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Abstract 

Large sample tests for stationarity and reversibility, based on 

repeated observations of a discrete time, time-homogeneous Markov 

chain with finite state space, are proposed. The asymptotic di­

stributions of the maximum likelihood estimator of the parameters 

of the chain under stationari ty and reversibili ty are obtained, and 

explicit maximum likelihood estimates under reversibility are 

given for the case when the observed samples are of length two. 

A.n application to social mobility tables is given. 

Key words: Markov chain, stationarity, reversibility, Wald test, 

likelihood ratio test. 
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1. Introduction and summary 

When repeated sample sequences are observed from a discrete time, 

finite Markov chain, the initial states can be regarded as fixed 

(that is to say, we condition on them) or stochastic, generated 

by the stationary distribution of the chain. Estimation and infe­

rence in the latter case are more difficult since explicit maxi­

mum likelihood estimators do not exist and mumerical methods must 

be used. But if stationarity holds and the samples are short, 

considerable loss of information may result if the initial states 

are considered fixed. Besides, stationarity is often an interest­

ing hypothesis in itself. For both reasons it is desirable to be 

able to test stationarity. 

Similar considerations apply to the property of reversibility, 

which may be implied by time-symmetry or correspond to an inte­

resting hypothesis in the theoretical context (see § 6). In the 

special case of samples of length 2, explicit M.L. estimators 

under reversibility are given. 

Here Wald tests, which do not require the M.L. estimates and 

likelihood ratio tests, which do, are derived. Likelihood ratio 

tests follow directly from the asymptotic theory of exponential 

families and Wald tests can easily be derived once the asymptotic 

distribution of a certain parameter has been obtained. The Wald 

test statistics are closely related to the asymptotic distribu­

tions of the M.L.E. under stationarity and reversibility, which 

are also derived. Comparison is made with another approach to 

testing stationarity suggested by Guilbaud (1977). An application 

of the Wald tests is made to social mobility tables, taken from 

Bartholomew (1973). 
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2. Notation and concepts 

Suppose we observe m sample sequences (X. 1' ... ' X. ), i = 1, ... m, 1, l,n i 

from an s-state Markov chain with transition probability matrix 

P = (p .. ). Let u. = 4!={i I X' l = j} be the number of sequences with 
lJ J 1 

initial state j,j =l, ... s, q= (ql, ... ,qs) be the initial distri-

bution, and N = (nij ) be the transition count, i.e. defined by 

n .. =# {(s,t) Ix t=i,X t+l=j (s=l, ... m,t=l, ... n -I)}, the lJ s, s, s 

number of observed transitions i,.,. j. Then we can write the 

log-likelihood as 

log L = 2: u. log q. + 2: n.. log p ... 
j J J i,j lJ lJ 

(1) 

Consider the parameter Q = (q .. ) defined by q .. = q. p ... Since 
lJ lJ 1 lJ 

q. =q.p. =q. and p .. =q . . /q. =q . . /q. ,V .. , we have defined a 1· 1 1· 1 lJ lJ 1 lJ 1· 1,J 

function that is bijective from 8 ={(P,q) IPij ':;0, Vi,j; pi· =1, 

Vi; qi>O Vi; q·=l} to 8'={Qlqij':;O, Vi,j; qi· >0 Vi;q .. =l}. 

We assume throughout that (P,q) E8 , from which it follows that 

p (u. > 0 I Vj) -+ 1 as m -+ CXJ. 

J 

Writing (1) with the new parametrisation , we obtain 

log L = 2: u. log q. + 2: n.. (log q .. - log q. ) J J... lJ lJ 1· 
j lJ 

= 2: (u. - n. ) log q. + 2: n.. log q.. . 
J J. J .. ' lJ lJ j lJ 

( 2) 

Let H denote the hypothesis that the initial distribution is ar-

bitrary, and H the hypothesis that the initial distribution is o 

stationary. Then since q. = 2: q. p .. Vj .;} q. = q . I Vj, we see that 
J i 1 lJ J.. J 

this latter set of constraints specifies H . 
o 
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Let HI denote the hypothesis that the chain is reversible. A fi-' 

nite Markov chain is said to be reversible if for any sequence 

of states xl, ... ,Xr , pr(xl, ... ,Xr ) =pr(xr, ... ,Xl ), and such chains 

are characterised by being stationary and satisfying q.p .. =q.p .. 
1 1J J J 1 

Vi,j, where q is the stationary distribution. Thus HI is specified 

by q .. = q .. Vi I j, and HI cH cH. Stationari ty and reversibility 
1J J 1 - 0 

are equivalent for 2-state chains, as can easily be seen from this 

formulation. 

3. Likelihood Ratio Tests 

We recall the definitions of a regular canonic exponential family 

and of a differentiable exponential family (see Johansen (1975) 1 

Andersen (1969) or Berk (1972)). A regular canonic exponential 

family upon a topological space X with measure ~ is characterised 

by the family of densities with respect to ~: 

exp(8'. t(x)) 
.. cp(8) 

8 E D, (3 ) 

where t: X -+ lR k is a mapping such that {I, tl (x) , ... , tk (x)} are 

linearly independent [~], cp (8) = J exp (8'.t (x) ) ~ (dx) and 
x 

D = {8 I cp (8) < oo} is open. A differentiable exponential family is 

characterised by the family of densities 

exp ('IT ( S ) I • t (x) ) 
cp('IT(S)) S E I, (4) 

m k where 'IT: lR -+ lR (m < k) is a twice differentiable homeomorphism 

d'IT m such that (dS) has full rank, and I is an open set in IR such 

that 'IT (I) cD, and where exp (81·t (x)) let> (8), 8 E D, is a regular 

canonic family as defined above. 
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By writing the likelihood (2) as 

s-l 
L =qms-.n .. qnss·· exp [ 2: (u .-n. ) log (q. Iq ) 

:j=l J J. J. s. 

+ 1 2: n .. log(q. ·/q ) J ' 
(i,j)*(S,S)lJ 1J ss 

(5 ) 

s-l 
and observing that q. Iq = (q. Iq ) I (1 + 2: q t /q ), so that 

J. s· J. ss t=l s ss 

log(q. Iq ) is a function of {q . . /q }, (i,j) * (s,s), we see J. s. 1J ss 

immediately that (5) defines a differentiable expomential family 
2 

with parameter S = {q . . /q } (i,j) * (s,s) whose domain is I = JR+s -1. 1J ss 

Moreover HO and HI define differentiable hypotheses (subfamilies). 

Let Q, QO and Ql be the M.L. estimators of Q under H/HO and HI 

respectively. In general only Q can be given explicitly. Under 

H,Q is asymptotically normal and efficient in the class of Fisher 

consistent estimators for Q. Similarly QO under HO and Ql under HI. 
A 

Let Q2 be a simple hypothesis within HI and let f(Q) =-2 log L(Q) I 

A A 

f(Qo) =-2 log L(QO) I etc. Then we can write the following analysis 

of deviance tables, when all components of Q are positive and 

Table 1 

Hypothesis Test statistic degrees of freedom 
A A 

Test for stationarity f (Q) - f(QO) s-l 
A A 

Test for reversibility f(QO) - f(Ql) ~s(s-l) 
A 

Test for simple hypothesis f (Ql) - f(Q2) ~s(s-l) 

A 2 Total f (Q) - f (Q2) s -1 
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A A 

For example, under HI I(QO) -1(Ql) is asymptotically distributed 

with the chi-squared distribution with ~(S-l) degrees of freedom. 

Similarly for Q3' a simple hypothesis within HO' we can write: 

Table 2 

Hypothesis Test statistic degrees of freedom 

Test for stationarity 

Test for simple hypothesis 

Total 

A 

I(Q) -1(QO) 

I(QO) -1(Q3) 

s-l 

s(s-l) 

2 s -1 

In families of chains where not all transition probabilities are 

positive it is easy to derive the degrees of freedom by inspec-

tion. Let N =# {(i,j) : p .. > A}. Then H specifies N-s + (8-1) =N-l 
1J 

linearly independent parameters, HO specifies N-s, and HI speci-

fies (N-s)/2. Thus in table 1 we replace the last column by 

(s-l, !:2 (N-s), !:2 (N-s), N-l) I • 

As an example consider an rth order chain on t states governed by 

the t r + l transition probabilities Pi i = 
1 ... r+l 

Pr (xr +l =ir+llx j =i j , j =l, ... r). Then as usual (see f.x. 

BillingsleYI (1961)) we identify the chain with a 1st order 

chain on the t r r-tuples i = (il, ... ,i ) where the probability of - r 

transition 1:."'i for i= (jl,···,jr) is only nonzero if i k =jk-l 

r+l r (k = 2, ... r). So here N = t IS = t and the last column in table 

1 becomes (tr -l,!:2tr (t-l) ,!:2t r (t-l) ,tr+l-l)' . 

Notice that for chains of higher order than 1 we have to revise 

the characterisation of reversibility: if i = (il, ... ,i ) and 
- r 

i = (i2 ,··· ,ir +l ) we require, instead of qij =qji' qij = qi * 1:.* 
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V.!.,i, vlhere.!.*= (ir,· .. ,il ) and i* = (i r +l ,· .. ,i 2), i.e . .!. and i in 

reverse order. This does not affect the degrees of freedom. Notice 

also that for higher order 2-state chains stationarity is still 

equivalent to reversibility in this sense. 

4. Maximum Likelihood Estimators 

Under H the MLE' s are of course given by q .. = u . n.. In general 
lJ 1 lJ. 

m n. 
1· 

there do not exist explicit MLE's for Q under HO and HI" An im-

portant exception to this is under HI' reversibility, when all the 

samples are of length 2. We now derive these estimators. 

We have now u. = n. ,Vj, so we can write from (2) 
J J • 

log L = 1:: 
ij 

n .. log q .. 
lJ lJ 

=1:: 
ij 

n .. log q .. 
Jl lJ 

(since q .. = q .. under HI) 
lJ Jl 

= 1:: ~ (n .. + n .. ) log q .. 
ij. lJ Jl lJ 

(by addition) . (6) 

Thus {~(n .. + n .. )}, i ~ j say, is sufficient. Furthermore, by 
lJ Jl 

writing (6) as 

s-l 
L = qnss·· exp {1:: ~ (n .. + n .. ) log q .. Iq 

i=l 11 11 11 ss 

+ L: ~(n .. +n .. ) log q . . /q } 
., 1 lJ Jl lJ ss 
l<J~S-

we see that we are now within a regular canonic exponential family, 

and so the maximum likelihood estimator is given uniquely as the 

solution of the equations 
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EQ[~(n .. +n .. )] =~(n .. +n .. ), ie. 
1))1 1))1 

m 
-2 (q .. + q .. ) = mq .. = ~ (n .. + n .. ), giving the MLE' s as 

1))1 1) 1))1 

A n .. +n .. 
q .. _ 1) )1 
1) - 2m 

A n .. + n .. 
p .. = 1) )1 

1) n. + n . 
1" "1 

so that 

and (7) 

These formulae (7) have been derived previously for two state 

chains (H. Dalgas Christiansen (1978)). The author considers only 

stationarity (for two state chains equivalent to reversibility, 

as seen above). She then attempts to generalise the 'backwards-

forwards' estimator n. +n . to chains with more than two states: 
1. .1 

2m 

but this is only justifiable under reversibility, where the MLE's 

are given above. The estimated chains proposed by Christiansen 

are not in general reversible. 

5. VJald Tests 

Let in general a composite hypothesis specify a parameter 8 as 

being subject to k restrictions: 

T.(8) =0, i=l, ... ,k, 
1 

and let 8 be the unrestricted and 8* the restricted MLE of 8. Then 

the Wald test of the hypothesis is 

Tr.i = 1: 
c ij 

where (A ij ) is the reciprocal of (A .. ), the asymptotic covariance 
1) 

A A A 

matrix of T(8) = (T l (8), ••• ,Tk (8))'. If 8 is asymptotically normal 
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2 
then Wc rv X (k) under the hypothesis. Notice that Wc uses only the 

unrestricted MLE, 8. 

We construct Wald tests for the hypotheses HO cH, HI cH and HI c HO. 

We do not consider here families of chains in which some subset 

of {qij} is always zero. Here 8 = Q and the hypotheses HO and HI 

are specified by the linear functions S~Q == q. - q . = 0, 
1 1. .1 

i = 1, ... , s - 1, and R! . Q == q .. - q .. = 0, 1;' i < j ;, s, respectively. 
lJ lJ Jl 

Here Q is considered as a s2 x 1 column vector. Let also 

S = (Sl""'S -1)' R= (R12 R -1 ), and B be the s2 x 1 vector s , ... , s ,s 

with unit components. 

We now derive the distribution of Q under H. Let I be the infor-

2 2 mation matrix with respect to Q, i.e. the s x s matrix with 

( (i, j) , (k, f) ) th element 

I (i,j) I (k,f) =E(-
'\21 ) (E(U. -no ) En .. \ 
o og L = cS • 1 1. + cS • ~) , ( 8 ) 
d q .. d qk 0 lk 2 J f 2 lJ z. q. q .. 

1. lJ 

from (2). cS ik is the Kronecker delta. Since Q under H satisfies 

B'Q =0, the asymptotic covariance matrix ~Q of Q under H is given 

by (see Si1vey (1970), p.81) 

(9 ) 

for some C and D. When the appropriate inverses exist, the solu-

tion to (9) is given by 

(10) 

( 11) 

and (12 ) 
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i (see Rao (1973), p.33). Consider the sxs matrix Ai = (akt ) defined 

by 

k,l=l, ... ,sl 

for some constants xi and e ikl k = 1,'0' ,s. It is easy to show 

kl 
that Ai is invertible with inverse (ai ) given by 

kl 
a. = 0koe'k -x.e.ke. 0/(1 +x.l:e .. ). 1 ~ 1 1 l' 1~ 1. 1 J 

J 

( 13) 

2 2 Let nov·; x. =E(u. -n.)/q. and e .. =q .. /En .. =q.q .. /En. , so that 
1 1 1· 1· lJ lJ lJ 1 lJ l' 

i . -1 
from (8) I(i,j)k,l) =oikakl' Thus I=dlag (Al,o .. ,As )' I = 

-1 -1 th 
diag (AI , .• "As ) and we can write the ((i,j), (k,l»-- element 

of I-I as 

Hence 

and -1 
B ' I B = q .. /m = l/m , 

qij 
m 

( 15) 

(16 ) 

so that D = m, C = - Q, and we obtain from (10) that the (( i, j) , 

th 
(k,l»-- element of l:Q is given as 

1 1 ojl 1 
= q .. qk 0 ( ° . k (-E - -E - + -E -) - -) . lJ ~ 1 JU. n. n.. m 

1 1. lJ 
(17) 

Let (y .. ) =S'l:Q"S and ((jJ( .. ) (k 0» ( .. k 0) =R'l:"R be the asymp-lJ . 1,J, ,~ l<J, <~ Q 

totic covariance matrices of S'Q and R'Q respectively, under H. 

For the sake of reference we write out the formulae. 
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2 2 
q, q'k 

+ cS, , (El. + L _1_) 
lJ Ui k Enki En, , 

Jl 

((i,j) =1= (k,l)), 

and 2 1 1 1 1 
(j)(, ') (' ') =qiJ' (Eu, -En, +En, , -ill) 1,J , 1,J 1 1. lJ 

+ 2qijqji + g~, (_1 ___ 1_ + _1 __ 1) , 
J 1 Eu, En ' En " m 

m J J. Jl 

(18 ) 

(19 ) 

(20) 

When the samples are all of length 2, formulae (17) - (20) become 

q, , 

(J (' , ) ( k 0) = m1 J ( cS l' J' cS k 0 - qk 0) , 1,J I ,-t.. -t..-t.. 
(21) 

(the well-known multinomial expression), 

1 y .. =-[o .. (g, +q ,) - (g, -g ,)(g, -g ,) -g .. -g .. ] (22) 
lJ m lJ l' .. '.1 1- '1· Jo 'J 1J J1 

and 1 
(j) ( l' ,J') (1' ,J') = - [g, , (1 - g, ,) + g , , (1 - g , ,) + 2g, ,q, , ] ( 24) m 1J 1J J1 J1 1J J1 

A 

Let LA be the estimate of LA formed by substituting the observed 
Q Q 

values of u1" n" etc, for their expected values, in (17). Then 
1J 

the Wald test for HO c: H is given by 

(25) 
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2 
which has asymptotically a X (s-l) distribution under HO. Simi-

larly the Wald test for HI cH is given by 

(26) 

2 
which is asymptotically X~s(s-l) under HI' 

To derive the Wald test for HI c HO we need the asymptotic covari-
A 

ance matrix ~A of QO' As in (9) this is given by 
QO 

/L, 
Col=f:, 

\-1 / I \-1 B S . 1 I S 
t QO i 0 I 0 ~ 

0 o I I I· 

\C' 

=, ------r- I 
D J \s 0) 

, I' 
0 \S' 0 10/ 0 I 

where 10=(1 BO)' After a little manipulation using (10) we 

\B' 

obtain 

~A = ~A - (LAS) (S I LAS) -1 (~AS)' . 
QO Q Q Q Q 

(27) 

(28) 

Similarly the asymptotic covariance matrix ~A of Ql under HI 
Q1 

is given by 

~A = ~A - (LAR) (R' LAR) -1 (~AR) I • 

Q1 Q Q Q Q 
(29) 

We can now construct the Wald test for HI C HO' Since q, - q , = 0 Vi, 
l. .l 

{qij - qj i} I 1;' i < j ~ s are not linearly independent under HO' ]:t is 

easily seen though that {q, ' - q .. }, 1 < i < J' < S - 1 are linearly 
lJ Jl = = 

independent under HO and that q, , - q .. = 0, 1 < i < J' < S - I, specify 
lJ J l = = 

HI under HO· Let therefore R*= (R12,R13, ... ,Rs-2,s-1)' Then 

R* 'LA R* is nonsingular and the Wald test for HI C HO is given by 
QO 
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(30) 

2 
which is asymptotically X~(s-2) (s-l) under HI" 

We mention briefly another approach to testing for stationarity 

suggested implicitly by Guilbaud (1977). His paper is concerned 

with the asymptotic distribution of P, the eigenvector of P, 

under H, i.e. the MLE of the stationary distribution under H. 

The results are primarily for samples of length 2 but can be 

extended to samples of greater but equal length. He derives the 

asymptotic distribution of q - p, i. e. the difference between the 

initial and stationary distribution estimates, and constructs 

confidence regions for q --p by means of the Bonferroni inequality~ 

If they do not include zero he concludes that the chain is not 

stationary. Use of the Bonferroni inequality involves loss of 

power and so the tests given here are to be preferred. However, 

the asymptotic distribution of q - P could be used to construct a 

test for q = p to which the criticism of loss of power would not 

apply_ It is difficult to evaluate the relative merits of these 

tests. From a practical point of view the Wald test is easiest 

to perform. 

6. An Application 

Bartholomew (1973, chapter 2), discusses extensively data given 

by Glass and Hall (Glass (1954)), which provide the basis for a 

social mobility model. The data consists of a sample of 3500 

father/son pairs classified by the father's and son's social 

categories, (7 categories). A Markov chain model is assumed and 

Bartholomew remarks that the data seem to come from a stationary 
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chain, but that 'a complete answer to the question of sampling 

error is not available'. Later he also discusses reversibility, 

which in this context means equal expected exchange between 

classes, i.e. mq .. =mq .. I Vi,j. He calculates (ibid. ,p.39), the 
1J J1 

A A A 
matrix (q'!'.) = (p. p .. ), where p is as before the MLE of the statio-

1J 1 1J 

nary distribution under H, and examines it for symmetry. This has 

a curious interpretation. It is concievable that observed sample 

sequences from a stationary chain, due perhaps to some sampling 

scheme, do not have the stationary distribution as their initial 

one. In this case one could not test for stationarity, but assum-

ing stationarity one could test for reversibility by examining 

whether p.p .. =p.p .. Vi;j. This would require the asymptotic 
1 1J J J 1 

distribution of (q'!'.). 
1J 

Wald tests for stationarity and reversibility (within H) were 
A A A /\. 

performed on the data, and the estimates P, q, Q, S'LQS and 

(S'EAS)-l are given in table 3. The test statistics were W =38.70 
Q 0 

and Wl = 51. 24, which are highly significant (P < 0.0001). Guilbaud 

(1977) also analysed this data and concluded that stationarity 

must be rejected. Likelihood ratio tests were not performed due 

to the difficulty of determining the MLE under stationarity. 

Table 3 

A 

P = 0.388 0.146 0.202 0.062 0.140 0.047 0.015 

0.107 0.267 0.227 0.120 0.206 0.053 0.020 

0.035 0.101 0.188 0.191 0.357 0.067 0.061 

0.021 0.039 0.112 0.212 0.430 0.124 0.062 

0.009 0.024 0.075 0.123 0.473 0.171 0.125 

0.000 0.013 0.041 0.088 0.391 0.312 0.155 

0.000 0.008 0.036 0.083 0.364 0.235 0.274 
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q = (0.037, 0.043, 0.098, 0.148, 0.432, 0.131, 0.111)' 

A 

Q = 0.014 0.005 0.007 0.002 0.005 0.002 0.001 

0.005 0.011 0.010 0.005 0.009 0.002 0.001 

0.003 0.010 0.018 0.019 0.035 0.007 0.006 

0.003 0.006 0.017 0.031 0.064 0.018 0.009 

0.004 0.010 0.032 0.053 0.204 0.074 0.054 

0.000 0.002 0.005 0.012 0.051 0.041 0.020 

0.000 0.001 0.004 0.009 0.040 0.026 0.030 
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