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Four Simple Characterizations of Standard Borel Spaces
without any reference to a topology or a metric

The theory behind the usual definition of a standard Borel space
(given below) is certainly not elementary [4]. These spaces are
of great interest, e.g. the conditional distribution of a measur-
able mapping from a standard Borel space onto another such space
admits a regular version ([4], p. 147). Our results are of some
theoretical interest [5] and may also be of some educational value

to those who don't want to coat their theorems in too technical

terms.

Definition

A countably generated Borel space is a standard Borel space X if
there exists a complete separable metric space Y (i.e. a Polish

space) such that the o-algebra on X and the Borel oc-algebra on Y

are o-isomorphic.

Theorem

Let (X,F) denote a countably generated Borel space, and 4 denote

a countable algebra over X generating 7, i.e. F = o (4).

Then

a) (X,F) is standard iff there exist an 4 such that every finite

and finitely additive measure on 4 is o-additive on 4;



b) (X,F) is standard iff there exists an 4 such that every
A-measurable partition of X is finite. [D € 4 is a A-measur-
able partition of X iff X = Up, @ ¢ D, and the sets in D are

pairwise disjoint];

c) (X,F) is standard iff there exist an 4 such that every cover-

ing ¢ € A of A € 4 contains a finite subcovering;

d) (X,F). is standard iff there exists an 4 which is semicompact
n
[4 is semicompact iff AL €4, n€EN, N An + @ for Vn implies
n=1
na # 1.
n;l
Remark

It will follow from the proof of the theorem, that if (X,F) is

standard and A satisfies one of the conditions stated in a),b),c),

and d) then 4 satisfies all four.

For the proof of the theorem we recall the following: Let Xy and
X2 denote metric spaces. Two Borel sets Bl c X; and B2 c X2_are
called isomorphic, if there exists a bijection ¢ : Bl+ B2 such that
both ¢ and ¢—l are measurable. Then the celebrated isomorphism
theorem [4, p. 14] states: Suppose Xl and X2 are complete and se-

parable. Then Bl and B2 are isomorphic iff they have the same car-

dinality.

Proof of the Theorem

We shall first prove that a),b),c), and d) are equivalent, then "if"




in b),and finally "only if" in c).

"a)<b)ec)". Obvious.
"a)=b)". Suppose every finite and finitely additive measure on 4 is

c-additive. Suppose also that there exists an infinite partition

{A_ : n € N}c 4 such that X = U A_. Choose a F-atom e_ < A_ for

¥n € N. Define E = U e_. From Prop. 1. (stated below!) we conclude
n=1

that there exists a finitely additive measure Q : Eno({en :n €EN})> IR

such that 1 = Q E) > I Q(en), i.e. Q is not o-additive.
n=1

Define a mapping P : 4 » IR such that P(A) = Q(ENA) for VA € 4.

Obviously P is finitely additive on 4, but 1 = P(X) = Q(E) > X Q(en)=
n=1
b} Q(EnAn) = I P(An) - a contradiction. Hence a) implies b):.
n=1 7 n=1
. m
"b)«d)". Suppose Al € A(n €EN) and N AL ¥ p for all m. It is suf-
n=1
ficient to consider the case (An)n>l strictly decreasing. If n Ah,= 0]
= n>1
_ c _ .cC c c . c c . e
then X = U A = AllJ U (An+l\An). Since An+l\An + @ this contra

n>1 n n>1

dicts the finite paratition property. Hence b)=d).

If {Dn :n € N} ¢ 4 is a partition of X, then consider A= U D, ,m € N:
- n>m
Obviously N A = P. From this follows d)=b).
m>1

"if" in b). This follows from Prop. 2.

"only if" in c). We break the proof up into three cases.

Case 1. Suppose F has only finitely many atoms. Then 4= F serves

our purpose.




Case 2. Suppose F has infinitely but countably many atoms. Then the

statement follows from Prop. 1.

Case 3. Suppose F has uncountably many atoms. From the isomorphism
theorem ([4], p. 14. See also p. 147) it follows that the usual
c—algebra over a complete separable metric space with uncountably
many atoms is og=isomorphic to the usual o—-algebra over M, where M

is the countable product of {o,1l} with the natural product topology.
It is therefore sufficient to prove that there exists an algebra 4
with the required properties. We note that M is a separable, totally
disconnected, and compact topological space [2]. Consider the alge-

bra 4., over M generated by all sets of the form {(xl,xz,...)EDi: xi=l}.

M
These sets are countably many in number and clopen (i.e. both closed
and open). Hence the same holds for the algebra AM. Since M is com-

pact it is clear that 4,, satisfies the requirments in c).

Remarks

Suppose (Xi,Fi) is standard and Ai has the properties stated in a) ,b),

c), and d) above, i =1,2,3,... . Then Al contains at most finitely

many Fl—atoms. Al is in general not unique and certainly not in

Case 2.

If F € Fqis then (F,%ﬂF) is standard but AlnF will not nesessarily

have the required properties, if F ¢ Al or F is not a Fq-atom.

fee] [oo)

I (Xi,Fi) is standard and the algebra I Ai (this is in general
i=1 i=1

not a ¢g-algebra!) will have the required properties.




On finitely additive measures

In this section we shall prove the existen;e of a finitely additive
probability measures [In short p-measure], which are not o-addi-
tive, on (X,F) where F contains infinitely but countably many atoms.
Of course (X,F) is standard. The existence of such p-measures has
probably been known for a long time ([2], ex. p.73; [3]), but we

shall give our own proof because we want to digress a little from

our main subject and look at the simplest structure of these measures.

Proposition 1

(X,F) is a Borel space with infinite but countably many atoms

ey i=20,1,2,... . Hence X =lg e;r €y + @, einej =@ (i # j).

Ol

(1) The algebra A generated by the sets eqgu 5;em = An, n € N is
m=n
countable, generates F, and every A-measurable partition of

X is finite.

There exists a finitely additive p-measure on F which is not

(ii)
c—additive.
Proof
(i) It is clear that 4 is countable.F = g(4), since e, = An\An+l’
n € N, and ey = N A . If {Fg is a partition of X, then for some
n=1
i say i, e, cF, . If F, € A then X~F, contains only finite-
0 0 = 1 1 ’ 1
' 0 0 0
ly many atoms, and #={F£ < 4o,
(ii) The proof will follow from the considerations below, if we



I
N
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note the obvious fact, that all Borel spaces with infinitely, but

countably many atoms have oc-isomorphic oc-algebras,

We shall use the following version of Riesz's well known represen--

tation theorem quoted from [4] (p. 35):

Let (X,p) be a metric space, C(X) be the Banach space of all bound-
ed real valued continuous functions with the sup-norm and J the al-

gebra generated by all the open subsets of X.

If A is a nonnegative linear functional on C(X) such that A(l) = 1,
then there exists a unique finitely additive regular p-measure u

on JL such that

A(E) = sfdu for VEf € C(X).

Conversely, if p is a finitely additive p-measure on J/ then the map:

f » ffdu is nonnegative, linear, and A(l) = 1.

Suppose X € X and any neighbourhood of X contains infinitely many

points.Define a nonnegative linear functional A on C(X):

AME) = £(x for VE € C(X).

0
A(l) = 1, and there exists a unique finitely additive regular p-
measure u on # . Obviously uA = lA(xO) for VA €0, , so u is o-addi-
tive.

Consider the space (X,p), where X = X~x,} and o = o] .
[ X x X



Define a mapping p : C(X) + R such that

p(f) = lim sup f(x)
r_>Ox€'}§:(r)

where B(r) = {x € X : o(x,x5) < r}.

Then for f£,q9 € C(X),

p(O"f + Bg) é O‘p(f) + Bp(g)l a,B € IR.

The set C (fecX : £=g % for some g € C(X)} is a linear sub-

space of C(X) and plE is a nonnegative linear functional on C. Hence

by the Hahn-Banach theorem there exists a nonnegative linear func-

tional A on C(X) such that A(f) = p(f) for VE € C. Hence A(l) = 1.

According to the quoted theorem there exists a unique finitely addi-

tive regular p-measure v on gi. Obviously v(ﬁ(n_l) = 1 for VYn € NW.

Since R ﬁ(n_l) =@ v is not o-additive.

n=1

Consider now the triple (X, /i,v). It is possible to extend it to

(X, 0t ,v) where

v (A) =v(A\{XO}) for vA €.

Then U({XO}) = 0 and v is finitely additive but it is not regular
(and of course not o-additive!). Consider {xo}; If G is an open
set containing x, then v(G) = 1.

It is interesting to note that v and p are singular in the sense

that ;({XO}) = 0 and u({XO}) = 1, although they represent the same




functional on C(X), i.e. ffdv = [fdu for all f € C(X).

Suppose that X is infinite but countable. Denote the distinct ele-

Suppose also that 1lim p ( ,XO) = 0.

n
Then it is seen that the conciderations above applied to (X,p) prove

ments in X by Xn’ n=20,1,2,... Xn

Prop 1l.(ii) and reveal the simplest structure of finitely additive

p-measure on (X,F) since in this case ¢l = F = the powerset of X.

Example

Suppose X is a countably infinite metric space where the distinct

elements are Xn, n=1,2,... . Let Ak denote the o-algebra gene-

rated by the sets {xk}U{xn :n>m},m=1,2,... Let ﬁ denote

the cofinite algebra over X and F the powerset of X. Then

A A Fo, o(Ak) = ¢g(4) = F and Ak have the finite partition

In
In

k
property stated in Prop. 1 (i). Suppose also that g is the point

measure determined by uk({xk}) = 1. Then we have, when k » o:

u iff Xy > X

uk({x}) -~ 0 for vVx € X;
uk(A) - um(A)for VA € Am;
u (A) > v(A) for VA € 4 where v is finitely

additive p-measure on ﬁ determined by v(A) = 0 or 1 if # A < o

or # (XNA) < orespectively.



On totally disconnected compact spaces

Proposition 2

Let (X,F) denote a Borel space and 4 denote a countable algebra

over X generating F. Suppose that any A-measurable partition of

X is finite (See Th. b)).

Then F is o-isomorphic to the naturnal (or usual!) Borel-algebra

of a totally disconnected compact metric space.

Proof:

It follows that F is contably generated and hence contains its atoms.
We shall identify the points in each F-atom and thus work with the

canonical representation of (X,F) denoted in the following by (i,?)

([41, p. 133).

This identification process will map A onto -an algebra denoted by Z.

Obviously F and ¥ are o-isomorphic. We note that z separates the

points in X.

Let T denote the topology having Z as a base. Then it is clear that

(X,7) is a separable Hausdorff space and 7 = o(T). Since the sets

in Z are clopen , i.e. both open and closed, the space (X,7) is

totally disconnected [2]. The compactness follows from the finite

partition property assumed. It follows from the Urysohn metrization |

theorem ([2], p. 24) that (X,T) is metrizable as a compact-and



=10=

therefore as a complete metric space.

Remark

It is easily proved that 4 contains every clopen set in T. We note

also that 4 is a determinating class in the theory of weak conver-

gence ([1], Th 2 2), and every open set 7 is the disjoint union of

countably many clopen sets.
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