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Abstract. 

By means of a renewal theorem proved by Karlin (1955) an 

expression for the characteristic function of a filtered renewal 

process with a two-sided impact function is derived and formulae 

for the moments are proved. 
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1. Introduction and Summary. 

Filtered renewal processes have various applications as 

models for certain physical phenomena (cf. Takacs (1956) for 

examples) and in these examples a one-sided filter gives a suffi

ciently good description. When using a filtered renewal process 

as a model for the noise emitted from the stream of vehicles on 

a highway (Marcus (1973), (1974)) the one-sided filter corre

sponds to the unrealistic situation where a vehicle cannot be 

heard before it has passed the observer, so a process with a 

two-sided impact function must be used for the description. 

In this paper we shall derive an expression for the charac

teristic function for such a process, and by means of the 

characteristic function formulae for the moments, covariance 

function and spectral density are easily obtained. The main tool 

in our derivation is a version of a theorem proved by Karlin (1955) 

concerning the solutions of a renewal equation that involves 

two-sided functions, i.e. functions with support on the entire 

real axis. In the next section we shall quote this theorem in the 

form we need, and finally in section 3 the filtered renewal pro

cesses are discussed. 

2. The .renewal equation. 

( 1) 

A renewal equation is a convolution equation of the form 

Z = z + Z * G, 

where Z is the unknown function, z is a known function and G is a 

known distribution function. Throughout we assume that G satisfies 

the following conditions 



(2) 

(3 ) 

(4) 

3 

G (t) = 0 when t ~ 0 

G is a non-lattice distribution 

00 
e = j tdG(t) < 00. 

o 
The renewal function U is defined by 

00 
U(t) = 2: G*n(t), 

n=l 
*n where G denotes the n-fold convolution of G with itself. This 

function obviously defines a measure U(dt) on [0,00[. 

Ear_lin '-s theorem in the desired form is then 

Theorem 1. 

Suppose t1'!at z is ~ directly Riemann integrable complex-

valued function. Then (1) for every complex number q has ~ unique 

bounded solution Z satisfying 

lim Z(t) = q. 
t+ -00 

This solution is given by 

Z(t) = q + z(t) + (U*z) (t), 

and the limit 

00 
lim Z(t) = q + fz(s)ds/e 

t+ + 00 -00 

holds. 

Notes on the theorem: 

1° The definition of the concept of direct Riemann integrability 

of real-valued functions on [O,oo[ (see e.g. Feller (1971» 

extends immediately to functions such as z in the theorem. 
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2° There is an ambiguity in the set of bounded solutions to (1), 

but in a given context it frequently seems to be possible to 

pick out a single natural solution as we shall see in the 

next section. 

3° Karlin's proof of the theorem is based upon Wiener's 

tauberian theorem, but it is possible to prove it by means 

of elementary techniques if you assume that G has a finite 

second order moment and use the fact proved by Smith (1954) 

that the measure C(dt) = U(dt) - dtj8 which we denote the 

corrected renewal measure is then finite. 

3. Filtered renewal processes. 

Let {Tnt n = 1,2, .•. be a renewal process whose interarrival=-·"·~'·· 

time distrib~t16n 

possesses the properties (2), ( 3 ) and ( 4). Let {Z } n = 1,2 , . .. be 
n 

a sequence of independent identical distributed random variables 

taking values in some finitedimensional space A and denote their 

common distribution function H. Assume that the sequences {T,r) and 
~ ~' 

{Zti} are independent and consider a non-negative valued function 

f, the impact function defined on R x A satisfying 

00 

( 5) J J~ f(t,z) dH(z)dt < 00. 

-00 '<} 

Then the filtered renewal process X(t) is defined by 

00 

X(t) = L: f(t-Tn,Zil)' t E 'ill. 
n=l 

and (5) ensures that X(t) is a.s. finite for every t. 
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Defining 

(6) cp(t,w) =\J eiwf(t,z) dH(z), w E JR 
.§ A 

it is easy to derive an integral equation for the characteristic 

function iP(t,w) = EeiwX(t) as 

00 

(7) iP(t,w) = f iP(t-y,w) cp(t-y,w) dG(y). 
o 

In fact (7) is a special case of the formula given by Smith (1973). 

If we define 

l/J (t,w) = cp (t,w) iP (t,w) 

and rewrite (7), we obtain the equation 

00 

(8) l/J (t,w) = l/J (t,w) - iP (t,w) + f l/J (t-y,w) dG(y) , 
o 

which for fixed w E JR is a renewal equation. To solve (8) we must 

find conditions to assure direct Riemann integrability of the 

function l/J (t,w) - iP (t,w) = iP (t,w) (cp (t,w) - 1) . 

Since iP is bounded it suffices to find conditions under which the 

function cp ( . ,w) - 1 is directly Riemann integrable, and Taylor ex-

pans ion yields 

cp(t,w) -1 = fA iwf(t,z) cos (wlf(t,z)) dH(z) 

- f A wf (t, z) sin (w 2 f (t, z)) dH ( z) , 

where WI and w2 lie between 0 and w. Thus both real and imaginary 

part of cp (it,w) - 1 is dominated by the function Iwl Al (t) , where we 

have defined 

(9 ) 
k Ak (t) = f A f (t , z) dH ( z) , k = I, 2 , ... , 

and hence the condition we look for is direct Riemann integrability 
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of Al(t). Assuming that this condition is fulfilled we obtain from 

theorem 1 the solutions of (8) for fixed w as 

00 
{fr"" 

(10) ljJ(t,w) =q(w) +ljJ(t,w) -<I>(t,w) +J(ljJ(t-x,w) -<I>(t-x,w»dU(x) 
o 

where q(w) = lim ljJ(t,w), i.e. for every w we must have q(w) = 1, 
t-+- oo 

and we conclude from (10) that 

00 

<I> (t,w) = 1 + J (ljJ (t-x,w) - <I> (t-x,w) ) dU (x) • 
o 

Actually our main interest is not in the distribution of X(t) but 

in the weak limit appearing as t-+oo. This limit can be defined by 

considering a stationary renewal process {T }, = 0, ± l,t 2, .•. . . . . n 

with interarrivaltime distribution G and a sequence {Zn}' n'= 

0, ± 1, ± 2, . .. of independent random variables with distribution 

function H and assuming independency of those sequences. Then we 

define the stationary filtered renewal process as 

00 

X* (s) = 2: 
n=-oo 

This process is obiously stationary and it is easy to show that 

for every So E JR the distribution of X (t) will converge weakly 

to the distribution of x*(sO) as t -+ 00 

By theorem 1 the limit function <I>*(w) = lim ljJ(t,w) exists and it 
t-+oo 

equals 
00 

1 im <I> (t, w) = 1 + J (ljJ (y , w) - <I> (y , w» d y / e , 
t -+ 00 - 00 

and because of the weak convergence <I>* must be the characteristic 

function of X*(s) for every s. Let us summarize the result in the 

following' 
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Theorem 2. 

Assume that th~function Al given £y (9) is directly Riemann 

integrable. 'l'hen the characteristic function iP*(w) = Eeiw'X*(s) for 

every s is given EY 
00 

iP* (w) = 1 + JiP (y,w) (¢ (y,w) - 1) dy/8, 
-00 

where iP(y,w) is the characteristic function of X(y) and ¢(y,w) is 

given £y (6). 

Let us look at an example: 

Example 1. 

The only case in which the characteristic function of a statio-

nary filtered renewal process was known previously is when the 

interarrivaltime distribution is exponential (i.e. when we are 

dealing with a filtered Poisson process). In this case we have 

(see e.g. Andersen et. al. (1977)). 

00 

(11) iP*(w) = exp(f (¢(y,w) -1) dy/8). 
-00 

The expression for the characteristic function of the correspond-

ing non-stationary process X(t) is 

t 
(12) iP(t,w) = exp(J (¢(y,w) -1)dy/8), 

-00 

and it is easy to show that (11) and (12) are in accordance with 

theorem 2. 0 

Formulae for the moments EX*(s)k are given by Takacs (1956) in 

the special case where the impact function f is defined on [O,oo[xm 

and by Marcus (1974), v,,110 considered a filtered Markov renewal 

process which degenerates to our case when the state space of the 

Markov chain consists of a single point. Neither of these authors 
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actually prove the correctness of the formulae, but nevertheless 

this is rather straightforward using theorems 1 and 2 as we shall 

see. 

By differentiating k times under the integral sign in (7) and 

letting w = 0 we obtain the equation 

00 k k 
= J E (.)M.(t-y)Ak_.(t-y)dG(y), 

o j=Q~J J J 
(13) 

k 
where Mk(t) = EX(t) and Al, ... ,Ak are given by (9). Rewriting 

(13) we obtain a renewal equation: 

where 
k-l k 

hk(t) = E (.)M.(t)Ak .(t). 
j=O J J . -J 

Now (14) can be solved under the assumption that Al ... ,Ak are 

directly Riemann integrable, and thus we get from theorem 1 that 

Mk (t) = (hk * U) (t) + q , 

where the relevant solution clearly corresponds to q = 0, so the 

result is 

(15) 
00 k-l k 

Mk(t) = J E (.)M.(t-y)Ak .(t-y)dU(y). o j=O J J ._J 

By theorem 1 Mk(t) has a limit as t + 00: 

(16) lim 
t + 00 

00 k-l k 
Mk(t) = J E (.)M.(y)Ak . (y) dy/8 , 

-00 j=O J J . -J 

but this does not prove that EX*(s)k is given by the r.h.s. of 

(16) since weak convergence does not imply convergence of moments. 

We can, however, use theorem 2 to obtain the result, because 

differentiating k times under the integral sign, which is legal 
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assuming that Al, ... ,Ak are integrable gives the final 

Theorem 3. 

Suppose tha"t". Al, ... ,Ak given by (9) ~ directly Riemann 

integrable. Then the moments of X*(s) for every s is given £y 

EX*(s)k 
()() k-l k 

= f L: (.)M,(y)Ak . (y)dy/8, 
_()() j=O J J . -J 

where M. (y) are given by (15). 
J -

The conclusion from theorem 3 is that the formulae given by 

Takacs (1956) and Marcus (1974) are in fact correct. 

Having established a formula for var X*(s) it is not difficult 

to find the covariance function 

where 

R(h) = cov(X*(s), X*(s+h» 

()() 

= f fA f(t,z)f(t+h,z)dH(z)dt/8 
-()() 

()() 

+ f (All (x-h) + All (x+h) ) de (x) , 
o 

()() 

f Al (t) Al (t+y) dt 
-()() 

(see also Marcus (1974» and if R is continuous and integrable 

the spectral density 

(17) 
1\ 

R(x) = 
2rr 1\ 1\ 2IT A 1\ 
8 fA f(-x,z) f(x,z)dH(z) +8 All (x) c(x), 

1\ 1\ 

where £(o,z) is the Fourier transform of f(o ,z), All is the 
1\ 

Fourier transform of All and c is the characteristic function of 

the corrected renewal measure. The spectral density is in the case 

of a one-sided filter given by Smith (1958) whereas the two-sided 
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version does not seem to have been published before. 

Let us finally look at the traffic noise example: 

Example 2. 

When studying models for traffic noise the impact function f 

is chosen as 

f(t,z) 222 = z/ (a + tv) , 

where a > 0 is the distance from the highway to the microphone and 

v > 0 is the velocity of the vehicles, which is assumed constant. 

Finally z is proportional to the noise power emitted by a vehicle 

(cf. Andersen et. ale (1977)). In this case (17) becomes 

A 

R(x) = 
A 

~ 2 e-2alxl/v (EZ 2/2 + (EZ) 2 IT c (x)) 
8a v 

2 assuming that EZ < 00. This implies that 

00 A 

J log R(x) / (1 + x 2 ) dx = -00, 

-00 

so the process X*(s) is deterministic (Rozanov (1967)) as demon-

strated by Andersen et.al. (1977) in the case of an underlying 

Poisson process. Actually the heuristic argument we gave for this 

fact will also apply in the case of a filtered renewal process.q 

Acknowledgement. 

I am grateful to Steffen L. Lauritzen for many helpful dis-

cussions. 



11 

References. 

[1] Andersen, P.K., Andersen, S., LauY'itzen, S.L. (1977). 

The average noise from a Poisson stream of 

vehicles. J. apple prob., 14, to appear. 

[2] Feller, W. (1971). An introduction to probability theory 

and its applications, vol. II, 2. ed., Wiley, 

New York. 

[3] Karlin, S. (1955). On the renewal equation. Pac.J. Math., 

5, 229-257. 

[4] Marcus, A.H. (1973). Traffic noise as a filtered Markov 

renewal process. J. apple prob., lQ, 377-386. 

[5] Marcus, A.H. (1974). Environmental impacts of highway 

traffic as two-sided filtered Markov renewal 

proces~s.J.ROY. Stat. Soc. (ser.B), 36, 426-429. 

[6] Rozanov, Yu. A. (1967). Stationary random processes. 

Holden-day, San Francisco. 

[7] Smith, W.L. (1954). Asymptotic renewal functions. 

Proc. Roy. Soc. Edinb. A, 64, 9-48. 

[8 ] Smith, W.L. (1958). Renewal theory and its ramifications. 

J. Roy. Stat. Soc. (ser.B) , 20, 243-302. 

[9 ] Smith, W.K. (1973) . Shot noise generated by a semi-Markov 

process. J. aEEl. Erob. , 10, 685-690. 

[10] Tak§cs, L. (1956). On secondary processes generated by 

recurrent processes. Acta. Math. Acad. ScL Hung., 

2,17-28. 



PREPRINTS 1977 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE 

INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 

2100 COPENHAGEN ¢, DENMARK. 

No. 1 Asmussen, S¢ren & Keiding, Niels: Martingale Central Limit Theorems 
and Asymptotic Estimation Theory for Multitype Branching Processes. 

No. 2 Jacobsen, Martin: Stochastic Processes with Stationary Increments in 
Time and Space. 

No. 3 Johansen, S¢ren: Product Integrals and Markov Processes. 

No. 4 Keiding, Niels & Lauritzen, Steffen L. : Maximum likelihood estimation 
of the offspring mean in a simple branching process. 

No. 5 Hering, Heinrich: MUltitype Branching Diffusions. 

No. 6 Aalen, Odd & Johansen, S¢ren: An Empirical Transition Matrix for Non
Homogeneous Markov Chains Based on Censored Observations. 

~o. 7 Johansen, S¢ren: The prdduct Limit Estimator as Maximum Likelihood 
Estimator. 

No. 8 Aalen, Odd & Keiding, Niels & Thormann, Jens: Interaction Between 
Life History Events. 

No. 9 Asmussen, S¢ren &. Kurtz, Thomas G.: Necessarv and Sufficient Conditions 
for 00mplete Convergence in the Law of Large Numbers. 

No. 10 Dion, Jean-Pierre & Keiding, Niels: Statistical Inference in Branching 
Processes. 



PREPRINTS 1978 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE 

INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 

2100 COPENHAGEN 0, DENMARK. 

No. 1 Tjur, Tue: Statistical Inference under the Likelihood Principle. 

No. 2 Hering., Heinrich: The Non-Degenerate Limit for Supercritical Branching 
Diffusions. 

No. 3 Henningsen, Inge: Estimation in M/G/l-Queues. 

No. 4 Braun, Henry: Stochastic Stable Population Theory In Continuous Time. 

No. 5 Asmussen, S¢ren: On some two-sex population models. 

No. 6 Andersen, Per Kragh: Filtered Renewal Processes with a Two-Sided 
Impact Function. 


	forside 6, 78
	Preprint 1978 - No 6 Andersen, Per Kragh - Filtered Renewal Processes with a Two-Sided Impact Function

