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ABSTRACT 

On. some two-sex population models 

by 

S¢ren Asmussen, University of Copenhagen. 

Let Mt be the number of males and Ft the number of females 

present at time t in a population where births take place at 

rates which at time tare mR(Mt,F t ) and fR(Mt,F t ) for males and 

females, respectively. Assume that R has the form R(M,F) = 

(M+F)h(M/(M+F)) with h sufficiently smooth at m/(m+f). A Mal-

thusian parameter A and a random variable W such that 

-At -At e Mt ~ mW, e Ft ~ fW a.s. are exhibited, the rate of con-

vergence is found in form of a central limit theorem and a law 

of the iterated logarithm and an asymptotic expansion of the 

reproductive value function V(M,F) = E(WJMO = M,FO = F) is 

given. Also some discussion of an associated set of determini-

stic differential equations is offered and the stochastic model 

compared to the solutions. 

Running title: Two-sex population models 

AMS 1970 subject classification. Primary 92A15, 60J80. Secon-

dary 60J85. 

Keywords and phrases. Population model, problem of the sexes, 

marriage function, Malthusian parameter, reproductive value, 

deterministic differential equation, pure birth process, almost 

sure convergence, central limit theorem, law of the iterated 

logarithm, moment expansion. 
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ON SOME TWO-SEX POPULATION MODELS 

by 

S¢ren Asmussen, University of Copenhagen 

1. Introduction. A number of deterministic and stochastic mo

dels describing the development of a population with two inter

acting sexes have been considered in the literature. See, for 

example, the surveys by Keyfitz (1971) and Pollard (1971, 1973 

Ch. 7, 1977) and the extensive list of references therein. The 

treatments of these models has, however, intrigued demographers 

for quite a while, and there appears to have been considerable 

difficulty in handling sex, as opposed to other relevant fea

tures of the population, such as age. 

It is, of course, of interest to discuss which features such 

models should incorporate in order to be of use in applications. 

In the present paper we follow a different path and attempt to 

answer some crucial mathematical questions about models which, 

al though too simple to be of any great practical applicability, 

do incorporate the feature of genuine sex interaction in its 

purest form. That is, we disregard phenomena such as death, 

formation and dissolution of couples (marriages) and the struc

ture of the population according to age, parity, location etc. 

The state of the population at time t therefore is completely 

described by the number Mt of males and the number Ft of fe

males present, or, e~uivalently, by the total population size 

Nt = Mt + Ft and the sex ratio, which we represent by Xt = Mt/Nt . 

In deterministic theory, going back to Kendall (1949), the 
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development of (Mt,Ft ) is usually described by a system of 

differential equations, 

Here R is the marriage function and m and f the male and female 

birth rates. Our discussion starts in Section 2 with a brief 

review of some of the suggestions for explicit forms of Rand 

of the general discussion of properties of R. The main point 

is to introduce the basic assumption, 

(1.2) R(M,F) = (M+F)h(M~F) = Nh(X), 

used in the rest of the paper. It states that for given sex 

ratio, R is linear in the total population size. 

In Section 3, we then study the equations (1.1), in particular 

the behaviour of the solutions as t ~ 00. Let z = m/(m+f) be the 

relative proportion of male births, and let A = (m+f)h(z). If 

Xo z, it follows at once from (1.1) and (1.2) that Xt = z, 

Nt = Noe At solves (1.1). In general, one might hope that Xt ~ z 

sufficiently fast to ensure exponential growth at rate A in the 

sense that 

for some function Vo of the initial population. Indeed, this is 

so. More precisely, we find that 
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(1.4) VO(M,F) = (M+F)h6(M~F) = Nh6 (X) 

and we give an explicit expression for h6 in terms of h. In 

demographic terms, A is the Malthusian parameter of the model 

and VO(M,F) the reproductive value of a population of M males 

and F females. See for example Fisher (1930). 

The rest of the paper then deals with a stochastic version of 

the model. This is a pure birth process, where individuals are 

born at rates which at time tare mR(Mt,F t ) and fR(Mt,F t ) for 

males and females, respectively. In Section 4, we first'show 

the stochastic analogue of (1.3), 

-At -At 
(1 . 5) e Mt -+ mW 0' . eFt -+ fW 0 a. s . 

(with 0 < Wo < 00 a.s.), and next find the rate of convergence 

in (1.5) in form of a central limit theorem and a law of the 

iterated logarithm. Our final result, proved in Section 5, then 

gives a stochastic version of (1.4), viz. 

M 
(1.6) VO(M,F)/(M+F) -+ h6 (x) as M -+ 00, F -+ 00, M+F -+ x, 

where VO(M,F) = E(WolMO= M,FO = F) is a natural extension of 

the reproductive value function to the stochastic model. 

The precise assumptions (essentially smoothness conditions on h) 

for the above results are given in the body of the paper and 

Section 6 contains a concluding discussion, incorporating bib-

liographical remarks. 
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2~ The marriaae function. Some of the explicit forms of R(M,F) , 

suggested by Kendall (1949) and others are: MF (random mating); 

M (male marriage dominance); F (female marriage dominance); 

(M+F)/2 (arithmetic mean); IMP (geometric mean); MF/(M+F) (har-

monic mean); and MAF (minimum). Most of these models are based 

on certain intuitive ideas concerning the mating mechanism, 

while the motivation for others, such as the geometric mean 

model, seems more to be mathematical convenience, for example 

that equations related to (1.1) can be solved explicitly. The 

analysis by Kendall makes it reasonable to exclude the random 

mating model since it leads to infinite population size in 

finite time (and is hard to interpret in large populations) . 

As a first motivation for (1.2), one can then note that (1.2) 

holds in the remaining examples, with h as specified in the 

following table: 

R(M,F) M F M+F IMF MF MAF -2- M+F 

1 h (x) x 1-x "2 Ix (.1-x) x (1-x) XA (1-x) 

1 h* (x) 2x 2 (1-x) 1 -+/x (1-x) 2/x(1-x) 2[XA(1-x) ] 
( z=~) 

2 

(the function h* differs by a constant from h6 of Section 1 

and is specified in Section 3). The second motivation for (1 .2) 

is provided by axiomatic discussions such as those of Pollard 

(1971) and Fredrickson (1971) I based upon certain logical 

rules for marriage and leading to requirements of a more ge-

neral type, among which (1 .2). One could think of the sexes 

being uniformly distributed in the population and of each in-

dividual of having a limited milieu, within which the partner 
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is chosen. (This limited milieu should be compared to the 

reasoning behind random mating). Seen from the standpoint of 

one sex only (say the male sex), this would lead to 

(2.1) R(M,F) 

Formulations (1.2) and (2.1) are, of course, equivalent, the 

correspondence being h(x) = xk(x) . 

Very few condi tions on h are required for our further analysis. 

One essentially only needs smoothness conditions like 

with 0 < P ~ 1 (Holder continuity), as well as the rather empty 

condition 

( 2 .3) h (x) > 0, 0 < x < 1. 

Further axiomatic discussions such as those in the above re-

ferences would limit the class of functions h somewhat, how-

ever. For example, it would not seem unreasonable to require 

that 

(2.5) lim R(M,F) = cM with 0 < c < 00. 

F+oo 
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Note that in the formulation (2.1), these axioms correspond 

to k (x) tc as x decreases from 1 to O. From either formula-

tion, it is easy to conclude that 

when 0 < x 1 < x 2 , h(x) .::; cx = h I (0) x, 

when 0 < x 1 < x 2 , h(1-y) .::; ely =-h' (1)y 

(with 0 < d < 00). Here formula (2.7) is derived by interchang-

ing the role of males and females. Beyond the highly unreal-

istic models corresponding to arithmetic mean or one of the 

sexes being marriage dominant, this would exclude also the 

geometric mean model. However, these models are formally in-

eluded in what follows. 

3. The deterministic differential equations. Assuming the Lip-

schitz condition (2.2) with p=1, it is a standard fact that 

there exists a unique set of solutions (Mt , F t ) to (1.1) with 

given initial values (MO,F O). In the present section, we study 

the asymptotic behaviour of this set of solutions as t -+ 00 

with (MO,FO) fixed. Passing from the variables (Mt,Ft ) to 

(Nt' Xt ), equations (1.1) can be written as 

It also follows from (1.1) that the derivative of fMt-mF t 

vanishes so that fMt-mF t = fMO-mF O' which is equivalent to 
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Therefore, is Xt is known, Nt can be computed from (3.1) or 

(3.3). In this manner, the investigation of (1.1) reduces to 

the study of (3.2). 

Assume without loss of generality that 0 < Xo < z. Then, by 

(3.2), Xo ~ Xt ~ z for all t. 

Chosing S1 :::: S2 > 0 such that S1 ;:;: h(x) (m+f) ~ S2 when 

Xo ~ x ~ z, we get 

Thus, Xttz and Xt < z for all t < 00. Define 

k (y) = h(z) 1 (1 
z-y h(z) 

1 
h(y))' h*(x) = 

T k(y)dy 
x e 

Note that (2.2) with p = 1 ensures the integrability of k at z. 

We can rewrite (3.2) as 

1 
z-X s 

and integration from 0 to t yields 



(3.5) Nt 
h* (XO) 

= NO h* (X t ) 
At e 
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Here (3.5) is obtained by combining (3.4) with (3.3). Note that 

since Xt ~ z, we also have h*(Xt ) ~ h(z), so that (3.5) con

tains (1.3) as a corollary with hO(x) = h*(x)/(m+f) in (1.4). 

Noting that (3.4) and (3.5) follow by symmetry if z < Xo < 1 

and are trivial if Xo = z, we have proved the first part of 

the following result. 

THEOREM 1. Assume that conditions (1.2), (2.2) with p = 1, and 

(2.3) hold, assume that 0 < Xo < 1, and let (Nt,Xt ) be solutions 

of (3.1), (3.2) corresponding to a set (Mt,Ft ) of solutions 

-At to (1.1). Then Xt ~ z monotonically and e Nt ~ NOh*(XO)' 

More precisely, 

(3 6) X = z + XO-z e- At + 0(e- 2At), Nt = Noh*(Xo)e At + 0(1). . t h*(XO) 

Furthermore, if h has a derivative h' (z) at z, then 

(3.7) Xt 

(3.8) Nt 

To complete the proof, note first that (3.6) follows immediate-

ly from (3.4), (3.5) once we observe that as x,y ~ z, then 
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key) = 0(1), h*(x) = 1 + O(x-z). If h'(z) exists, these esti-

mates can be strengthened to key) = -hI (z)/h(z) + 0(1), 

h*(x) = 1 + (x-z)h l (z)/h(z) + o(x-z) and (3.7), (3.8) follow. 

REMARKS. Of course, further assumptions on well-behaviour 

of h at z will yield further refinements of (3.6), (3.7) I (3.8). 

1 In connection with the minimum model with z = 2' we note also 

that existence of one-sided derivatives at z suffices for (3.7), 

(3.8), if one replaces hi (z) by the left derivative for Xo < z 

and the right derivative for Xo > z. 

In section 2, the function h* has been computed (with z = i) 
for the various examples considered there. From the above con-

siderations, a straightforward method to obtain explicit so-

lutions is to compute h*, solve (3.4) for Xt and insert in 

(3.3). For example, in the harmonic mean model, (3.4) yields 

a quadratic equation for Xt . More elegant methods may, of 

course, exist in this and other specific examples. 

Even if no explicit form of h is assumed, some information may 

still be obtained concerning the properLies of h*. Of parti-

cular interest is the behaviour of h* at one of the boundaries, 

say at O. As was argued in Section 2, the typical case is (2.6) 

If, furthermore, hex) = cx + 0(x 2) as X+O, then h*(x) ~ dxa , 

where a = h(z)/cz. Note that by (2.6), a ~ 1, with a = 1 

if and only if h is linear on [O,z]. As is seen in the geometric 

mean example,h*(x) may have a non-zero limit as x+O if (2.6) 

is violated. This type of behaviour does not correspond nicely 



-10-

to intuition and it will occur if and only if J~ 1/h(y)dy) < 00. 

Also the (typically unique) point y at which h* attains its 

maximum, has a simple description as a solution of h(y) = h(z) . 

The situation is illustrated in the following figure, where 

we for the same h has plotted h* for three values z1' z2' z3 of 

z, hi corresponding to zio Note that h(z1) = h(z2) and that h 

attains its maximum at z3" 

1 

o 

I 

I 

h(x) I 
,~ 
1 // I 

_<1/' , 

.,¥.- - - .~ -;-
/' ! 

// I I 
./ I 

I 

1 
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4. Limiting behaviour of the stochastic model as t + roo The 

process (Mt,Ft)t~O in question is a time-homogenous continuous 

time Markov process wi th state space {1, 2, ... } x~ {1, 2, ... }, 

where the only possible transitions from state (M,F) are to 

(M + 1, F) or (M, F + 1), with intensities mR(M,F), respective

ly fR(M,F). We let T(n) be the time of the nth birth (male or 

female) and T(O) = O. The process is then completely described 

by two independent sequences Y1 , Y2, ... , Vo' V1 , ••• of random 

variables, where the Yk are i.i.d. 0-1 variables with 

P(Yk = 1) = z and the Vk are i.i.d. with P{Vk > v) = e-v , in 

the following way: MT(O)' MT (1)' ... is a random walk, i.e., 

MT(n) = MO + Y1 + ... + Y~. Also, NT(n) = NO + n, FT(n) = 

FO + n - Y1-"'-Y~' and the sojourn times Uk = T(k+1) - T(k) 

are given by 

1 
(m+f) R(MT (k) ,F T (k)) 

Note that conditional upon H = o(Y1 , Y2, ... ), the Uk are in

dependent and exponentially distributed with E(Uki H) = ~k' 

It will be convenient to consider the centered variables 

Yk = Yk - z instead of the Yk themselves. T?en 

(4.1) XT(n) = 
MO+Y1+" .+Yn+nz 

N +n o 

(4.2) Y1+"'+Yn = O(n~+E) for all E > 0, 

using the law of the iterated logarithm for (4.2). 

Our first result is (1.5) with Wo = W/(m+f): 
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THEOREM 2. Assume that (1.2), (2.2) with p > 0 and x 1 = z, 

as well as (2.3) hold and let A = (m+f)h(z). Then there exists 

a random variable W such that 0 < W < 00 and 

At At = e W+ o(e ) a.s. as t ~ 00. 

PROOF. Combining (4.1) I (4.2) and (2.2), one obtains h(XT (k)) = 

h(z) + O(k-o), where ° = p(~-E), 

(4.4) 11k = 

00 00 2 
Thus ~O var(ukIH) = ~O 11k converges a.s., and conditioning 

upon H, it follows by standard criteria for convergence of sums 

of independent mean zero variables that ~~{Uk-l1k} converges a.s. 

Also from (4.4) and the well-known relation 

n 
(4.5) ~ k- 1 = log n +Euler's constant + 0(*), 

k=1 

it follows that 

n 
A ~ 11k - log (NO+n) = 

k=O 

NO+n 

~ 

k=N o 

-1 n 
k - 10g(NO+n) + ~ 

k=O 

has a limit as n ~ 00. Therefore W is well-defined by 

n n 
(4.6) AT(n+1) = A ~ {Uk -11k } + ~ 11k = 10gW+ log (N O+n)+0(1) 

k=O k=O 

d -AT(n+1)N Ch' h h b . ht an e T(n+1) ~ W. ooslng t e pat s to e rlg -con-

tinuous, we have Nt = NT(n) when T(n) ~ t < T(n+1), so that 
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-A(t-T(n)) W . e -+ 

as t -+ 00, since 0::;: t - T(n) :s. T(n+1) - T(n) -+ ° by (4.6). 

Similarly, XT(n) -+ Z, as is obvious from (4.1) and (4.2); and 

Xt -+ z from Xt = XT (n) when T (n) :::: t < T (n+1) . 

We next show that (from the point of view of distribution) the 

-At/2 d At/2 remainder terms in (4.3) are of magnitude e an e 

respectively. This should be compared to relations (3.6), (3.7), 

(3.8) for the deterministic model. 

THEOREM 3. In addition to the conditions of Theorem 2, suppose 

that 

(4.7) h(x) = h(z) + (x-z)h'(z) + O((x-z)2) as x -+ z 

and write 

Then (i) the limiting distribution of (At' Bt ) exists and is 

the two-dimensional normal distribution with mean zero and co-

variance matrix 

( z(1-z) 

'-z(1-z)h ' (z) 
h (z) 

hI (z) 
-z(1-z)h(z) \ 

1+2z(1-z) (hI (Z))2) 
h (z) 

and (ii) for all (a,S) * (0,0) and 
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C A + QB 2 = ~2y21 + Q2y22 + 2~IQp, t = a t i.J t' a u. i.J u.i.J 

= 1, lim Ct /(2a 2log t)~ = 
t+co 

-1 a.s. 

PROOF. We first remark that the central limit theorem for At 

alone in (i) as well as the case S= a in (ii) are almost imme-

diate from similar results on sums of independent random va-

riables by reference to (4.1). The main new difficulty entering 

here is to obtain precise estimates of the remainder term ~n 

(say) in (4.6). The notation used will indicate that f 1 , f2'.'. 

are (finite) constants or random variables adding up to log W, 

that 6. 1 , ~2 
n n' 

~n' and that E~, 

are remainder terms of the same magnitude as 

E;, ... are remainder terms of lower magni-

tude. First, let 1 
~ = (Y 1 + ... + Y ) / nand use (4. 1 ), ( 4 . 2), ( 4 . 7) 

n n 

to write 

h(XT(k)) = h(z) + ~~ h' (z) + O(k-(1-E)), 

~k = ~k + O(k-(2-E)) where ~k 
~1 

1 1 h' (z) k = A(Na+k) - X h(z) Na+k' 

co co 
AL {Uk - ~k} = L 

k=n+1 k=n+1 

where Ek = ~k - 1/A(Na+k) = O(k-(3/2-E)). Since 

co 1 /2+E it follows that La k Ek (Vk -1) converges and 

(say) , 

Lcok 1+ 2E 2 < co a Ek ' 

using Abel's 

lemma, e.g. in the form of part (i) of Lemma 2 of Asmussen 

(1976), we can conclude that E1 = o(n- 1/ 2- E). Next, in the 
n 

formula 
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n n 1 hi (z) 
= A L {llk - iJ } + L ---

k=O k k=O NO+k h(z) 

n 6 1 
k 

L N +k ' 
k=O 0 

the first term can be written as r 1 + E~, where 

~ O(k-(2-s)) 
k=n+1 

= o(n-(1-s)), 

the middle term, using (4.5), can be written as 

log(NO+n+1) + r 2 + E~, where r 2 is constant and E~ = o(n- 1), 

;3 + 1:4 and the last term as r3 + on on' where 

K (n) 
00 1 = L 
k=n k(NO+k) 

hi (z) 00 

h(z) L K(k)Yk , 
k=1 

~3 hi (z) 
6n = h (z) 

00 ~ 4 
L K(k)Yk , 6n 

k=n+1 

hi (z) n 
= h(z) L K(n.+1)Yk o 

k=1 

Note that K(n) = n- 1 + O(n- 2), which makes r3 welldefined and 

o a~s. It will~beslightly more convenient to work 

with defined as above by replacing K(n), respectively 
-1 ~3 ~4 

K(n+1), by n . Then it is easy to see that 6 + 6 = 
n n 

6 3 + 6 4 + E4 , where E4 = o(n- 1). Combining the above estimates 
n n n n 

with (4.6), it follows as the first step of the proof that 

(4.8) AT(n+1) = log(NO+n+1) - logW + 6n + En' 

where -logW ='AL~ {Uk -llk} 

E = _E 1 + E2 + E3 + E4 
n n n n n 

+ r 1 + r 2 +r 3 , 6n 
-1/2-s o(n-) a.s. 
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If n ~ 00, t ~ 00 such that T(n) ~ t < T(n+1), then weAt/(n-1)~ 1, 

so that we can replace the normalizing factors (weAt)~ by 

~ (n-1) . Furthermore, 

weAT(n) + O(nv V ) = 
n n 

weAT(n) + O(V ) = weAT(n) + O(log n) = weAT(n) + O(t), 
n 

using the Borel-Cantelli lemma to estimate V . Therefore, the 
n 

assertions of Theorem 3 are equivalent to that (i) the limiting 

distributing of 

as n~oo exists and is the same as asserted for (At' Bt ) as t~oo 

and (ii), lim C'/(20 2loglog n)~ = 1 a.s., lim = -1 a.s., where 
n 

C' = aA' + SB'. We claim that n n n 

A" n 
~ 1 = n fj, = 

n 
-k 

A' + O(n 2), 
n 

B" 
n 

k = _n 2 fj, 
n 

and that therefore we can consider A", B" C" = aA" + SB" n n' n n n 

rather than A' B' C'. Indeed for A" this follows from (4.1), n' n' n ' n 

(4.2), while for B~, inserting (4.8) in the definition of B~, 

th 1 · b' 1 d to n ~ A 2 -- 0 ( - s ) h fbI e calm 01 sown un. From t e proo e ow n 

of the law of the iterated logarithm for C" n' it follows by 

k 2 k 
provi-taking a = 0, that even n 2fj, = 0 (loglog n/n 2) , but the 

n 

sonal -s bound O(n ) could also easily be derived directly. 
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By the Cramer-Wold device, the central limit theorem will 

follow if we can show that C" is asymptotically normal with 
n 

mean zero and variance 0 2 . The second step in the proof is 

thereby completed by reducing to the study of c~, which is 

simply a sum of independent mean zero variables. Indeed, 

1, 1 n Yk V -1 00 00 k (4.9) c" = n 2 h 1n - L: Yk + T2 L: - + T 3 L: N +k]' n k=1 k=n+1 k k=n+1 0 

where Sh' (z) h' (z) 
S . Note that T1 = a,- h(z) , T2 = -Sh(z) , T3 = 

2 o = Var C" n n = 0 2 + 0 (1 ) 

and the central limit theorem for C" follows easily from stan
n 

dard criteria (adapted to infinite sums). We can even estimate 

the rate of convergence to normality: Summing the third moments 

in (4.9) and using the Berry-Esseen theorem yields 

( 4 • 1 0) sup I P (C" ~ C0 ) - <P (c) I 
-oo<c<oo n n 

-1, = O(n 2). 

This and related estimates will be a main tool in the proof 

of the law of the iterated logarithm for C". To this end, we 
n 

note that if D1 , D2 , ... are random variables such that 

(4.11) 
00 
L: 

r=1 
sup Ip (D ~ d) - <P (d) 1<00, 
-oo<d<oo r 

-- 1, 
then lim D /(2logr) 2::; 1 a.s., with = 1 if the Dare indepen-

r r 

dent. Indeed, from well-known tail estimates of <P and (4.11) 
1, 

it follows easily that L:P (D > n (2logr) 2) converges for n > 1 
r 

and diverges for n < 1. 
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The details have been spelled out in Lemma 1 of Asmussen (1977) 0 

Letting first D = e" /0 with 1 < 8 < 00, it follows at once 
r 

from (4.10) that 

Then it follows 

where M1 = 8-r / 2 
r 

M2 = 8(r+1)/2 
r 

8 r 8 r 
- 2 < lim e" /(20 log r) 

8 r 
after some elementary 

1 . Let 8r < n ::;; 8 r + 1 . 

calculations that 

i --- i k 
Letting a (8) = lim M /(2 log r) 2 and using the law of the 

r 

iterated logarithm for Y1+ 000 +Y8r, we get 

k 
lim e" / (2loglog n) 2 = lim 

n 
n~oo r~oo 

k k 1 k1 2 3 
8 20 + IT11 (8z(1-z)) 2(1_ e) + IT118 2a (8) + IT21a (8) + I T31a (8) 0 

To prove the lim::;; 1 part of (ii) I it is thus sufficient to 

i i show that a (8) ~ 0 as 8+1 0 The a (8) are estimated by the 

same method, which we examplify for i = 3. Let 

r k=8 +1 

n 
= w- 18(r+1)/2 L 

r r k=8 +1 

v -1 
k 

N +k . o 

and note that w2 ~ 8-1 , Var D = 1. Using the Berry-Esseen r r 
k 

theorem, one can easily prove (4.11) so that LP ( 1 D 1 >n (2 log r) 2) 
r 
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k 
converges' for n > 1. If ~ > n(8-1) 2, then ~ > nw eventually 

r 

and thus, using a version of Levy's inequality, 

~ P(M3 > ~(2log r)~ + w ) 
r=1 r r 

k 
~ ~2 P(w ID I > ~(2log r) 2) < 00. 

r=1 r r 

k . 
~ (8-1) 2 and the clalm follows. 

In the proof of lim ~ 1, we approximate Ce2r by 

D' 
r 

Thenit~s easy to check that w~ = VarD' 
r 

+ 0 2 (1-1/8) as r + 00 and, 

using the Berry-Esseen theorem, that (4.11) holds for Dr = 

-1 
w D'. Thus, r r since the D are independent, 

r 
-- 2 k> lim D'/(20 log r)2-

r 

C n 2r 
8 D' + 

r 

(1-1/8)~. Furthermore 

V -1 
00 k 

L3 I: N +k 
k=82r+1+1 0 

Estimating Tr=8rI:0082r+1+1 (Vk-1)/(NO+k) as above or appealing to 
k < 

Chow and Teicher (1973) one can prove that lim ITr l/(2log r) 2 -

k 
1/8 =. Similar estimates of the two other terms under the bracket 

can be obtained and yields 

-- 2 ~> 2 k> lim C~/ (20 loglog n) - lim Ce2r/ (20 log r) 2 
n+oo r+oo 

L 

1 ~ ( I L 1 1+1 L 21 ) (z ( 1-z) ) ~+ /T 3 I 
(1- 8) - k 

08 2 

Letting 8ioo completes the proof of lim = 1 and the proof of 

lim = -1 follows similarly or by symmetry. 
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REMARK One-sided analogues of (4.7) do not suffice to determine 

the behaviour of Bt (but clearly of At) in Theorem 3. This should 

be compared to a remark in Section 3 on the deterministic case. 

The behaviour of Bt' say in the minimum model with z = ~, could 

however be studied with similar methods. 

5. An asymptotic formula for the reproductive value V(M,F)= 

E(W 1Mo = M, FO = F) . 

Besides the relation to the concept of reproductive value of a 

population, the function V is of considerable theoretical inter-

est. Thus we have: 

PROPOSITION 1 -At The process e V(Mt , Ft ) is a non-negative 

< -At martingale w.r.t. F = a(M , F ; 0 - s ::;; t) and e \1(Mt , Ft)-+W t s s . 

a.s. Furthermore, V solves the difference equation 

(5.1) AV(H,F) = (M+F)h(M~F) [mV(H+1 ,F)+fV(M,F+J)-(m+f)V(M,F)] 

PROOF. The first assertion follows from general martingale 

theory since 

(here and in the following EM,F denotes expectation in a process 

with MO = M, FO = F). The martingale property is equivalent to 

AV = AV, where A is the infinitesimal generator of the transi-

tion semigroup, and this equation is simply (5.1). 



-21-

In the deterministic case, e-AtVo(Mt , Ft ) was constant, cf. (3.5), 

and the form of Vo was derived from equations (1.1). The coun

terparts of these equations in the stochastic case are 

(5.2) EM 
t 

which cannot be reduced by the same methods. We leave it as an 

open question whether equations (5.1) or (5.2) are of any use 

for the study of V and use instead the methods of Section 4 to 

prove the following result: 

THEOREM 4. Suppose that (1.2}, (2.2) with p>O and (2.3) hold. 

Then V(MO' FO)/N O+ h*(x) (with h* defined as in Section 3) when 

(5.3) MO + 00, Fa + 00 in such a way that Xo = 

PROOF. We use the notation of Section 3, with the same sequence 

Y1' Y2 , ... for all MO' FO' The constants in the inequalities 

are always independent of MO' FO (but many depend on x). Let 

W = N e- AT (n+1) 
T(n+1) T(n+1) 

Conditioning upon H yields 

n -A]l V 
= (NO+n+1) IT e k k 

k= 0 

n A 
= (NO +n+1 ) k~O (1. - (NO +k) h (XT (k) ) (m+f) +A) . 
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The idea of the proof is to observe that WT(n) + W, prove that 

indeed 

MOfFO 
(5.5) E W = 

MO,FO MO,FO 
lim E E (W T (n + 1) I H) 
n+oo 

and show that for large MO' F O' we can replace XT(k) in (5.4) 

by its expected value (MO+kz)/(NO+k) = xk(say). The asymptotic 

expression for V will then come out by elementary calculus. To 

this end, define for some fixed € > 0 

T = sup{n 

n 
II 

k=Tl\n+1 

Note that the r.h.s. of (5.4) is (NO+n+1)Cn (MO' FO)Dn(MO' FO) 

and that T < 00 a.s. by the law of the iterated logarithm. We 

shall need below the fact that even ET S < 00 for all S > O. See, 

for example, the more general results by Strassen (1965). For 

C , the elementary estimates 
n 

will suffice, while more care is needed when treating D . Pre
n 

paring for an expansion of log D , we first note that for k > T 
n 

it follows from (2.2) that 
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where IE~I .:::; o p 
Y1 k /(NO+k) , o = (~+s) p. Also from (5.3) and (2.3), 

we must have h (xk ) (m+f) :::: ~ for some ~ > 0 and all MO' FO' k. 

Without loss of generality, we can assume that IE~I + A/ (NO+k) < 

~/2 (say) for all NO' k and it then follows for k > T that 

(5.7) A 
1/]lk+A 

( 5 .8) 
TAn 

L 
k=O 

__________ ~1~----__ h(z) 2 
1 = (NO+k)h(xk ) + Ek , 

h(xk ) (m+f)+Ek+A/(NO+k) 

h (z) 

Then 0 .:::; E3 ~ y 3 log(T+N O)/NO' IE41 .:::; Y4/NO. Assume without loss 

of generality 0 < x .:::; z, 0 < Xo ~ z so that xkt and let 

Ik =c[xk - 1 ' xk ), £(y) = 1/h(z) - 1/h(y). The Lebesgue measure 

m(Ik ) of Ik is 
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n l{xk ) n NO (z-XO) l{xk ) n l (xk ) 
(5. 9) L = L = L m{Ik ) + E8 = 

k=O NO+k k=O (NO+k) 2 z-x k=1 z-xk k 

x z n 
+ E8 + E9 = gJyL dy + E10 + E 11 f gJyL dy f 

Xo z-y Xo z-y n 

where IE81 oS: Y8 /N O' IE91 < E6 , IE 10 I IE8+E91 ~ Y10/N~' = 

n 
A n h (z) _ E3 L 

(NO+k)h{xk ) (m+f) = L (NO+k)h{xk ) = 
k=Tl\n+1 k=O 

NO+n E4 _ n l{xk ) 3 
log -N- + h (z) L 

NO+k 
- E = 

0 k=O 

NO+n 
- log h*{xO) E12 _ h{Z)E11 - E3 log -- + 

NO n 

where IE13 1 .s: L;IE~I + 0 subject to (5.3), say by dominated con

vergence. Combining with C ~ 1, we have thus proved that 
n 

MO,FO 
E (WT {n+1)IE)oS: 

N 1 2 1 3 11 T+N y 
(N +n+1) .1 ._0_ h* (XC) e -E +E +h {z)En . (-N 0) 3, 

o NO+n 0 

MO,FO MO,FO MO,FO 
E W ~ lim E E (WT {n+1) IE) .s: 

n+oo 

12 13 T+N y 
N h*{X ) -E +E E{ __ O) 3 o 0 eN' . 

o 
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When (5.3) holds it follows by dominated convergence that 

lim V(MO' FO)/N O ~ h*(x). 

To obtain the lim ~ - part of Theorem 4, we first prove that for 

fixed MO' F O' 

By uniform integrability, this is enough to ensure (5.5). Let 

~k = 2~k and define ~n' ~i, Yi etc. as above, repeating the 

v estimates with ~k replaced by ~k. Then essentially one has to 

multiply the main terms by 2, while the order of magnitude of the 

vi i 
E and the E are the same. We obtain 

MO,FO 2 
E WT (n+1) = 

2 MO,FO n MO,FO -2AUk 
(N +n+1) E IT E (e IH) ~ 

o k=O 

v 
From this and ETy3 < 00 (5.10) is immediate and we get from (5.5), 

( 5. 6) 
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MOfFO 
When (5.3) holds E C + 1 by (5.6) and the lim;::: - part of 

()() 

the theorem is proved. 

6. Concluding remarks. We first mention possible extensions. 

Though it would be of interest to generalize the model to allow 

for deaths, formation of couples etc., not all questions have 

been settled even for the present class of models. E.g. we should 

have liked to have obtained asymptotic expansions for the vari-

ance of W similar to those of Theorem 4 and more terms in the 

expansion of the mean. Besides their intrinsic interest, these 

questions come up in connection with population projection (pre-

diction) and a comparison of Theorem 3 with finer limit theorems 

for branching processes (see Asmussen (1977) and the references 

therein) . 

One generalization at least seems easy for most parts of the 

paper. That is, to weaken (1.2) so that it need only hold in 

some asymptotic sense and/or to replace the linear factor 

N = M + F by a more general function of N, say sublinear which 

would lead to subexponential growth. This would probably be an 

important step towards making the model more realistic. 

Surprisingly few results similar to those of the present paper 

seem to appear in the demographic literature. Indeed, treatments 

such as those of Yntema (1954) and Goodman (1953, 1968) deal 

with models corresponding to arithmetic mean and marriage do-

minance of one sex, i.e. with no genuine sex interaction. The 

main treatment of stochastic models is that (in discrete time) 
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of Kesten (1970, 1972; see also his 1971 survey), whose main 

results essentially are similar in form to Theorem 2. That our 

proof here is simpler and that Theorems 3 and 4 go somewhat 

further, should be considered in light of the fact that our mo-

del is much more specific than the general formulation of Kesten. 

It is, however, of considerable interest to ask whether the 

present models are imbeddable as discrete skeletons 

(M , F ) 
no no n=O,1,2, in the set-up of Kesten. As far as 

we can see this is not the case. More specifically, the assump-

tion (1.6) of Kesten (1972) will not hold if h(x) + 0 at the 

boundary, while the assumption (6.3) of his 1970 paper would 

imply that Xo is close to z no matter the value of XO. This 

might be reasonable in some discrete time models, but~sclearly 

not the case here. 

The methods used here are rather different from the standard 

ones for one-sex branching processes, which rely essentially 

-At~ 
on martingales similar to e V(Mt,Ft ) and the independence 

of different individuals. Some ideas related to those of the 

proof of Theorem 2 can be found in Athreya and Karlin (1968). 

In connection with the tail sums in the proof of Theorem 3, 

see Chow and Teicher (1973) and Barbour (1974). 
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