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Surmnary. 

This paper presents a method, based on the empirical distri­

bution function, for testing goodness of fit (gf) under composite 

null hypotheses. After the unknown parameters are estimated from 

the entire data set, the procedure calls for the transformed 

sample to be randomly partitioned into a large number of groups, 

and a gf statistic calculated for each group. These statistics 

are used to construct a test which can attain, asymptotically, 

any desired level a, and which requires for its implementation 

only standard tables of critical values. The procedure is parti­

cularly recormnended when an a priori grouping of the sample can 

be employed and, hence, heterogeneous alternatives are quite 

plausible. It is shown that, under these alternatives, the power 

of the procedure compares favourably with that of other methods. 

O. Introduction. 

Historically, the primary concern of the classical theory of 

goodness-of-fit (gf) has been the testing of simple hypotheses. 

With the exception of chi-square tests, the problem of composite 

null hypotheses, until fairly recently, has received little ana­

lytical attention. Undoubtedly, a major obstacle is that the pre­

sence of nuisance parameters severely complicates the distribution 

theory, not only for statistics based on the sample distribution 

function but also for other gf methods. The implementation of 

Barton's [1956] extension to composite hypotheses of Neyman's 

[1937] "Smooth goodness-of-fit test", for example,requires exten­

sive specialized tables. Similarly, the distribution of the 

Shapiro and Wilks [1965] statistic for testing normality has 
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proved intractable and their tables are based on ~10nte Carlo 

studies. Though, subsequently, a test for exponentiality was 

proposed (Shapiro and Wilk [1972]), these methods do not appear 

to be broadly applicable. 

A more intuitive approach involves first estimating the 

unknown parameters, and then carrying out a probability integral 

transform of the observations employing the estimated distribution 

function. Durbin [1973] has shown that under regularity conditions, 

as the sample size tends to infinity, the resulting sequence of 

empirical processes converges weakly to a Gaussian process. This 

result provides a rigorous foundation for computing gf statistics 

for the estimated empirical process. Unfortunately, the distribu­

tion of the limit process depends on the underlying distribution 

of the observations, so that different tables are required for 

each particular application. An extensive survey of recent work 

in this area can be found in Neuhaus [1977]. 

To obviate the need for new tables, preparation of which re­

quires considerable numerical work, various methods which permit 

the use of standard tables have been suggested. Durbin [1976] 

discusses two such techniques involving the use of randomization, 

and points out that their convenience may be outweighed by their 

undoubtedly poor power characteristics. 

In this paper another randomization device is presented and 

its properties investigated. The procedure consists of firstly 

using the entire sample to estimate the nuisance parameters and, 

secondly, randomly dividing the data into a fairly large number 

of groups, no group ordinarily containing more than about 10 to 15 

percent of the sample. Employing the (same) estimated distribution 
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function, each group of observations is mapped into [0,1] and 

for each, a g£ statistic is computed. Given that there are 

m groups and a test of approximate level a is desired, then each 

statistic should be composed with the upper aim percent point 

of the distribution appropriate to testing a simple hypothesis 

with the same number of observations as in the group. The null 

hypothesis is rejected if any of the m statistics exceed their 

critical values. 

The intuitive justification for using the standard distribution 

is based on the assumption that no one group has a disproportio­

nate influence on the value of the estimator. If ,indeed, that is 

the case, then from the standpoint of a single group, the para­

meter estimates appear to be superefficient (compare Darling 

[1955] p. 2-3). Hence, the effect of the estimation should become 

negligible as the total sample size tends to infinity, notwith­

standing the fact that m such significance tests have been carried 

out. A rigorous presentation of the argument will be given in 

Section 1. 

The above procedure has been motivated by a practical appli­

cation (Braun [1977]) to data which consisted of closed birth 

interval lengths, hypothesized to have a gamma distribution invol­

ving unknown nuisance parameters. The adequacy of the model was 

of some interest, but no tables were available to carry out a 

proper test of fit. However, a natural grouping of the data by the 

parity of the interval led to the notion of separately testing 

each group of interval lengths of the same parity. The heuristics 

of the proposed procedure, outlined above, suggested the plausibi­

lity of using standard tables. 
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Although in this case the grouping was not done randomly, it 

seemed sufficient that the values of the parameter estimates 

played no role. In fact, it might be expected that the procedure 

would be most readily applied to those problems in which a natural 

a priori grouping is available, particularly if an alternative 

hypothesis of heterogeneity is being entertained. For example, in 

a test of normality carried out on data collected over several 

days, it might be suspected that one day's work differs from the 

others' and, thus, testing each day's data separately is intuitive-

ly attractive. 

The power of the proposed procedure under such alternatives 

is studied in Section 2, where it is shown that, under certain 

conditions, the power approaches 1 as the sample size gets very 

large, while the power of the method carrying out a single signi-

ficance test on the entire sample has power which is asymptotically 

only the level of the test. Heuristic arguments are subsequently 

advanced which suggest that the proposed procedure does well even 

for moderate sample sizes. 

1. MAIN RESULT 

A. Asymptotic Validity 

Let x l 'x2 ' ... be iid with distribution function F(·,8) where 

8 8 is a vector of parameters that is partitioned as 8 = (81). 
2 

Suppose the true (unknown) value of 8 is 80 = (~lO)and that the 
20 

hypothesis to be tested is HO: 81 = 810 . Thus, 8 2 represents a 

vector of nuisance parameters. 

For a given 

estimator of 8 2 

A A 

sample size N, let 8 2N = 8 2N (X1, ... ,XN) be an 

and let eN = (~10) •• Let \! denote the closure of a 
8 2N . 
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given neighbourhood of 60 . Following Durbin [1973], we make the 

following assumptions: 

Assumption 1: 

where 

(0) 

(i) 

(ii) 

( iii) 

N~ -k = N 2 

xl' ... ,xN are iid observations from F (. ,6) , 

l is measurable and for a random observation X 

definite matrix, 

Assumption 2: 

(i) 

( ii) 

F(x,6) is continuous in x for all 6Ev. 

Let x(t,6) = inf {x: F(x,6) = t} be the inverse 

transformation of t = F(x,6). Then the vector-valued 

function g(t,6 1 ,6 2 ) defined by 

exists and is continuous in (t,6 1 ,6 2 ) for all 

61 x 62 E V X V and all 0 ~ t ~ 1. 

Remark: Assumption 1 is slightly simpler than assumption Al 

(Durbin [1973], p.281) because we are not concerned here with a 

sequence of alternatives. Assumption 2 corrects a small error in 

Durbin's assumption A2. 
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A 

Once 82N has been calculated, the procedure calls for parti­

tioning the sample into groups of possibly different sizes. For 

convenience of exposition, it is assumed in the sequel that the 

groups are of equal size n(N) so that the number of groups is 

meN) = N/n(N). The dependence of nand m on N is usually suppress-

ed in the notation. A gf statistic is then calculated for each 

group. For fixed a€(O,~), let z (a) denote the upper a percent 
n 

point of the standard distribution of the statistic for sample 

size n and let a = 1 - (1 - a) 11m. The null hypothesis is rej ected 
m 

if and only if the largest of the calculated statistics exceeds 

Z (a ). n m 

Theorem 1: Suppose the procedure described above employs either 

a Kolmogorov-Smirnov (KS) statistic or the Cramer-von Mises (CM) 

statistic. Then under Assumptions 1 and 2, the level of the proce­

dure -+ a as N -+ 00, provided that n (N) = 0 (NP ) for some 0 < p < ~. 

Theorem 1 is a direct consequence of the following two pro po-

sitions which are established under its hypotheses ,following the 

introduction of some_notation. Definp 

~(i,N) (t) = n- l (# observations x in group i such that 
A 

and 

~(i,N) (t) = n~[~(i,N) (t) - t], i = 1,2, ... ,m. 

A (. N) 
T l, denotes either one of the KS statistics: 

max{O, sup 
O~t~l 

~(i,N) (t)}, max{O, sup 
O~t~l 

;(i,N) (t) },sup I;Ci,N)(t)l, 
O~t~l 
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Jl[~(i,N) (t) ]2dt . 
a 

The corresponding symbols without the carets are employed 

when 8N is replaced by 8 0 . 

Proposition 1: 
A (. N) (. N) 

max IT 1, - T 1, I < y = 0 (N-q ) 
l;i;m N p 

for some q > a . 

Proof: The proof depends on a basic relation derived in Durbin 

and 

p(i,N) (t) = n- l (# observations in group i such that 

F(i,N) (~ (t» = n- l (# observations x in group i such 
N 

that F (x, 80 ) < tN (t) ) . 

Thus, 

~ (i , N) (t) = F ( i , N) (~N ( t) ) , (2.1) 

Showing that ~(i,N) (-) and F(i,N) (-) are related by a random time 

transformation. The proof now differs slightly according to which 

class of statistics is considered. 

(a) KS statistics. As a consequence of (2.1) 

~(i,N) (t) = 

= 

= 

n~[F(i,N) (~N) - ~N] +n~[~N - t] 

y(i,N) (~N) + n~[~N - t]. 
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Since 

sup I y (i , N) (~ (t)) 
O~t~l N 

= I y(i,N) (t) 

;(i,N) and T(i,N) can differ by at most 

k _ n 2 sup 
O~t~l 

tN (t) - t I • 

The proof of Lemma 1 in Durbin [1973] shows that 

-r 
oN = sup I tN - t I = 0 P (N ), r < ~, 

O~t~l 

so that YN = 0 p (N-g) some g > 0 as long as n = 0 (N) . 

(b) eM statistic. Again from (2.1) I 

~(i,N) = n fl [~(i,N)(t) _t]2 dt 
o 

= n ~l [F(i,N) (tN(t)) - t]2 dt. 

I , 

Suppose the observations in group i are denoted by xl'" "xn ' 

Then define 

s , = F (x , , 80 ) 
J J 

j=l, ... ,n, 

and let tl, ... ,tn be determined implicitlyby the relations 

j=l, ... ,n. 

Writing G(t) for F(i,N) (tN(t)), it is clear that G(t) is the 

empirical df of the fictitious sample tl, ... t n , and ~(i,N) is the 

, h th h d T(i,N) is the eM corresponding eM statistlc. On teo er an, 

statistic of the sample sl, ... ,sn' Now, using the formula 

( ') n ' k 2 
T 1, N = L: (s, - J - 2) + 1/ (12n) , 

j=l J n 
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together with the fact that 

It. -s.1 < 0 
J J N 

j=l, ... ,n, 

we obtain 

Proposition 2: 

A (. N) 
I P{max T J, > 
l~j~m 

z (a )} - P{max T(j,N).::: z (a )} I 
n m 1< '<m - n m 

=J= 

~ 0 as N ~ 00. 

Proof: Since 

it follows that 

P{max 
l~j~m 

T(j,N) > z (a ) + YN} < P{max 
n m 

;(j,N) > z (a )} 
n m 

l~j~m 

< P {max T (j ,N) > z (a ) - YN} ( 2 . 2) 
n m 

l~J;m 

The proof consists of showing that the change in the 

overall significance level caused by perturbing z (a ) by YN n m 

is asymptotically negligible as N + 00. This requires fairly 

precise knowledge of the functional relationship between critical 

values and their corresponding significance levels, particularly 

when both the sample size and the critical values .tend to infinity. 
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For the sake of brevity, only the case of Smirnov's statistic 

In sup y(i,N) (t) will be considered. If ¢~ (e) denotes the df of 
O,;;,t,;;,l 

the statistic for sample size n, then Smirnov [1941] showed that 

+ Pn (z) = 1 - ¢n (z) 

as n -+ ()() 
1/6 for z = O(n ) . 

(2.3) 

Since z (a ) = O(log N), it is legitimate to use (2.3) to evaluate n m 

P (z (a ) + YN). In fact, n n m 

- 2 z 2 (a) - 4 z (a ) YN - 2 y N
2 

= e n m [e n m ] x 

2z (a ) - 2yN· 
[1- n m + 0(1:.)] 

3m n 

wi th a similar result for p (z (a ) - v) Thus the first and n n m 'N· , 

last expressions in (2.2) both tend to a as N -+ ()() 

An asymptotic expansion for the distribution of Kolmogorov's 

statistic can be found in Korolyuk [1955], while similar results 

for the CM statistic can be found in Anderson and Darling [1952] 

or r.logul'skii [1977]. 

Practical Considerations 

An important question in the application of this procedure 

is the choice of the group size(sl As Proposition 1 makes clear, 

if the CM statistic is to be applied then the maximal group size n 

k 
should be no more than N 2 • In the case of KS statistics more lati-
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tude is permitted, but caution suggests that n be about .1N to 

.1SN. 

If the group structure is intrinsic to the problem, then 

another form of the question often arises. It may happen that some 

or all of the group sizes are rather small, say of the order of 

ten. In this situation, are the asymptotic results presented 

above relevant? The answer seems to be yes, provided that the 

total sample size is large and 8 is a good estimator of 82 , 
2N 

When N is large, Proposition 1 shows that YN (which bounds 

( . N) A (. N) 
IT 1, - T 1, I) tends to ,be small, particularly if n is small. 

Proposition 2 is more problematic since the proof requires n to 

tend to infinity, though at an admittedly slow rate. However, the 

work of Stephens [1970] provides some empirical evidence that 

even for small values of n, perturbing zn(a/m) by YN changes the 

corresponding critical value by a negligible amount. 

Stephens has shown how the common gf statistics can be 

modified so that the critical values for n = 00 can be used for 

all sample sizes. For example, if D denotes Kolmogorov's stati­
n 

stic for sample size n , then Stephens suggests calculating 

~ k -k 
D = D (n 2 + .12 + .lln 2), 

n 

and then treating D as if it were distributed as lim InDn' Between 
n-+oo 

the significance levels a and the corresponding critical values 

z (a), the following relation holds: 

2 
a = 2 exp (- 2z (a». 

Furthermore, Stephens states that the approximation is quite 

good even for n very small, and that its accuracy increases as the 
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significance levels become more extreme. Such modifications of 

(' N) A(' N) 
T l, and T l, would differ by no more than O(YN) I and changing 

z(a/m) by O(YN ) has little effect on the corresponding signifi-

cance level. 

Because they both involve grouping, it would be of interest 

to compare the method suggested here with Durbin's half-sample 

method (Durbin [1976]). 

The latter procedure carries out a single significance test 

on the N transformed observations, but the probability integral 

transform employs an estimate of 82 based on a randomly chosen 

half-sample. Durbin showed that as N ~ 00, the effect of the esti-

mati on on the distribution of the empirical process becomes negli-

gible. The two methods use grouping in different phases: one when 

carrying out the significance testing, the other when construct-

ing the estimator of the nuisance parameters. 

Certainly these methods should be considered when the non-

randomized procedure cannot be implemented for lack of tables 

or because the distribution of the transformed observations de-

pends on the values of the nuisance parameters. But choosing 

between them is difficult without supporting numerical 

evidence. However, the present method might be preferred when 

there is a natural grouping so that less arbitrariness is involved, 

or, when the testing problem is only a component of a larger study 

and the values of the nuisance parameters are of interest . In 

such cases the method which uses the final estimates (provided 

HO is accepted) in carrying out the test might be easier to justi-

fy. 
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Finally when heterogeneous alternatives are a distinct 

possibility, the power of the method presumably can be enhanced 

by employing jackknife methods. That is, when the groups are 

balanced, 

uses e(i) 
2N 

the probability integral transform 

where e(i) denotes the estimator of 
2N 

f th .th o e 1 group 

82 constructed from 

all the observations except those in the .th . If H . 1 group. 0 1S 

accepted, the usual jackknife estimator of 8 2 based on the 

pseudo values constructed from {e(i)} can be used for further 
2N 

investigations. 

2. POWER 

A. Preliminaries 

It is widely assumed that procedures involving extraneous 

randomization have poor power characteristics. Unfortunately, in 

the area of gf testing, very little seems to be known about the 

magnitude of the power loss even for different homogeneous alter-

natives. In the case of the present procedure, such calculations 

could be carried out exactly, if rather laboriously, using the 

formulas in Suzuki [1968]. This is postponed to a later investi-

gation. For the moment, it must be assumed that the present method 

is generally not as powerful as the one based on the full (esti-

mated) empirical process, and it's use can be recommended only 

when the latter's implementation is impractical or impossible. 

In any application, the set of P-values generated by the procedure 

can give only an indication of the adequacy of the fit. 

As stated previously, the apparent, arbitrariness of the 

procedure is diminished when a natural grouping of the data can 
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be employed. In such a case it is often quite plausible to fear 

"heterogeneous alternatives". This phrase refers to the 

situation in which the observations in a large majority of groups 

conform to the null hypothesis,while those in the remaining groups 

differ in one or more distributional characteristics. The k-sample 

slippage hypothesis is a classical parametric example. Since the 

present procedure tests each group separately, it should prove 

particularly sensitive to heterogeneous alternatives and some 

asymptotic results in this direction are presented in the follow­

ing subsection. The remainder of the section develops heuristic 

arguments which suggest that against these alternatives, the power 

of the procedure compares favourably with that of other methods, 

even with only moderate sample sizes. At present, the discussion 

is limited to KS statistics only. 

B. Asymptotics 

Let the sample consist of m groups each containing n inde-

pendent observations for which the null hypothesis, HO' specifies 

a common distribution F(",8) (cf. Section 1.A). Suppose that, in 

fact, only m-I groups conform to HO' while the remaining observa­

tions follow a different common distribution G. It will prove 

convenient to phrase the argument in terms of the procedures 

followed by three statisticians Sl,S2' and S3. 

?l observes only the m-I groups conforming to HO and his 

data (after transformation) is denoted by 0,£ tr ~ t2 ~ ... ~ t (m-I) n 

~ 1, while S2 and S3 both observe the entire sample; their obser-

vations (after transformation) are denoted by a ~ v l ~ v 2 ~ < 

vmn ~ 1. Sl and S2 compute 
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d l + = max [. j - t.] 
l~j~(m-l)n (m-l)n J 

and 

= max 
l~i~mn 

[~ - v.] 
mn 1 

respectively. On the other hand, 8 3 computes 8mirnov statistics 

+ for each group separately. HO is rejected by 8 1 if 

A + k + A 

Dl = [ (m-l) n] 2dl exceeds Z (m-l) n (a) , 
A A+ 

exceeds ~i:hn(a), and by 8 3 if max Inek 
l~k§;m 

signifies percentage points modified 

A + k + 
by 8 2 if D = (mn) 2d 

2 2 

exceeds z (a ). The caret 
n m 

for parameter estimation. 

Interest centers on comparing the performance of 8 2 and 8 3 , The 

following theorem shows that in certain circumstances as the sample 

size becomes large, 8 3 's power tends to one, but 8 2 's tends to a, 

the level of the test. This last result is proved by showing that, 

asymptotically, 8 2 can do no better than 8 1 , 

Theorem 2: In the notation of Theorem 1 and the preceding para-

graphs, suppose that in addition to Assumptions 1 and 2, the 

following conditions hold: 

(i) 
k 

l(n/m) 2 + 0 as N + 00, 

(ii) Let hN = 8(Xl ,···,Xmn ) - 8(Xl ""'X(m-l)n)' 

where Xi (1 ~ i ~ (m-l) n) are iid as F and Xi 

( (m-l) n + 1 ~ i ~ mn) are iid as G. 

(iii) G * F. 

Then, as N + 00, 
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and 

Proof: We first consider the case of HO simple, so that no esti-

+ + mation is required, and develop a relation between d l and d 2 . 

8uppose that tj = Vj+k for some 1 < j < (m-l)n and some 

1 < k < In. Then 

(mjn+k - v J' +k) - ( j - t,) (m':"l) n J 

I i - j k 
~ mn (m':"Z)n I + mn 

21 < 
m 

(2.1) 

That is, the discrepancies assigned by 8 1 and 8 2 to the 

same observation differ by, at most, 21/m. Of course, 8 2 must 

also compute the discrepancies at the In observations not available 

to 81 , For fixed tl, ... t(m-l)n' the most extreme situation occurs 

when these In observations are all less than tl and, in this case, 

no discrepancy can exceed'f/m .Consequently, 

d + < d + + 31/m, 
2 1 

so that 

( 2. 2) 

Thus, if IID/~-+ 0 as the total sample size tends to infinity, 

then the power of 8 2 'S test tends to a and this remains the case 

no matter how distant the alternative., 

On the other hand, under the conditions of the theorem, 

/ll e,+ = 0p(lIi) for each of the discordant groups. 8ince z (a ) = 
1 . n ill 

° (/log m), 83 must have asymptotic power 1. This result holds even 

if one considers a sequence of alternatives converging to the null 



17 

distribution at an appropriate rate. 

The presence of nuisance parameters does not alter these 

conclusions for, corresponding to each observation x among the 

(m-£) groups conforming to HO' we have for some 1 < j < (m-£)n 

and some 1 < k ~ £n, 

t. 
J 

" (1) 
= F (x, 8 (m-£) n) 

and 

F(x 8(2)) 
v j +k = 'mn' 

"(1) "(2) 
where 8(m-£)n and 8mn are the estimates of 8 employed by 8 1 and 

8 2 , respectively. Now, 

"(1) 8(2) I 
< 18(m-£)n - mn 

"(1) 
where 8* lies between 8(m-£)n 

-k 
o ((mn) 2) and (2.1) becomes 
,p 

dF(x,8) 
d8 8 = 8* ' 

/[(j+k)/mn-vj+kJ - [j/(m-£)n-tjJI 
-k 

< 2£/m + 9?( (mn) 2). 

( 2 • 3) 

Thus, 

"+ ~ D2 < (m/ (m-£) ) 
"+ k 
Dl + 2£ (n/m) 2 + cp (1) , (2.4) 

, 
and, consequently, the power of 8 2 s procedure must tend to a 

as the sample size increases. 

8 3 s estimate of 8 coincides with that of 8 2 sand, hence, his 

estimate of the underlying distribution converges uniformly in 

probability to the null distribution. In fact, 
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I F (x e ( 2)) - F (x , eO) I = max , mn 

, 
It is readily apparent that 8 3 s power tends to 1, as the 

A + 
sample size increases, inasmuch as III e. is still 0 (Ill) for the 

1 p 

discordant groups. 0 

Remark: Condition (ii) of the theorem must be verified in each 

particular application. It is certainly satisfied by the sample 

mean if F and G have finite expectations, since 

e 
mn 

A A mn 
= e(m-l)n - (lim) e(m-l)n + (lim) [ E x·/(ln)]. 

j=(m-l)n+l J 

However, estimators satisfying Assumption 1 should, in general, 

be quite well behaved in this respect. 

C. Finite 8amEle Results 

One may ask whether the asymptotic results of Theorem 2 are 

at all relevant to sample sizes common in practice. 8ince purely 

analytical methods are unlikely to prove tractable, a large-scale 

Monte Carlo study is needed to give an informative answer. However, 

the heuristic argument presented below does indicate that the 

suggested procedure should have good power, even in only moderately 

large samples. The argument is an indirect one, in that it does 

not involve the calculation of any rejection probabilities. Rather, 

it consists of studying a class of sample configurations which 

should be fairly typical under the alternative hypothes.is. For 

such samples, it is possible to develop an approximate relation 

between the statistics computed by 8 2 and 83 from which we can 

derive some idea of the relative performance of the two proce-

dures. 
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Suppose that l = 1; that is, of the m groups, exactly one 

does not conform to HO' and that its distribution is stochastic­

ally smaller than that specified by HO. After estimating the 

nuisance parameters, the two statisticians compute the two-sided 

Kolmogorov statistic on the transformed data. Let d 3 denote the 

(unnormalized) statistic calculated by S3 for the discordant 

group, d 2 denote the value of the statistic computed by S2 for 

* the whole sample, and d 2 the statistic based on the (m-l)n 

observations corresponding to the groups conforming to HO' We 

propose to show that, roughly speaking, 

( 2 • 5) 

The argument is somewhat similar to the one in Theorem 2. 

Suppose that 0 ~ tl ~ t2 ~ ... ~ t(m-l)n denote the observations 

* * for which d 2 is calculated. Assuming that d 2 is fairly typical, 

we construct samples which make d 2 as large as possible consistent 

with the value of d 3 . In reality, the different configurations of 

the disGordantgroup affect the final sample configuration through 

their contribution to the parameter estimates. One aspect of the 

heuristic nature of the discussion is that this effect is ignored. 

, 
Assuming the ti s to be fixed, d 2 becomes larger the smaller 

the observations in the discordant group. But if d 3 = n -y (say) for 

some YE(O,~), then no more than about n l - y of these can be smaller 

than t l , without violating the constraint. The change in the dis­

crepancy at tl is then no more than 

nl-Y+l 
mn 

Y -1 
1 '" n m . 

n(m-l) 

If wn ' the largest of these observations, falls between t j _ l and 
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t., then the change in the discrepancy at t. is (letting j = 
J J 

0'. (m-l) n) 

0'. (m-l) n + n - 0'. = 1 - 0'. 

mn m 

But, since d 3 = n -y I we must have wn ,; 1 - n -Y. Thus I 1 - a should 

-Y -y -1 not, in general, exceed n so that (l-a)/m < n m . Intuitively, 

these are the two extreme cases. If nothing unusual occours between 

tl and to'., it should be true that 

for the discrepancies at the new observations can not exceed the 

RHS of the expression. 

The "inequality" (2.5) is sharper than (2.1) and more use-

ful for our present purposes because the bound for d 2 involves 

the value of d 3 . It is convenient to carry out the remainder of 

the discussion in terms of the modified: versions of d 2 and d 3 

(see Section l.e). We therefore construct 

'" ( ~ -~) D3 = d 3 n + .12 + .11 n 

= n~-Y + e 3 (n) • (2.6) 

The modification of d 2 is more problematic inasmuch as the 

appropriate formula depends on the particular null hypothesis 

being tested. For the sake of convenience, we suppose that the 

null distribution is normal with unspecified mean and variance. 

(It should be emphasized that the general validity of the conclu-

sions do not depend on this particular choice .)Employing the 

formula given in Pearson and Hartley [1972], page 359, we construct 
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In the sequel, we suppose that d 2 assumes the upper bound given 

in (2.5) and, hence, 

'" * -y -1 ~ 
D2 = (d2 + n m ) (nm) 

* -y -1 -k 
+ (d2 + n m ) (- .01 + 0.85 (nm) 2) 

k * k-y -k 
= [ (nm) 2 d 2 + n 2 m 2] + e 2 (n ,m) . (2.7) 

Consider a sequence of problems, indexed by n, in which 

remains roughly constant. If y is held fixed as n 

increases, then it follows from (2.6) and (2.7) that D3 increases, 

but D2 decreases. That is P3 , the P-value of D3 , becomes more 

extreme, while P2 , the P-value of D2 , becomes less extreme. Table I 

presents some numerical examples which show that in fairly typical 

situations P2 > mP 3 , indicating that the procedure-based on D3 

provides a more sensitive test of HO. 

In view of Theorem 2, this last result is not very surprising, 

involving, as it does, increasingly extreme values of D3 . However, 

a more informative comparison can be constructed in the following 

manner. Suppose a is held fixed, but y = y (n) is allowed to vary 

with n, so that d = n-y(n) is just significant at level a . This 
3 m 

is equivalent to considering a sequence of tests of fixed overall 

level a. How then do the P-values of D2 behave in this sequence of 

problems ? 

Interestingly, the P-values increase (i.e. become less 

extreme), just as before. This follows from the fact, which we 

shall now prove, that y(n) increases with n. If Z is a random 

variable distributed as D3 , then the significance level corre­

sponding to Z = z is 
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2 a = a ( z) = 2 exp (- 2 z ),. (2.8) 

In our problem, approximating am by aim, (2.8) becomes 

k-y(n) 2 a/m(n) = 2 exp [-2(n 2 + e 3 (n)) ], whence 

y (n) = J:2 -
k 

log [( -J:2 log a/ ( 2m (n) ) ) 2 - e 3 (n)] / log n , 

which is an increasing function of n. Returning to (2.7), the 

crucial term in the expression for D2 is n -y (n) (n/m (n) ) J:2 •. Under 

the hypotheses of our theorem, n/m(n) decreases in n. Since n-y(n) 

also decreases in n, D2 must decrease in n, as well. A numerical 

illustr~tion can be found in Table II. 

TABLE I 

Comparison of P-values, y fixes. 

'" '" n m N gn- D3 D2 P3 mP3 P2 

8 8 64 .415 .776 1.238 3.6 xlO- 3 2.9 xlO- 2 7.0xlO 
-4 

12 18 216 .368 1. 943 1.055 1. 05xlO -3 
1.9 xlO- 2 8.0xlO -3 

16 32 512 .330 2.074 .954 3.68xlO -4 1.2 xlO- 2 2.6xlO -2 

20 50 1000 .295 2.183 .899 1.45xlO -4 
7.25xlO -3 4.5xlO -2 

TABLE II 

Comparison of P-values, overall level fixed. r' 

y (n) '" n D2 P 2 

8 .250 1.238 7.0xlO -4 

12 .262 1.041 9.2xlO -3 

16 .271 - .934 3.2xlO -2 

20 .277 .876 5.8xlO -2 

In carrying out the computations for Table I, nand 

m were chosen to satisfy the relations 
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n = 2Nl / 3 and m=N 2/ 3/2 =n2/8. 

In addition, y was fixed to be .25 and (mn)~ d; to be .6. 

That this choice of y is a reasonable one for the sample sizes 

employed, can be inferred from the qncolumn in Table I. The qn 

are defined by 

q = P {max <l? (X l') < 1 - n - . 25 } , 
n l' ~l~n 

where <l? is the df of a standard normal variate and Xl' ... Xn are 

"d N( 1 5 1) Th 1 f 'd' t th t d n-· 25 l'S not II -.,. e va ues 0 qn In lca e a 3 ~ an 

uncommon occurance even for moderately distant alternatives. 

* ~ Finally, fixing d 2 = .6/(mn) is roughly equivalent to locating 

d* at the median of the distribution. 
2 

The column) labelled mP 3 gives the overall level of the 

procedure so' that the computed value of D3 is just significant 

at level aim, leading to a rejection of HO by 8 3 . This should be 

compared with the P 2 columnl which contains the P-values of D2 . 

The rather extreme values of P 2 for n=8 and 12 are probably more 

due to the crudeness of the bound (2.5) for small sample sizes 

than to any particular mer i t of the procedure. Note that. in 

contrast to mP 3 , P 2 rapidly increases with n. 

In Table II, the values of y(n) were chosen to keep mP 3 

fixed at 2. 9xlO -2, its value for n = 8 in Table I. Al though P 2 

decreases with n, the changes, in comparison with the correspon-

ding values of Table I, are not as dramatic as those in mP 3 . 

-3 Taking n = 20 as an example, mP 3 changes from 7. 25xlO to 

-2 2.9xlO ,an increase by a factor of 4. On the other hand, P 2 
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-2 -2 changes from 4.5xlO to 5.8xlO ,an increase by a factor of 

only 1. 5. 
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