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1. Surmnary 

If in a regression problem the variances are not equal it is 

common to use the reciprocal estimated variances as weights. The 

residual sum of squares Q has asymptotically a x2 distribution 

when the degrees of freedom tend to infinity. 

Welch (1947,1951) gave an approximation to the distribution of Q 

in the special case of the comparison of n means, by using a 

suitably chosen F distribution. James (1951,1954) gave an impro

ved approximation using the fractiles ofaX2 distribution and 

extended the results to the general linear model. 

We shall show here how the results for the general linear model 

can be considerably simplified by using the technique due to 

Welch (1951), and extend the results to multivariate models and 

variance component models. 

Results will also be given on the variance of the fitted value, 

thereby extending the results of Jacquez et al. (1968) to the 

general linear model. 

2. Notation and main result 

Let Y have an n-dimensional normal distribution with mean 1; E: LO I 

a subspace of dimension p < n, and variance-covariance matrix D = 

diag (0~, ... ,0~). We shall assume that we have independent esti

mates S = diag (s12, ... ,s2) which have X2 distributions with degrees 
n -

2 2 of freedom (fl, ... ,fn ) and scale parameters (01/f l , ... ,0n/fn ). 

We want to test the hypothesis H 1; E: Ll , where Ll C LO is a sub

space of dimension m < p. 
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The weighted least squares estimate is found for i = 0, 1 by 

-1 
minimizing (Y-~) IS (Y-O for ~ EL, I and is given by the projec-

1 

-1 tion p, (S) onto L, with respect to S . 
1 1 

As a test statistic for the hypothesis H we shall use the residual 

sum of squares 

= Y I S -1 (P ( S) - P ( S) ) Y - Y I TY o 1 -

say. 

We can then formulate the main result. 

Theorem 1 Up to terms of order l/f, we have 
1 

(1) EQ = p - m + 2A + 2B 

( 2) VQ = 2 (p - m) + 14A + 2B 

where 

(3 ) A = L:, (PO" - PI' , ) (1 - PI' , ) /f, 
1 11 11 11 1 

(4 ) B = L:, (PO" - PI .. ) (1 - Po ' , ) /f , 
1 11 11 11 1 

Here P = P (D), \! = 0,1 and P " is the i I th diagonal element of 
\! \! \!ll 

the matrix P . 
\! 

We shall first comment on this result and then give some appli-

cations and defer the generalizations to section 4. 

Notice first that for the case of testing a linear model in the 

full model we have Po = I (the identity) and hence B = 0 and 

2 
A = L: , (l - PI' ,) /f,. 

1 11 1 
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As a special case of this consider the problem of comparing 

n-means. Welch (1951) derived (1) and (2) with B = 0 and 

-2 -2 2 . A = L: . (1 - a. /L:. a. ) /f.. Th1S result we can easily find since 
1 1 J J 1 

the projection Pl in this case is given by 

-2 -2 
(PlY) l' = L:.a. Y./L:.a. 

J J J J J 

-2 -2 from which we read off directly that PlO . = a. /L:. a . . Thus in a 
11 1 J J 

sense Welch's result is true for the general linear model tested 

within the full model. 

James (1951) considers the problem of testing n means equal to 

zero. In this case Po = I, PI = 0 and this gives B = 0 and 

A = L: .l/f ., which is consistent with Jarnes I result. 
1 1 

Notice how, in general, we can interprete the result in terms 

of the weighted regression with D- l as weights. This gives rise 

to the projections Po and Pl and Plii , say, is just the coeffi

cient of Y. in the expression for the fitted value in this re-
1 

gression (PlY)". 11 

A different interpretation can be given as follows: Define the 

residuals in the regression with D- l as weights by Rl = (I-Pl)Y, 

RO = (I -PO)Y and ROl = (PO -Pl)Y=Rl -RO. Then as is well known 

V(Rl ) = (I - Pl)D, V(RO) = (I - PO)D and V(R01 ) = (PO - Pl)D, which 

means that 

(5 ) 

(6) and 

2 
A = L:. V (RO 1 . ) V (Rl . ) / (V (Y . )) f. 11111 

The results of Theorem 1 can be applied as Welch (1951) does to 
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fit a distribution of the form CF(fl ,f2 ) such that it has the 

same mean and variance as Q. 

This is accomplished if we take 

(7 ) 

(8) c = p-m+2(A+B) -6(A-B)/(p-;m+2) 

(9) f2 = (p-m) (p-m+2)/3(A-B) 

We have here used the approximations 

2 2-2 - c (1 --) 
f2 

It is difficult to compare the results of (3) and (4) to the re-

suIts of James (1954), due to the rather complicated form in 

which they are given in his paper. 

The result can be formulated as follows 

P {Q ~ ~ + hI (~) } = 1 - a + 0 (~ .2) 
1 

2 
where ~ = Xl-a (p-m) , and hI (~) is of the order of l/f i . 

From the relation 

it follows that in our notation 

hl(~) = 2 (Z-m) (A+7B+3(A-B)i;/(p-m+2)) 
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We shall go through a few special cases to show how easy hl(~) is 

found with the present notation. 

Consider for instance a two way analysis of variance, where Y .. lJ 

has mean ~ .. 
lJ and variance O"~. i = 1, ... ,r,j = 1, ... ,So We want to 

lJ 
test the hypothesis of an additive model, i. e . ~ .. = CI.. + B . ° lJ 1 J 

In 

In order to find A and B we assume -2 
w .. = 0".. known and let 

lJ lJ 

w. = I: .w .. ,w . = I: .w .. , and w .. = I: .. w .. , then the estimate for 
l' J lJ 0J 1 lJ lJ lJ 

~ .. is given by 
lJ 

~. . = I: . Y. . w. . /w . + I: . y. . w. . /w . - I:. . y. . w. . /w .. 
lJ 1 lJ lJ 'J J lJ lJ 1° lJ lJ lJ 

which gives 

PI .' .' = w .. (l/w. + l/w . - l/w .. ) lJ,lJ lJ 1· 'J 

Since Po = I I we are testing inside the full model, we find B = 0 

and 

2 A=I: .. (l-w .. (l/w. +l/w . -l/w .. )) /f .. 
lJ lJ l"J lJ 

h (~) = ~ (1 + 3~ ) 
1 2 (r-l) (s-l) (r-l) (s-l) +2 

2 z . . {I-w .. (l/w. +l/w . -l/w .. » /f.l.'. J' lJ lJ l"J . 

This should be compared to (4.19) of James (1954). 

Another case of interest is a simple linear regression where the 

mean of Y. is Cl. + Bt. and we let O"~ denote the variance. We want 111 
-2 

to test B = 0 and in order to find A and B we assume w. = 0". known. 
1 1 

Then 

(PoY)' =I:.w.Y./I:.w. + (t. -t)z.w.Y. (t. -t.)/SSD 
1 JJJ JJ lJJJ J 
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- 2 
where t=I:.w.t./LW. and SSD=Lw.(t. -t) 

JJJ JJ JJ J 

We also find 

= 2:. w . Y . /2: . w .. 
J J 1 J J 

Hence 

- 2 A = 2: . w. (t. - t) (1 - w. /2: . w.) /SSDf. 111· 1 J J 1 

- 2 - 2 
B = 2: . w. (t. -t) (1 - w . /2: . w. - (t. - t) w. / S S D) / S S D f . 111 1 J J 1 1 1 

~ - 2 - 2 
hl(n =-2(I:.w.(t. -t) (8(1-w./I:.w.) -7(t. -t) w./SSD)/SSDf. 111 1 J J 111 

2- 4 2 
+ 2:w. (t. -t) /SSD f.) 111 

As a byproduct of the above analysis we can also obtain various 

other approximations. Let P(S) denote the projection onto a sub

space L with respect to S-l and let P = P (D), then we have 

Theorem 2 Let Y = P (S) Y denote the fitted values, then EY = l; 

and up to terms of order l/f., we have 
1 

(10) 

and 

(11) 

Corollary 

A 2 2 
V(Y) .. =P .. a. +22: P. (l-P )P .a./f 

1J 1J Jv 1V vv VJ J v 

2 2 E(P(S)S) .. =P . . 0'. - 22: P. (l-P )P .a./f 
1J 1J J v 1V vv vJ J v 

An estimate of V(Y) .. which is unbiased up to terms 
1J 

of order l/f. is given by 
1 

(12) P .. (S)s~+42: P. (S)(l-P (S»P .(S)s~/f 
1J J v 1V VV vJ J v 

These results generalize the formula for the variance in a simple 

regression model, as derived by Jacguez, Mather and Crawford (1968). 
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Finally we shall note the following: The expressions in Theorem 1 

and 2 all depend on the true but unknown D. If we insert 8 in 

place of D, that is replace P by P (8), then a bias of order v v 

l/f~ will result in A and B. With the accuracy we are working with 
l 

this does not matter. 

3. Proof of main result 

We shall first prove the results for D = I and then transform to 

the general case. Welch (1951) derived the first terms of the 

moment generating function but we shall only need the first two 

moments to get the desired accuracy. 

Thus we want to find first the mean and variance of Q given 8. 

(13 ) E(QI8) = E(Y'TYI8) = trT 

(14) V(QI8) = V(Y'TYI8) = 2trT2 

We shall need the following approximation result. 

Lemma Let P(8) be a projection on to the subspace L with re-

-1 .-1 spect to 8 , then If 8 = I + U, we have 

P (8) = P + PU (I - P) - PUPU (I - P) + E 

where E E 0 (11 U 11 2) 

Proof P Let l; EL<=> l; = XS, S ER 1 and rank X = P, then 

P (8) = X (Xl 8- l x) -lx's-l 

= X (X' X + X;UX) -lX'(1 + U) 

= X( (X·X) -1 - (X'X) -lX"UX(X'X)-l 

+ (X I X) -1 (X I UX (X I X) -1) 2 + E) X I (I + U) 
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from which the result follows for P = X i (X IX) -Ix. 

Now we apply this result to T = S-l (Po (8) - PI (S)). This gives 

- (I - PI) UP 1 U (I - PI) + (I - Po) UP 0 U (I - Po) + € 

and hence 

(15) trT = p - m + 0 + L:. U .. (P ., - PI' .) - L: . . U. U 'P1 " (0 .. -PI' .) 
1 11 011 11 lJ 1 J lJ Jl Jl 

+L: .. U.U.P .. (0 .. -P .. ) +€ 
lJ 1 J 01J Jl OJl 

Now we can find the expectation of Q as E(EQIS) =E trT. Note 

therefore that 

-1 
EU. = E (S. - 1) = 1/ (1 - 2/f.) - 1 = 2/f. 

1 1 1 1 

EU~ = E (S-:-l - 1) 2 = 1/ [ (1 -~) (1 _.L) ] - 2/ (1 -~) + 1 = 2/f. 
1 1 f. f. f. 1 

111 

and that EU.U. is of order l/(f.f.) and therefore discarded if 
1 J 1 J 

i :j: j. 

Then 

EQ = p - m + L: . 2 (P .. - PI .. - PI .. (1 - PI") + P ,,( 1 - P ,,)) /f . 
1 011 11 11 11 011 011 1 

=p-m+2(A+B). 

Similarly we find 

(16) 

-2truP1 U(p -P1 )+2trU(I-P)U(P -P) 
o 0 0 1 
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and hence 

EV (Q IS) = 2 [p - m + l: . 2 (P .. - PI") (2 + P " - PI' . 
lOll II Oll II 

- 2P l " +2(1-P ,,»/f.] 
II Oll l 

From (15) we also find 

2 
V(E(QIS» =V(trT) =l:.2(P .. -PI") If. 

lOll II l 

and adding these we end up with 

V(Q) =EV(QIS) +V(EQIS) 

= 2 (p - m) + l: . (P .. -PI") (16 - 2P . .. - l4P1 .. ) If . 
lOll ll.· Oll II l 

= 2 (p - m) + l4A + 2B 

~ -k -k 
If D:j: I, consider the variable Y = D 2y with mean D 21; and 

variance matrix I. Then let S = D -~SD -~. The proj ection P (S) = 

-k k ~ -k k -1 
D 2p (S) D 2 and P = D 2PD 2 or P .. = 0. P .. 0. and in particular the 

lJ l lJ J 

diagonal elements are not changed. It is seen that as well Q as A 

and B are invariant under this transformation. 

To prove Theorem 2 on V(P(S)Y) note that 

V(P(S)Y) =EV(P(S)YIS) +V(E(p(S)YIS) 

= EP (S) P (S) , + 0 

which by the Lemma can be written 

E (P + PU (I - P) UP + ... ) 

and hence 

V(P(S)Y) .. =P .. + 22: P. (l-P )P ./f 
lJ lJ v lV vv vJ v 
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which shows (10) for the case D = I. 

Finally the Lemma applied to P(S)S gives 

EP (8)8 =E{P ;,,;,0 PUP + PUPUP + ..• ) 

and hence 

2 EP .. (8)s. =P .. - 2L: P. (l-P )P .jf 
1J J 1J V 1V vv VJ v 

which shows (11). The general case D =1= I is solved as before by 

applying (10) and (11) to the variables ~ and g.Finally the 

corollary follows easily from Theorem 2. 

4. Generalizations 

The methods above give a much more general result. Let us first 

-1 -1 2 define Z = 8 - I, then U = 8 - I = (I + Z) - I = - Z + Z +... . We can 

now collect the results of (13) - (16) and we find that to the 

order of approximation we need: 

(17) 

(18) 

EQ=p-m+Etr{Z(P -Pl· )z(p -Pl )}+2Etr{Z(p -Pl)Z(I-P)} 
o 0 0 0 

VQ=2(p-m) +E{tr(Z(po -Pl ))}2+ 6E tr{Z(P -P )Z(p -p)} o 0 ~oo 

+ 8 E tr{ Z (p -Pl ) Z (I - P )} 
o 0 

This result does not depend on any particular form of the esti-

mate 8, only on the fact that certain moments exist. 

We shall consider two generalizations. First let Vl , ""VK denote 

an orthogonal decomposition of Rn with dimensions ml, ... ,mK and 

projections Ql' .. o,QKo Consider the family of distributions of Y 

on Rn given by the normal distribution with mean t; EL a subspace 
o 

of Rn and variance r =L:~=l ri' where r i is an arbitrary covariance 
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matrix giving rise to a normal distribution with support on V .. 
1 

Note that this implies that Q. f . Q. = 8 .. f .. We want to test the 
1 1 J 1J 1 

hypothesis that .; ELl C Lo' 

Further we shall let S. denote an estimate of f. which has a 
1 1 

Wishart distribution of the form W (f. If.)/f .. In this situation 
m. 1 1 1 

1 

we can complete the reduction of the expressions (17) and (18) by 

means of the following Lemma. 

Lemma Let S have the distribution W (f,~)/f and let M and N de
p 

note symmetric p x p matrices then 

E tr { (S - 1::) M (S - ~) N} = E tr (S - 1::) M tr (S - ~) N 

= {tr M~N~ + (tr M~) (tr N~) }/f 

Proof Let Ul' .. "Uf be independent normally distributed with 

mean 0 and covariance matrix ~ I then S = ~fl U. U. 'If and 
1 1 

Similarly 

E tr (S - ~) M (S - 1::) N 

= (E Ul'MUl Ul ' NUl - tr ~M1::N/f 

= (tr ~M~N + tr L:M tr ~N) If 

E tr(S - ~)M tr(S - 1::)N 

as was to be proven. 
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From this Lemma it follows that if S = L: K S. then V = S - I = 
i=l 1 

L: K (S. -Q.) and it follows that the result of Theorem 1 holds 
. 1 1 1 1= 

with 

(19 ) A =~ L.: . {tr (p - PI) Q. (I - PI) Q. + tr (p - PI) Q. tr (I - PI) Q . } If. 
1 0 1 1 0 1 11 

(20) B =~ L:.{tr(P -Pl)Q·(I-P )Q.+tr(P -Pl)Q.tr(I-P )Q.}/f. 
1 0 1 01 0 1 011 

As a simple example of this consider the situation where Y l , .. "YK 

are independent p-dimensional normally distributed with means 

SI' '."SK and covariance matrices fl, ... ,fK" We want to test the 

hypothesis that sI = ... = SK' 

The estimate of the common mean is ~ = (L:. r-:-l) -1 L:. f-:-ls .. To put 
1 1 111 

Kp _ P P 
it into the above framework let R -R x ••• xR and let Q. denote 

1 

the projection into the i'th copy of RP considered as a subspace 

of RKP • The projection p(r) can be represented as a block matrix 

-1 (-1 ) with (sft) 'th block equal to W Wt Wt =r t ' W=L:tWt ' 

s,t= (l, ... ,k). Similarly (Q.) t=I if s=t=i and zero other-
1 s, pxp 

wise. Hence we find for P = I I that B = 0 and 
o 

A=~ L: . [tr { (I - P (r) ) Q . } 2 + {tr (I _ P (r) ) Q . } 2 ] If. 
1 1 1 1 

-1 2 -1}2 L:. tr (I - W W.) + {tr (I - W W.) J If. 
1 1 1 1 

which is consistent with the result of James (1954)" 

As the final generalization we shall consider the case where 

2 2 r. = a . Q., and where o'. is estimated 
111 1 

by s~ which has a X2 distri-
1 

bution with f. degrees 
1 

of freedom and a scale parameter O'~/f .. 
1 1 

Also let sf, ... ,s~ be independent. Then 

2 L: . (s. - 1) Q. and 
111 

we find V = S - I = 
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E tr { (S - I) M (S - I) N} = L. . tr (Q . MQ . N) E (s ~ - 1) (s ~ - 1) 
lJ 1 J 1 J 

= L. 2tr(Q.MQ.N)/f. 
1 1 1 1 

and 

E tr{(S -I)M tr.(S -I)N} =L .. tr(Q.M)tr(Q.N)E(S~ -1) (s~ -1) 
lJ 1 J 1 J 

= L. 2tr(Q.M)tr(Q.N)/f. 
1 111 

Hence we find that 

where 

EQ = p - m + 2A + 2B 

VQ = 2 (p - m) + 14A + 2B + 2C 

A=L.{tr Q.(p -Pl)Q.(I-Pl)}/f. 
11011 

B = L . {tr Q. (p - PI) Q. (I - P )} /f . 
110 101 

2 2 C=L.[{tr (Q.(p -PI))} -tr{Q.(P -PI)} ]/f. 
11010 1 

As an application of this result consider the balanced incomplete 

block design given by 
Treatment 

A B C 

1 YI Y2 

Block 2 Y3 Y4 

3 Ys Y6 

There are three subspaces of the 6-dimensional observations space, 

which are of interest. These spaces are spanned by vectors of the 

form: 
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Block space Plot space Treatment space 

ex ex ex -ex 

D (3 (3 (3 -(3 

y y y -y (3 y 

The projections onto the block space and plot space Qb and Qp 

are best described as block diagonal matrices with 2x2 matrices 

along the diagonal. These are (? ?) and .( ? -?) respectively. 
~ ~ -~ ~ 

Thus the covariance matrix is 

2 2 2 2 r = T Qb + (5 Qp, (5 > 0 ,T> 0, 

and the projection with respect to r- l = T- 2Q + (5-2Q onto the 
b p 

treatment space LO is found to be 

!z c/J !z c/J -c/J -c/J 

c/J !z -c/J -c/J !z c/J 

!z c/J !z c/J -c/J -c/J 

-c/J -c/J c/J !z c/J !z 

c/J !z -c/J -c/J !z c/J 

-c/J -c/J c/J !z c/J !z 

If we want to test the hypothesis of no treatment effects, we 

also have to project onto the space Ll spanned by the vector of 

lIs. Since Ll is contained in 

be written (PlY) i = Y. Now let 

the blockspace the projection can 

2 2 2 
sI and s2 be estimates of T and 

2 
(J with fl and f2 degrees of freedom. Then we can test the hypo-

thesis of no treatment effect using the information from both 

strata by means of the statistic Q. Some calculations show that 
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in this case the corrections to the mean and variance are given 

by 

2 2 2 2 
A = (20 /f 1 + 6'[ /f 2) / (3'[ + 0 ) 

2 2 222 
B = (1/f l + 1/f2 ) 6'[ 0 /(3'[ + 0 ) 
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