) I 
T 
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Clearly both relations are transitive so T E BO n VO, but 

(a,b) :>, ( d) '< c, . 
T 

These considerations incidentally show that BO n VO contains 

other random times than the ~I T discussed in Examples 3.33 and 

4.33, since for those the associated two relations are disjoint. 

I shall conclude with a brief description of the path decomposi-

tions valid for random times in BO n VO. 

Suppose T is given by (5.5) and let p~ be Markov. If 

p~ (Y = (a,b» > 0, then conditionally on (Y = (a,b» the pre - T 
T T 

and POSt-T processes are independent and both Markov with sta-

tionary transitions. 

If Vab is the initial law and rab the transition function of the 

condi tional pre - T process, then vab and r ab are given by (4.14) 

and (4.15) with 

V ab = {( x , y) E J 2 (x , y) '< ( a , b) } . 

Finally, the transition function gab of the conditional post - T 

process is given by (3.4) with 

2 V = {(x,y) E J : (a,b) >" (x,y)}, 

C = (Y E V,n E N+,C b) n co,a 
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