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Statisticians as a contribution to the discussion in the session 

v on robustness organized by Jana Jureckova. 
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1. The theory of robustness concerns itself with the behaviour 

of estimators and teststatistics when the underlying model is mo

difieq slightly. There seems to be at least two possible formula

tions of this modification which are not always clearly separated. 

The first is the model /supermodel formulation where as an example 

one can think of the normal distribution as embedded in a family 

of heavy tailed distributions or in the class of all distribu~ 

tions. The idea then is to modify the estimator (X) such that it 

behaves reasonably well under the various alternatives while pay

ing the price of a small loss of efficiency if the model is true. 

This first formulation leads to an investigation of the estimator 

in a neighbourhood of the small model. This is the approach taken 

by Tukey (1960) and Huber (1964). 

The other formulation is that we have a model but want to safe

guard ourselves against gross errors or irregular observations. 

It is not obvious that the best formulation is in terms of a sto

chastic description of the gross errors. The nature of a gross 

error is such that we want to set it aside and consider it sepa

rately, this is not the usual attitude towards observations from 

a distribution. 

This second formulation pOints towards a modification of the esti

mator with the purpose of making it insensitive or more stable to 

a few wild observations. Thus one would find the best estimator 

under some restriction, like a bound on the influence curve, and 

evaluate its performance under the model. This is the approach 

taken by Hampel (1968). 
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There seems to be a strong interrelation between the results de

rived from the two formulations in the sense that stable estima

tors are often robust against heavy tails and vice versa. 

A similar result is not found in sampling inspection, where the 

two types of contamination have been discussed by Hald (1979). One 

can either safeguard the sampling plan against a few wrong batches 

with a too large percentage defective or one can find the optimal 

plan in the presence of a heavy tail in the prior distribution. 

A detailed discussion of various types of models far outliers has 

been given by Barnett and Lewis (1978). 

2. The next remark on gross errors also concerns the adequacy 

of the usual location - scale model. 

If you observe y = ]J + a x then x is the error and y the respon

se. The usual formulation of gross errors is: that something went 

wrong with x. 

In reporting data the error often occurs in y. Two typical examples 

are wrong decimal points and interchange of two digits. This type 

of error is certainly not location and scale invariant and hence 

can not be attributed to x. The usual formulation thus seems to be 

inadequate for this type of error. 

3. A final remark on gross errors of the random type has to do 

with some new models investigated by Barndorff - Nielsen (1977), 

who found that in describing the distribution of the size of sand

particles a distribution of the type 
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fitted well. 

It is seen that this type of distribution has exponential tails 

and one can show that it interpolates (in some sense) between the 

normal distribution and the double exponential distribution. 

It is interesting to note that the influence curve for the maxi-

mum likelihood estimator remains bounded and can be considered a 

smooth version of Hubers M - estimate given by p (x) = x 2 / 2, 

Ixl ~ k, p(x) = klxl - k 2 / 2, Ixl > k. 

4. My final comment will have to do with the application of an-

cillarity to robustness, and is taken from the recent book by Fra-

ser (1979). Similar points of view have been expressed by Barnard 

at various occasions, see Barnard (1974). 

The normal distribution has the beautiful property that 

is sufficient for (~,02) and independent of 

d = (Xl - X, ... ,xn - x) Is, which is ancillary. 

- 2 (x, s ) 

The exponential families generalize the normal distribution in 

that they insist on the sufficiency, whereas the location - scale 

models generalize in the other direction and preserve ancillarity. 

It seems reasonable to exploit the property of ancillarity in 10-

cation - scale families as follows: Since the distribution of 

d = ((xi - x) / s) n, does not involve the unknown parameters 
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(~,02) we want to establish confidence intervals and estimates 

conditional on the observed value of d. 

This is done as follows, choose a location and scale estimate, x, 

s, say, and define t (x) = (X' - ~) Vii Is, u (x) = s I 0 then a con-

fidence interval for ~ can be derived from the distribution of 

t(x) given d(x), and for 0 from the distribution of u(x) given 

d (x) • 

This procedure has the important and interesting property that it 

is independent of the choice of which location and scale estimate 

- 2 I 12 we take. If instead of (x,s) we choose (xl' x 2 - xl ) and 

construct the confidence interval for ~ from (xl - ~) I IX2 - xII 

and for 0 from IX2 - xII then it is easy to see, that we get the 

same confidence intervals. The reason for this is that for given 

value of d (x), there is a one - to - one linear transformation be-

tween the first and second set of statistics which implies that 

the confidence intervals are the same. Thus the procedure gives a 

uniquely defined confidence interval. 

This has the interesting implication for robust procedures that if 

you prefer to work with, say, an Cl - trimmed mean, then you loose 

no efficiency under the true model. Obviously you need not use the 

Cl - trimmed mean, since the conditional confidence interval based 

on it is nothing but x ± t s Ivn, where t has to be chosen in the 

distribution of (X' - ~) Vn I s given d. 

The same book by Fraser also has some suggestions for robust pro-

cedures. 
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Consider the model 

f (.~ - ]l\l 
A a) a 

where A is a shape parameter. As an example one can take a Student 

(A) distribution, a Weibull or a gamma distribution. The distribu

tion of d = ((x. - x) / s) n, depends only on A and it is therefore 
1 

again relevant to use d to estimate the shape of the error distri-

bution and make inference on (]l,a) conditional on d. In the fo1-

lowing we shall assume A fixed and known, and show by example how 

the conditional procedures have some nice robustness and stability 

properties. 

Two sets of 30 random numbers were generated. The first N(lO,l) 

the second Student (3) (10,1.1966). The reason for the scaling is 

that the probability of the interval [9,11] should be the same in 

both cases. 

We shall apply a normal analysis and a Student (3) analysis to the 

two samples. 

The first figure shows the result for the normal sample 
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Figure 1 

Student (3) analysis 

The distribution of t(x) for A = 3, 00; the normal sample. 

Fraser: Inference in Linear Models. (;1979) Figure 2 - 5 

Reproduced with the kind permission of the publisher. 

Note that the two analyses give almost identical results. 

For the Student (3) sample we get the next figure which clearly 

shows 
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Figure 2 

Student (3) analysis 

0.56 

Normal analysis 

6.00 

The distribution of t(x) for A = 3, 00; the Student sample. 

Fraser: Inference in Linear Models (1979) Figure 2-8 

Reproduced with the kind permission of the publisher. 

that the normal analysis is not robust to heavy tails. Comparing 

the two figures we see that the Student (3) analysis in both cases 

gave a reasonable analysis of the data whereas the normal analysis 

does not. Thus the Student (3) analysis is robust. 

It is also stable to extreme observations. Consider a normal samp-

le of 30 with one observation moved.out various multiples of the 

standard deviation. 

The distribution of (x - ll) Vn / s is constructed for each sample 

and rescaled to be comparable. For the normal analysis we find 
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Figure 3 

0.45 

8.00 

One observation displaced 0, - 2 s , - 4 s , - 6 s - 8 s for y y y' y 

a normal sample of 30: the normal analysis t - statistic di-

stribution has been rescaled to be comparable. 

Fraser: Inference in Linear Models (1979) Figure 2 - 10 

Reproduced with the kind permission of the publisher. 

which shows how sensitive the normal analysis is to a single out-

lier. 

The Student (3) analysis, however, is rather insensitive to a 

single large observation. 
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Figure 4 

0.40 

- 2s y 
- 4sv 
- 65" 
- 8s~ 

5,00 6.00 

One observation displaced 0, - 2 Sy' - 4 Sy' - 6 Sy' - 8 Sy for a 

normal sample of 30: the Student (3) analysis t - statistic di-

stribu.'tion has been rescaled to be comparable. 

Fraser: Inference in Linear Models (1979) Figure 2 - 11 

Reproduced with the kind permission of the publisher. 

As a concluding remark let me point out that there seems to be 

two conflicting points of view when doing statistical inference. 

One is to build a model and then analyse it with respect to which 

estimator and test to use, the other is to start out with the es-

timator or test statistic without specifying the underlying model 

precisely. 

Sometimes, as in the theory of exponential families, one can show 

that for a given statistic one can find the model for which this 

statistic is the relevant to investigate. Thus in this sense there 

is no conflict but rather a complementarity between the two points 

of view. 
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The usual approach to robustness is that of trimming the usual es

timators in various ways, the approach outlined above emphasized 

the model more and derives the robust procedures. It will be inte

resting to see if these points of view are conflicting or comple

mentary. 
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