Ottó J. Björnsson

Four Simple Characterizations of Standard Borel Spaces

Ottó J. Björnsson

FOUR SIMPLE CHARACTERIZATIONS
 OF STANDARD BOREL SPACES

Preprint 1979 No. 4
without any reference to a topology or a metric

The theory behind the usual definition of a standard Borel space (given below) is certainly not elementary [4]. These spaces are of great interest, e.g. the conditional distribution of a measurable mapping from a standard Borel space onto another such space admits a regular version ([4], p. 147). Our results are of some theoretical interest [5] and may also be of some educational value to those who don't want to coat their theorems in too technical terms.

Definition

A countably generated Borel space is a standard Borel space X if there exists a complete separable metric space Y (i.e. a Polish space) such that the $\sigma-a l g e b r a$ on X and the Borel σ-algebra on Y are σ-isomorphic.

Theorem

Let (X, F) denote a countably generated Borel space, and A denote a countable algebra over X generating F, i.e. $F=\sigma(A)$.

Then
a) (X, F) is standard iff there exist an A such that every finite and finitely additive measure on A is σ-additive on A;
b) ($\mathrm{X}, F \mathrm{~F})$ is standard iff there exists an A such that every A-measurable partition of X is finite. $[D \subseteq A$ is a A-measurable partition of X iff $X=U D, \varnothing \notin D$, and the sets in D are pairwise disjoint];
c) (X, F) is standard iff there exist an A such that every covering $C \subseteq A$ of $A \in A$ contains a finite subcovering;
d) (X,F). is standard iff there exists an A which is semicompact [A is semicompact iff $A_{n} \in A, n \in \mathbb{N}, \bigcap_{n=1} A_{n} \neq \varnothing$ for $\forall n$ implies $\left.\cap_{n \geq 1}^{A_{n}} \neq \varnothing\right]$.

Remark

It will follow from the proof of the theorem, that if (X,F) is standard and A satisfies one of the conditions stated in a), b), c), and d) then A satisfies all four.

For the proof of the theorem we recall the following: Let X_{1} and X_{2} denote metric spaces. Two Borel sets $\mathrm{B}_{1} \subseteq \mathrm{X}_{1}$ and $\mathrm{B}_{2} \subseteq \mathrm{X}_{2}$ are called isomorphic, if there exists a bijection $\phi: B_{1} \rightarrow B_{2}$ such that both ϕ and ϕ^{-1} are measurable. Then the celebrated isomorphism theorem [4, p. 14] states: Suppose X_{1} and X_{2} are complete and separable. Then B_{1} and B_{2} are isomorphic iff they have the same cardinality.

Proof of the Theorem

in b), and finally "only if" in c).
"a) $\Leftrightarrow \mathrm{b}) \Leftrightarrow \mathrm{c})$ ". Obvious.
"a) $\Rightarrow \mathrm{b})$ ". Suppose every finite and finitely additive measure on A is σ-additive. Suppose also that there exists an infinite partition $\left\{A_{n}: n \in \mathbb{N}\right\} \subseteq A$ such that $X=\underset{n=1}{U} A_{n}$. Choose a F-atom $e_{n} \subseteq A_{n}$ for $\forall n \in \mathbb{N}$. Define $E=\underset{n=1}{U} e_{n}$. From Prop. 1. (stated below!) we conclude that there exists a finitely additive measure $Q: E \cap \sigma\left(\left\{e_{n}: n \in \mathbb{N}\right\}\right) \rightarrow \mathbb{R}$ such that $1=Q E)>\sum_{n=1} Q\left(e_{n}\right)$, i.e. Q is not σ-additive.

Define a mapping $P: A \rightarrow \mathbb{R}$ such that $P(A)=Q(E \cap A)$ for $\forall A \in A$. Obviously P is finitely additive on A, but $1=P(X)=Q(E)>\sum_{n=1}^{\sum} Q\left(e_{n}\right)=$ $\sum_{n=1}^{\infty} Q\left(E \cap A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)-$ a contradiction. Hence a) implies b). "b) $\Leftrightarrow d$)". Suppose $A_{n} \in A(n \in \mathbb{N})$ and $\bigcap_{n=1}^{m} A_{n} \neq \varnothing$ for all m. It is sufficient to consider the case $\left(A_{n}\right)_{n \geq 1}$ strictly decreasing. If $\cap_{n \geq 1} A_{n}=\varnothing$ then $X=\underset{n \geq 1}{U} A_{n}^{C}=A_{1}^{C} U \underset{n \geq 1}{U}\left(A_{n+1}^{C} \backslash A_{n}^{C}\right)$. Since $A_{n+1}^{C} \backslash A_{n}^{C} \neq \varnothing$ this contradicts the finite paratition property. Hence b) $\Rightarrow d$).

If $\left\{D_{n}: n \in \mathbb{N}\right\} \subseteq A$ is a partition of X, then consider $A_{m}=U_{n \geq m} D_{n}, m \in \mathbb{N}$: Obviously $\cap A_{m}=\not \emptyset$. From this follows $\left.\left.d\right) \Rightarrow b\right)$. $\mathrm{m} \geq 1$
"if" in b). This follows from Prop. 2.
"only if" in c). We break the proof up into three cases.

Case 1. Suppose F has only finitely many atoms. Then $A=F$ serves our purpose.

Case 2. Suppose F has infinitely but countably many atoms. Then the statement follows from Prop. 1.

Case 3. Suppose F has uncountably many atoms. From the isomorphism theorem ([4], p. 14. See also p. 147) it follows that the usual σ-algebra over a complete separable metric space with uncountably many atoms is σ-isomorphic to the usual σ-algebra over M, where M is the countable product of $\{0,1\}$ with the natural product topology. It is therefore sufficient to prove that there exists an algebra A with the required properties. We note that M is a separable, totally disconnected, and compact topological space [2]. Consider the algebra A_{M} over M generated by all sets of the form $\left\{\left(x_{1}, x_{2}, \ldots\right) \in M: x_{i}=1\right\}$. These sets are countably many in number and clopen (i.e. both closed and open). Hence the same holds for the algebra A_{M}. Since M is compact it is clear that A_{M} satisfies the requirments in c).

Remarks

Suppose $\left(X_{i}, F_{i}\right)$ is standard and A_{i} has the properties stated in a), b), c), and d) above, $i=1,2,3, \ldots$. Then A_{1} contains at most finitely many F_{1}-atoms. A_{1} is in general not unique and certainly not in Case 2.

If $F \in F_{1}$, then ($\left.F, F_{1} \cap F\right)$ is standard but $A_{1} \cap F$ will not nesessarily have the required properties, if $F \notin A_{1}$ or F is not a F_{1}-atom.

[^0]
On finitely additive measures

In this section we shall prove the existence of a finitely additive probability measures. [In short p-measure], which are not o-additive, on (X, F) where F contains infinitely but countably many atoms. Of course (X, F) is standard. The existence of such p-measures has probably been known for a long time ([2], ex. p.73; [3]), but we shall give our own proof because we want to digress a little from our main subject and look at the simplest structure of these measures.

Proposition 1

(X, F) is a Borel space with infinite but countably many atoms $e_{i}, i=0,1,2, \ldots$. Hence $x=\bigcup_{i=0}^{\infty} e_{i}, e_{i} \neq \varnothing, e_{i} \cap e_{j}=\varnothing(i \neq j)$.
(i) The algebra A generated by the sets $e_{0} \bigcup_{m=n}^{\infty} e_{m}=A_{n}, n \in \mathbb{N}$ is countable, generates F, and every A-measurable partition of X is finite.
(ii) There exists a finitely additive p-measure on F which is not σ-additive.

Proof

(i) It is clear that A is countable. $F=\sigma(A)$, since $e_{n}=A_{n} \backslash A_{n+1}$, $n \in \mathbb{N}$, and $e_{0}=\bigcap_{n=1}^{\infty} A_{n}$. If $\left\{F_{i}^{\}}\right.$is a partition of X, then for some i say $i_{0}, e_{0} \subseteq F_{i_{0}}$. If $F_{i_{0}} \in A$, then $X \backslash F_{i_{0}}$ contains only finitely many atoms, and $\#\left\{F_{i}\right\}<+\infty$.
(ii) The proof will follow from the considerations below, if we
note the obvious fact, that all Borel spaces with infinitely, but countably many atoms have σ-isomorphic σ-algebras,

We shall use the following version of Riesz's well known representation theorem quoted from [4] (p. 35):

Let (X, p) be a metric space, $C(X)$ be the Banach space of all bounded real valued continuous functions with the sup-norm and ot the algebra generated by all the open subsets of X.

If Λ is a nonnegative linear functional on $C(X)$ such that $\Lambda(1)=1$, then there exists a unique finitely additive regular p-measure μ on r such that

$$
\Lambda(f)=\int f d \mu \quad \text { for } \forall f \in C(X)
$$

Conversely, if μ is a finitely additive p-measure on of then the map: $\mathrm{f} \rightarrow \int \mathrm{fd} \mathrm{\mu}$ is nonnegative, linear, and $\Lambda(1)=1$.

Suppose $x_{0} \in X$ and any neighbourhood of x_{0} contains infinitely many points. Define a nonnegative linear functional Λ on $C(X)$:

$$
\Lambda(f)=f\left(x_{0}\right) \quad \text { for } \forall f \in C(X)
$$

$\Lambda(1)=1$, and there exists a unique finitely additive regular pmeasure μ on \mathbb{C}. Obviously $\mu A=I_{A}\left(x_{0}\right)$ for $\forall A \in \sigma$, so μ is o-additive.

Consider the space $(\widetilde{X}, \tilde{\rho})$, where $\tilde{X}=X \backslash\left\{x_{0}\right\}$ and $\tilde{\rho}=\left.\rho\right|_{\tilde{X} \times \tilde{X}}$

Define a mapping $p: C(\widetilde{X}) \rightarrow \mathbb{R}$ such that

$$
p(f)=\lim _{r \rightarrow 0} \sup _{x \in \widetilde{B}(r)} f(x)
$$

where $\widetilde{B}(r)=\left\{x \in \widetilde{X}: \rho\left(x, x_{0}\right)<r\right\}$.

Then for $f, g \in C(\widetilde{X})$,

$$
p(\alpha f+\beta g) \leqq \alpha p(f)+\beta p(g), \quad \alpha, \beta \in \mathbb{R} .
$$

The set $\widetilde{C}=\{f \in C(\widetilde{X}): f=g \mid \widetilde{X}$ for some $g \in C(X)\}$ is a linear subspace of $C(\widetilde{X})$ and $p \mid \widetilde{C}$ is a nonnegative linear functional on \widetilde{C}. Hence by the Hahn-Banach theorem there exists a nonnegative linear functional Λ on $C(\widetilde{X})$ such that $\Lambda(f)=p(f)$ for $\forall f \in \widetilde{C}$. Hence $\Lambda(l)=1$.

According to the quoted theorem there exists a unique finitely additive regular p-measure v on $\tilde{o r}$. Obviously $\nu\left(\widetilde{B}\left(n^{-1}\right)=1\right.$ for $\forall n \in \mathbb{N}$. Since $\bigcap_{n=1}^{\infty} \widetilde{B}\left(n^{-1}\right)=\varnothing \vee$ is not σ-additive.

$$
\mathrm{n}=1
$$

Consider now the triple ($\tilde{X}, \tilde{\sigma}, v)$. It is possible to extend it to ($\mathrm{x}, \boldsymbol{\pi}, \bar{v}$) where

$$
\bar{v}(A)=v\left(A \backslash\left\{x_{0}\right\}\right) \text { for } \forall A \in d .
$$

Then $\bar{v}\left(\left\{x_{0}\right\}\right)=0$ and v is finitely additive but it is not regular (and of course not σ-additive!). Consider $\left\{x_{0}\right\} ;$ If G is an open set containing x_{0} then $\bar{v}(G)=1$.

It is interesting to note that \bar{v} and μ are singular in the sense that $\bar{v}\left(\left\{x_{0}\right\}\right)=0$ and $\mu\left(\left\{x_{0}\right\}\right)=l$, although they represent the same
functional on $C(X)$, i.e. $\int f d \bar{\nu}=\int f d \mu$ for all $f \in C(X)$.

Suppose that X is infinite but countable. Denote the distinct elements in X by $\mathrm{x}_{\mathrm{n}}, \mathrm{n}=0,1,2, \ldots$. Suppose also that $\lim \rho\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{0}\right)=0$. Then it is seen that the conciderations above applied to ($\mathrm{X}, \mathrm{\rho}$) prove Prop l.(ii) and reveal the simplest structure of finitely additive p-measure on (X, F) since in this case ot $=F=$ the powerset of X .

Example

Suppose X is a countably infinite metric space where the distinct elements are $\mathrm{x}_{\mathrm{n}}, \mathrm{n}=1,2, \ldots$. Let A_{k} denote the σ-algebra generated by the sets $\left\{x_{k}\right\} \cup\left\{x_{n}: n \geqq m\right\}, m=1,2, \ldots$. Let \hat{A} denote the cofinite algebra over X and F the powerset of X . Then $A_{\mathrm{k}} \cong \hat{A} \cong F \quad, \sigma\left(A_{\mathrm{k}}\right)=\sigma(\hat{A})=F$ and A_{k} have the finite partition property stated in Prop. l (i). Suppose also that μ_{k} is the point measure determined by $\mu_{k}\left(\left\{x_{k}\right\}\right)=1$. Then we have, when $k \rightarrow \infty$:

$$
\begin{aligned}
& \mu_{k} \xrightarrow{W}{ }_{\mu}^{\mu} \text { iff } x_{k} \rightarrow x_{m} ; \\
& \mu_{k}(\{x\}) \rightarrow 0 \text { for } \forall x \in X ; \\
& \mu_{k}(A) \rightarrow \mu_{m}(A) \text { for } \forall A \in A_{m} ; \\
& \mu_{k}(A) \rightarrow v(A) \text { for } \forall A \in \hat{A} \text { where } v \text { is finitely }
\end{aligned}
$$

additive p-measure on \hat{A} determined by $\nu(A)=0$ or lif $\#<\infty$ or \# (X\A) < \quad respectively.

Proposition 2

Let (X, F) denote a Borel space and A denote a countable algebra over X generating F. Suppose that any A-measurable partition of X is finite (See Th. b)).

Then F is σ-isomorphic to the naturnal (or usual!) Borel-algebra of a totally disconnected compact metric space.

Proof:

It follows that F is contably generated and hence contains its atoms. We shall identify the points in each F-atom and thus work with the canonical representation of (X, F) denoted in the following by ($\widetilde{X}, \widetilde{F}$) ([4], p. 133).

This identification process will map A onto an algebra denoted by \tilde{A}. Obviously F and \widetilde{F} are σ-isomorphic. We note that \tilde{A} separates the points in X.

Let \widetilde{T} denote the topology having \tilde{A} as a base. Then it is clear that $(\widetilde{X}, \widetilde{T})$ is a separable Hausdorff space and $\widetilde{F}=\sigma(\widetilde{T})$. Since the sets in \widetilde{A} are clopen , i.e. both open and closed, the space $(\widetilde{\mathrm{X}}, \widetilde{T})$ is totally disconnected [2]. The compactness follows from the finite partition property assumed. It follows from the Urysohn metrization theorem ([2], p. 24) that $(\widetilde{X}, \widetilde{T})$ is metrizable as a compact-and
therefore as a complete metric space.

Remark

It is easily proved that \widetilde{A} contains every clopen set in \widetilde{T}. We note also that \tilde{A} is a determinating class in the theory of weak convergence ([1], Th 2 2), and every open set $\widetilde{\mathbb{T}}$ is the disjoint union of countably many clopen sets.

References

[l] P. Billingsley: Convergence of Probability Measures. J. Wiley \& Sons, N.Y. (1968).
[2] N. Dunford and J.T. Schwartz: Linear Operators I.J. Wiley \& Sons, N.Y. (1958).
[3] O.G. Jørsboe: Om endeligt-additive sandsynlighedsmål. Nord. Mat. Tidssk., Vol. 25/26, p. 43 (1978).
[4] K.R. Parthasarathy: Probability Measures on Metric Spaces. Acad. Press, N.Y. (1967).
[5] C. Preston: Random Fields (Sec. 2). Springer-Verlag, Berlin (1976).

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN \varnothing, DENMARK.

No. 1 Tjur, Tue: Statistical Inference under the Likelihood Principle.

No. 2 Hering, Heinrich: The Non-Degenerate Limit for Supercritical Branching Diffusions.

No. 3 Henningsen, Inge: Estimation in $M / G / I-Q u e u e s$.
No. 4 Braun, Henry: Stochastic Stable Population Theory in Continuous Time.

No. 5 Asmussen, Sфren: On some two-sex population models.
No. 6 Andersen, Per Kragh: Filtered Renewal Processes with a Two-Sided Impact Function.

No. 7 Johansen, S申ren \& Ramsey, Fred L.: A Bang-Bang Representation for $3 x 3$ Embeddable Stochastic Matrix.

No. 8 Braun, Henry: A Simple Method for Testing Goodness of Fit in the Presence of Nuisance Parameters.

No. 9 Lauritzen, S.L. \& Speed, T.P. \& Vijayan, K.: Decomposable Graphs and Hypergraphs.

No. 10 Hald, Anders: On the Statistical Theory of Sampling Inspection by Attributes.

No. ll Darroch, J.N. \& Lauritzen, S.L. \& Speed, T. P.: Markov Fields and Log-linear Interaction Models for Contingency Tables.

No. 12 Speed, T.P.: A Note on Nearest-Neighbour Gibbs and Markov Probabilities.

No. 13 Andersson, Steen A.: Canonical Correlations with Respect to a Complex Structure.

[^0]: $\infty \quad{ }^{\infty}$
 $\mathbb{I}_{i=1}^{I}\left(\mathrm{X}_{\mathrm{i}}, F_{i}\right)$ is standard and the algebra $\prod_{i=1}^{\mathbb{L}} A_{i}$ (this is in general not a o-algebra!) will have the required properties.

