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Four Simple Characterizations of Standard Borel Spaces 

vii thout any reference to a topology or a metric 

The theory behind the usual definition of a standard Borel space 

(given below) is certainly not elementary [4]. These spaces are 

of great interest,e.g. the conditional distribution of a measur-

able mapping from a standard Borel space onto another such space 

admits a regular version ([4], p. 147). Our results are of some 

theoretical interest [5] and may also be of some educational value 

to those who don't want to coat their theorems in too technical 

terms. 

Definition 

A countably generated Borel space is a standard Borel space X if 

there exists a complete separable metric space Y (i.e. a Polish 

space) such that the a-algebra on X and the Borel a-algebra on Y 

are a-isomorphic. 

Theorem 

Let (X,F) denote a countably generated Borel space, and A denote 

a countable algebra over X generating F, i.e. F = a(A). 

Then 

a) (X,F) is standard iff there exist an A such that every finite 

and finitely additive measure on A is a-additive on A; 
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b) (X,o, F) is standard iff there exists an A such that every 

A-measurable partition of X is finite. [D ~ A is a A-measur-

able partition of X iff X = UD, 0 ~ D, and the sets in Dare 

pairwise disjoint]; 

c) (X,F) is standard iff there exist an A such that every cover-

ing C ~ A of A E A contains a finite subcovering; 

d) (X,F), is standard iff there exists an A which is semicompact 
n 

[A is semicompact iff An EA, n E:IN, n A :j: 0 for Vn implies 
n=l n 

n An :j: 0]. 
n>l 

Remark 

It will follow from the proof of the theorem, that if (X,F) is 

standard and A satisfies one of the conditions stated in a) ,b) ,e) , 

and d) then A satisfies all four. 

For the proof of the theorem we recall the following: Let Xl and 

X2 denote metric spaces. Two Borel sets Bl ~ Xl and B2 ~ X2 are 

called isomorphic, if there exists a bijection ~ : Bl -+ B2 such that 
-1 --

both ~ and ~ are measurable. Then the celebrated iso~9rphis~ 

theorem [4, p. 14] states: Suppose Xl and X2 are complete and se­

parable. Then Bl and B2 are isomorphic iff they have the same car­

dinality. 

Proof of the Theorem 

We shall first prove that a) ,b) ,e), and d) are equivalent, then "if" 
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in b) ,and finally "only if" in c) . 

"a) <=b )~'.c) ". Obvious. 

"a)=>b) ". Suppose every finite and finitely additive measure on A is 

a-additive. Suppose also that there exists an infinite partition 
00 

{A : n E ~}S A such that X = U An' Choose a F-atom en C A for 
n 00 n=l = n 

Vn E~. Define E = U e . From Prop. 1. (stated below!) we conclude 
n=l n 

that there exists a finitely additive measure Q : Ena({e : n E ~})~lli 
n 

00 

such that 1 = Q E) > I Q(en ) , i.e. Q is not a-additive. 
n=l 

Define a mapping P : A ~lli such that P(A) = Q(EnA) for VA E A. 
00 

Obviously P is finitely additive on A, but 1 = P(X) = Q(E) > I Q(en )= 
n=l 

00 00 

I Q(EnA ) = 
n=l n 

I P(A ) - a contradiction. Hence a) implies b). 
n=l n 

m 
"b)#d) ". Suppose A 

n E A(n EN) and n A * 0 for all m. It is suf­
n=l n 

ficient to consider the case (A) 1 strictly decreasing. If n A = 0 
n n~ n2: 1 n 

then c c c 
Al U Ul (An+ 1 'An) . Since A~+l'A~ * 0 this contra-

n> 

diets the finite paratition property. Hence b)=>d) . 

If {D : n E N} c A is a partition of X, then consider A = U D ,m E ~: n = m n 

Obviously n A = 0. From this follows d)=>b) . 
m 

m2:1 

"if" in b). This follows from Prop. 2. 

"only if" in c). We break the proof up into three cases. 

n2:m 

Case 1. Suppose F has only finitely many atoms. Then A = F serves 

our purpose. 



- 4 -

Case 2. Suppose F has infinitely but countably many atoms. Then the 

statement follows from Prop. 1. 

Case 3. Suppose F has uncountably many atoms. From the isomorphism 

theorem ([4], p. 14. See also p. 147) it follows that the usual 

cr-algebra over a complete separable metric space with uncountably 

many atoms is cr-isomorphic to the usual cr~algebra over M, where M 

is the countable product of {o,l} with the natural product topology. 

It is therefore sufficient to prove that there exists an algebra A 

with the required properties. We note that M is a separable, totally 

disconnected, and compact topological space [2]. Consider the alge-

bra AM over M generated by all sets of the form {(xl,x2, ... )E~1: xi=l}. 

These sets are countably many in number and clopen (i.e. both closed 

and open). Hence the same holds for the algebra AM' Since M is com­

pact it is clear that AM satisfies the requirments in c) . 

Remarks 

Suppose (X.,F.) is standard and A. has the properties stated in a) ,b), 
l l l 

c), and d) above, i = 1,2,3, .... Then Al contains at most finitely 

many Fl-atoms. Al is in general not unique and certainly not in 

Case 2. 

If F EFl' then (F,~nF) is standard but AlnF will not nesessarily 

have the required properties, if F ~ Al or F is not a Fl-atom. 

00 

IT (X.,F.) 
. 1 l l l= 

00 

is standard and the algebra IT A. (this is in general 
i=l l 

not a cr-algebra!) will have the required properties. 



- 5 -

On finitely additive measures 

In this section we shall prove the existence of a finitely additive 

probability measures [In short p-measure], which are not a-addi-

tive, on (X,F) where F contains infinitely but countably many atoms. 

Of course (X,F) is standard. The existence of such p-rneasures has 

probably been known for a long time ([2], ex. p.73; [3]), but we 

shall give our own proof because we want to digress a little from 

our main subject and look at the simplest structure of these measures. 

Proposition 1 

(X,F) is a Borel space with infinite but countably many atoms 

(i) 

00 

i= 0,1,2, •••• Hence X = U e., e i =F 0, eineJ. = 0 (i =F j). 
i=O l 

co 

The algebra A generated by the sets eaU U, em = 
m=n 

A , n E IN is 
n 

countable, generates F, and every A-measurable partition of 

X is finite. 

(ii) There exists a finitely additive p-measure on F which is not 

a-additive. 

Proof 

(i) It is clear that A is countable.F = a(A), since en = An~n+l' 
co 

n E:N, and eO = n An. If {F} 
n=l l 

is a partition of X, then for some 

i say i O' eO __ c F .. If F. E A 
lO lO 

ly many atoms, and =ll= {F,} < + co. 
l 

then X'-F. contains only finite­
lO 

(ii) The proof will follow from the considerations below, if we 
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note the obvious fact, that all Borel spaces with infinitely, but 

countably many atoms have a-isomorphic a-algebras, 

We shall use the following version of Riesz's well known represen~--

tation theorem quoted from [4] (p. 35): 

Let (X,p) be a metric space, C(X) be the Banach space of all bound-

ed real valued continuous functions with the sup-norm and the al-

gebra generated by all the open subsets of X. 

If A is a nonnegative linear functional on C(X) such that A(l) = 1, 

then there exists a unique finitely additive regular p-measure w 

on such that 

A(f) = ffdw for Vf E C(X). 

Conversely, if w is a finitely additive p-measure on then the map: 

f ~ ffdw is nonnegative, linear, and A(l) = 1. 

Suppose Xo E X and any neighbourhood of Xo contains infinitely many 

points.Define a nonnegative linear functional A on C(X): 

A(f) = f(x O) for Vf E C(X). 

A(l) = 1, and there exists a unique finitely additive regular p-

measure W on . Obviously wA = lA (x O) for VA E ()l , so p is a-addi-

tive. 

Consider the space (X,p), where X = X'{x O} and p = 
rv 

X X 



Define a mapping p 

where B(r) = '" {x E X 

Then for f,g E C(X), 
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C (X) -+ JR such that 

p(f) = lim sup f(x) 

r-+ Ox El3 (r) 

p(af + Sg) < ap(f) + Sp(g), a,SEJR. 

The set C = {f E C(X) : f = glx for some g E C(X)} is a linear sub­

space of C(X) and Plc is a nonnegative linear functional on C. Hence 

by the Hahn-Banach theorem there exists a nonnegative linear func-

tional A on C(X) such that A(f) = p(f) for Vf E C. Hence A(l) = 1. 

According to the quoted theorem there exists a unique finitely addi­

tive regular p-measure v on&. Obviously v(B(n- l ) = 1 for Vn EN. 

Since n B(n- l ) = 0 v is not a-additive. 
n=l 

Consider now the triple (X, Oi, v). It is possible to extend it to 

(X, en ,v) where 

Then v({xO}) = 0 and v is finitely additive but it is not regular 

(and of course not a-additive!). Consider {xo }; If G is an open 

set containing xo then v(G) = 1. 

It is interesting to note that v and V are singular in the sense 

that v({x o }) = 0 and v({x o }) = 1, although they represent the same 



functional on C(X), i.e. ffdv = ffd~ for all f E C(X). 

Suppose that X is infinite but countable. Denote the distinct ele-

ments in X by x n ' n = 0,1,2, .... Suppose also that lim p(xn'x O) = O. 
n 

Then it is seen that the conciderations above applied to (X,p) prove 

Prop 1. (ii) and reveal the simplest structure of finitely additive 

p-measure on (X,F) since in this case = F = the powerset of X. 

Example 

Suppose X is a countably infinite metric space where the distinct 

elements are x n ' n = 1,2, .... Let Ak denote the a-algebra gene­

rated by the sets {xk}U{xn : n ~ m},m = 1,2, .... Let A denote 

the cofinite algebra over X and F the powerset of X. Then 

Ak ~ A ~ F , a(A k ) = a(A) = F and Ak have the finite partition 

property stated in Prop. 1 (i). Suppose also that ~k is the point 

measure determined by ~k({xk}) = 1. Then we have, when k ~ 00: 

iff 

~k({X}) ~ 0 for Vx E X; 

~k(A) ~ v(A) for VA E A where v is finitely 

additive p-measure on A determined by v(A) 0 or 1 if *A < 00 

or :Jt: (X ....... A) < 00 respectively. 
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On totally disconnected compact spaces 

Proposition 2 

Let (X,F) denote a Borel space and A denote a countable algebra 

over X generating F. Suppose that any A-measurable partition of 

X is finite (See Th. b)). 

Then F is a-isomorphic to the naturnal (or usual!) Borel-algebra 

of a totally disconnected compact metric space. 

Proof: 

It follows that F is contably generated and hence contains its atoms. 

We shall identify the pOints in each F-atom and thus work with the 

canonical representation of (X,F) denoted in the following by (X,F) 

([4], p. 133). 

This identification process will map A onto can algebra denoted by 1. 

Obviously F and F are a-isomorphic. We note that A separates the 

points in X. 

Let T denote the topology having A as a base. Then it is clear that 

(X,T) is a separable Hausdorff space and F = a(T). Since the sets 

in A are clopen , i.e. both open and closed, the space (X,T) is 

totally disconnected [2]. The compactness follows from the finite 
- -------- ----- ,- ---- ------ ---- - - -

parti tion property assumed. It follows from th~ Urysohn metri2:ation 

theorem ([2], p. 24) that (X,T) is metrizable as a compact-and 
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therefore as a complete metric space. 

Remark 

It is easily proved that A contains every clopen set in T. We note 

also that A is a determinating class in the theory of weak conver­

gence ([1], Th 2 2), and every open set T is the disjoint union of 

countably many clopen sets. 
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