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Four Simple Characterizations of Standard Borel Spaces 

vii thout any reference to a topology or a metric 

The theory behind the usual definition of a standard Borel space 

(given below) is certainly not elementary [4]. These spaces are 

of great interest,e.g. the conditional distribution of a measur-

able mapping from a standard Borel space onto another such space 

admits a regular version ([4], p. 147). Our results are of some 

theoretical interest [5] and may also be of some educational value 

to those who don't want to coat their theorems in too technical 

terms. 

Definition 

A countably generated Borel space is a standard Borel space X if 

there exists a complete separable metric space Y (i.e. a Polish 

space) such that the a-algebra on X and the Borel a-algebra on Y 

are a-isomorphic. 

Theorem 

Let (X,F) denote a countably generated Borel space, and A denote 

a countable algebra over X generating F, i.e. F = a(A). 

Then 

a) (X,F) is standard iff there exist an A such that every finite 

and finitely additive measure on A is a-additive on A; 
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b) (X,o, F) is standard iff there exists an A such that every 

A-measurable partition of X is finite. [D ~ A is a A-measur-

able partition of X iff X = UD, 0 ~ D, and the sets in Dare 

pairwise disjoint]; 

c) (X,F) is standard iff there exist an A such that every cover-

ing C ~ A of A E A contains a finite subcovering; 

d) (X,F), is standard iff there exists an A which is semicompact 
n 

[A is semicompact iff An EA, n E:IN, n A :j: 0 for Vn implies 
n=l n 

n An :j: 0]. 
n>l 

Remark 

It will follow from the proof of the theorem, that if (X,F) is 

standard and A satisfies one of the conditions stated in a) ,b) ,e) , 

and d) then A satisfies all four. 

For the proof of the theorem we recall the following: Let Xl and 

X2 denote metric spaces. Two Borel sets Bl ~ Xl and B2 ~ X2 are 

called isomorphic, if there exists a bijection ~ : Bl -+ B2 such that 
-1 --

both ~ and ~ are measurable. Then the celebrated iso~9rphis~ 

theorem [4, p. 14] states: Suppose Xl and X2 are complete and se

parable. Then Bl and B2 are isomorphic iff they have the same car

dinality. 

Proof of the Theorem 

We shall first prove that a) ,b) ,e), and d) are equivalent, then "if" 
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in b) ,and finally "only if" in c) . 

"a) <=b )~'.c) ". Obvious. 

"a)=>b) ". Suppose every finite and finitely additive measure on A is 

a-additive. Suppose also that there exists an infinite partition 
00 

{A : n E ~}S A such that X = U An' Choose a F-atom en C A for 
n 00 n=l = n 

Vn E~. Define E = U e . From Prop. 1. (stated below!) we conclude 
n=l n 

that there exists a finitely additive measure Q : Ena({e : n E ~})~lli 
n 

00 

such that 1 = Q E) > I Q(en ) , i.e. Q is not a-additive. 
n=l 

Define a mapping P : A ~lli such that P(A) = Q(EnA) for VA E A. 
00 

Obviously P is finitely additive on A, but 1 = P(X) = Q(E) > I Q(en )= 
n=l 

00 00 

I Q(EnA ) = 
n=l n 

I P(A ) - a contradiction. Hence a) implies b). 
n=l n 

m 
"b)#d) ". Suppose A 

n E A(n EN) and n A * 0 for all m. It is suf
n=l n 

ficient to consider the case (A) 1 strictly decreasing. If n A = 0 
n n~ n2: 1 n 

then c c c 
Al U Ul (An+ 1 'An) . Since A~+l'A~ * 0 this contra-

n> 

diets the finite paratition property. Hence b)=>d) . 

If {D : n E N} c A is a partition of X, then consider A = U D ,m E ~: n = m n 

Obviously n A = 0. From this follows d)=>b) . 
m 

m2:1 

"if" in b). This follows from Prop. 2. 

"only if" in c). We break the proof up into three cases. 

n2:m 

Case 1. Suppose F has only finitely many atoms. Then A = F serves 

our purpose. 
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Case 2. Suppose F has infinitely but countably many atoms. Then the 

statement follows from Prop. 1. 

Case 3. Suppose F has uncountably many atoms. From the isomorphism 

theorem ([4], p. 14. See also p. 147) it follows that the usual 

cr-algebra over a complete separable metric space with uncountably 

many atoms is cr-isomorphic to the usual cr~algebra over M, where M 

is the countable product of {o,l} with the natural product topology. 

It is therefore sufficient to prove that there exists an algebra A 

with the required properties. We note that M is a separable, totally 

disconnected, and compact topological space [2]. Consider the alge-

bra AM over M generated by all sets of the form {(xl,x2, ... )E~1: xi=l}. 

These sets are countably many in number and clopen (i.e. both closed 

and open). Hence the same holds for the algebra AM' Since M is com

pact it is clear that AM satisfies the requirments in c) . 

Remarks 

Suppose (X.,F.) is standard and A. has the properties stated in a) ,b), 
l l l 

c), and d) above, i = 1,2,3, .... Then Al contains at most finitely 

many Fl-atoms. Al is in general not unique and certainly not in 

Case 2. 

If F EFl' then (F,~nF) is standard but AlnF will not nesessarily 

have the required properties, if F ~ Al or F is not a Fl-atom. 

00 

IT (X.,F.) 
. 1 l l l= 

00 

is standard and the algebra IT A. (this is in general 
i=l l 

not a cr-algebra!) will have the required properties. 
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On finitely additive measures 

In this section we shall prove the existence of a finitely additive 

probability measures [In short p-measure], which are not a-addi-

tive, on (X,F) where F contains infinitely but countably many atoms. 

Of course (X,F) is standard. The existence of such p-rneasures has 

probably been known for a long time ([2], ex. p.73; [3]), but we 

shall give our own proof because we want to digress a little from 

our main subject and look at the simplest structure of these measures. 

Proposition 1 

(X,F) is a Borel space with infinite but countably many atoms 

(i) 

00 

i= 0,1,2, •••• Hence X = U e., e i =F 0, eineJ. = 0 (i =F j). 
i=O l 

co 

The algebra A generated by the sets eaU U, em = 
m=n 

A , n E IN is 
n 

countable, generates F, and every A-measurable partition of 

X is finite. 

(ii) There exists a finitely additive p-measure on F which is not 

a-additive. 

Proof 

(i) It is clear that A is countable.F = a(A), since en = An~n+l' 
co 

n E:N, and eO = n An. If {F} 
n=l l 

is a partition of X, then for some 

i say i O' eO __ c F .. If F. E A 
lO lO 

ly many atoms, and =ll= {F,} < + co. 
l 

then X'-F. contains only finite
lO 

(ii) The proof will follow from the considerations below, if we 
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note the obvious fact, that all Borel spaces with infinitely, but 

countably many atoms have a-isomorphic a-algebras, 

We shall use the following version of Riesz's well known represen~--

tation theorem quoted from [4] (p. 35): 

Let (X,p) be a metric space, C(X) be the Banach space of all bound-

ed real valued continuous functions with the sup-norm and the al-

gebra generated by all the open subsets of X. 

If A is a nonnegative linear functional on C(X) such that A(l) = 1, 

then there exists a unique finitely additive regular p-measure w 

on such that 

A(f) = ffdw for Vf E C(X). 

Conversely, if w is a finitely additive p-measure on then the map: 

f ~ ffdw is nonnegative, linear, and A(l) = 1. 

Suppose Xo E X and any neighbourhood of Xo contains infinitely many 

points.Define a nonnegative linear functional A on C(X): 

A(f) = f(x O) for Vf E C(X). 

A(l) = 1, and there exists a unique finitely additive regular p-

measure W on . Obviously wA = lA (x O) for VA E ()l , so p is a-addi-

tive. 

Consider the space (X,p), where X = X'{x O} and p = 
rv 

X X 



Define a mapping p 

where B(r) = '" {x E X 

Then for f,g E C(X), 
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C (X) -+ JR such that 

p(f) = lim sup f(x) 

r-+ Ox El3 (r) 

p(af + Sg) < ap(f) + Sp(g), a,SEJR. 

The set C = {f E C(X) : f = glx for some g E C(X)} is a linear sub

space of C(X) and Plc is a nonnegative linear functional on C. Hence 

by the Hahn-Banach theorem there exists a nonnegative linear func-

tional A on C(X) such that A(f) = p(f) for Vf E C. Hence A(l) = 1. 

According to the quoted theorem there exists a unique finitely addi

tive regular p-measure v on&. Obviously v(B(n- l ) = 1 for Vn EN. 

Since n B(n- l ) = 0 v is not a-additive. 
n=l 

Consider now the triple (X, Oi, v). It is possible to extend it to 

(X, en ,v) where 

Then v({xO}) = 0 and v is finitely additive but it is not regular 

(and of course not a-additive!). Consider {xo }; If G is an open 

set containing xo then v(G) = 1. 

It is interesting to note that v and V are singular in the sense 

that v({x o }) = 0 and v({x o }) = 1, although they represent the same 



functional on C(X), i.e. ffdv = ffd~ for all f E C(X). 

Suppose that X is infinite but countable. Denote the distinct ele-

ments in X by x n ' n = 0,1,2, .... Suppose also that lim p(xn'x O) = O. 
n 

Then it is seen that the conciderations above applied to (X,p) prove 

Prop 1. (ii) and reveal the simplest structure of finitely additive 

p-measure on (X,F) since in this case = F = the powerset of X. 

Example 

Suppose X is a countably infinite metric space where the distinct 

elements are x n ' n = 1,2, .... Let Ak denote the a-algebra gene

rated by the sets {xk}U{xn : n ~ m},m = 1,2, .... Let A denote 

the cofinite algebra over X and F the powerset of X. Then 

Ak ~ A ~ F , a(A k ) = a(A) = F and Ak have the finite partition 

property stated in Prop. 1 (i). Suppose also that ~k is the point 

measure determined by ~k({xk}) = 1. Then we have, when k ~ 00: 

iff 

~k({X}) ~ 0 for Vx E X; 

~k(A) ~ v(A) for VA E A where v is finitely 

additive p-measure on A determined by v(A) 0 or 1 if *A < 00 

or :Jt: (X ....... A) < 00 respectively. 
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On totally disconnected compact spaces 

Proposition 2 

Let (X,F) denote a Borel space and A denote a countable algebra 

over X generating F. Suppose that any A-measurable partition of 

X is finite (See Th. b)). 

Then F is a-isomorphic to the naturnal (or usual!) Borel-algebra 

of a totally disconnected compact metric space. 

Proof: 

It follows that F is contably generated and hence contains its atoms. 

We shall identify the pOints in each F-atom and thus work with the 

canonical representation of (X,F) denoted in the following by (X,F) 

([4], p. 133). 

This identification process will map A onto can algebra denoted by 1. 

Obviously F and F are a-isomorphic. We note that A separates the 

points in X. 

Let T denote the topology having A as a base. Then it is clear that 

(X,T) is a separable Hausdorff space and F = a(T). Since the sets 

in A are clopen , i.e. both open and closed, the space (X,T) is 

totally disconnected [2]. The compactness follows from the finite 
- -------- ----- ,- ---- ------ ---- - - -

parti tion property assumed. It follows from th~ Urysohn metri2:ation 

theorem ([2], p. 24) that (X,T) is metrizable as a compact-and 
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therefore as a complete metric space. 

Remark 

It is easily proved that A contains every clopen set in T. We note 

also that A is a determinating class in the theory of weak conver

gence ([1], Th 2 2), and every open set T is the disjoint union of 

countably many clopen sets. 
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