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Abstract 

This paper presents the stochastic stable population theory 

for two families of continuous time models, (i) those for which 

the asymptotics can be derived from a single renewal relation and 

(ii) those for which a system of coupled renewal equations must 

be specified. Some effort is devoted to a characterization of 

these two families and, for purposes of illustration, both a 

uniregional age and parity dependent model and a multiregional 

age dependent model are analyzed in detail. In each case, the 

question of the proper definition of the stable age distribution 

and the reproductive value is addressed and it is shown how the 

distribution of the age at childbearing can be interpreted in 

terms of instantaneous changes in the reproductive value of the 

population. 
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o. INTRODUCTION 

In recent years substantial interest has focussed on giving 

a stochastic treatment in continuous time of the development of 

populations. A principal tool in attacking this problem has been 

the theory of generalized age-dependent branching processes, for 

which the seminal references are Crump and Mode [1968, 1969] 

and Jagers [1969J. In his recent text, Jagers [1975] offers a 

more complete treatment of the subject. 

To demonstrate that the results of classical deterministic 

stable population theory could be rigorously derived within a 

stochastic framework has been one area of particular concern. 

Excellent reviews of this and related work, emphasizing the 

interplay between the mathematical theory and the demographic 

applications, can be found in Keiding [1973], Mode and Littman 

[1975], and Keiding and Hoem [1976]. The latter, in particular, 

give a compact but lucid derivation of stochastic stable popu­

lation theory in which many of the objects familiar to demogra­

phers, such as the Lotka equation and the reproductive value, 

appear naturally in a mathematical context. 

Although the model employed by Keiding and Hoem (hereafter 

referred to as KH) supposes that 'the forces of fertility and 

mortality are dependent only on age, the deterministic literature 

(cf. Goodman [1969], Feeney [1970], Rogers [1975» treats more 

complex models in which such factors as marriage, parity and 

place of residence are also considered. The chief aim of this 

paper is to demonstrate that these more complex models are in 

fact amenable to stochastic analysis. 
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We begin this study by exploring the range of models that 

can be treated by simple extensions of the methods presented in 

KH, and then by characterizing a crucial property they must all 

possess. To make these ideas more concrete, a full development 

of the age and parity model is carried out. 

In section 2, with the aid of multivariate renewal theory, 

we study the so-called multiregional models, in which the popu­

lation is divided into groups distinguished by differential fer­

tility, mortality, and migration rates. Whereas these groups will 

often be identified with different geographical regions, this 

need not be the case in other applications. Rogers and Willekens 

[1976a] give an excellent review of the non-stochastic work in 

this area, and Rogers [1975] deals with the subject in greater 

detail. 

The following section discusses a hybrid model of some inte­

rest, while a new approach to the age at childbearing problem 

is given in section 4. A number of convolution formulas for some 

net maternity functions appearing in section 1 are found in the 

Appendix. 

Throughout, questions of rigour are not dealt with directly. 

This seems reasonable inasmuch as the rather carefully formulated 

arguments of KH apply to the analyses presented here without 

essential change. 

Finally, our theorems are usually phrased in terms of expec­

ted population size and expected age distributions. Results in­

volving almost sure convergence are omitted, and the interested 

reader should consult Jagers [1975] or Athreya and Rama Murthy 

[1976] . 



3 

1. GENERAL SINGLE RBGION MODELS 

A. Preliminaries 

In this section we propose to show how the mathematical 

structures developed in KH can accomodate more general models. 

We begin by carrying through the analysis of one such model in 

which birth intensities are functions not only of age but also 

of parity. This is a case of practical importance and its elu-

cidation brings to the fore the essentials of the method. The 

reader will profit most by comparing the sequence of theorems 

presented below with the analagous sequence in KH; for his benefit, 

appropriate references are given in the text. At the conclusion 

of the section, a rather general model is formulated and dis-

cussed. 

A model is specified once the forces of transition acting 

on an individual at any point in her history have been described. 

In KH, these forces were determined solely by age, whereas in our 

model both age and parity are involved. This pair of characteri-

stics henceforth will be denoted by the word "status", and the 

added wrinkles in our analysis derive from the fact that we have 

a two-dimensional, rather than a one-dimensional, status variable. 

With an individual of status (x,j), i.e. of age x and parity j, 

we associate a birth process assumed to be an inhomogeneous 

Poisson process having a bounded continuous intensity function 

A.(X), whose value depends on both age and parity. This process 
J 

generates the (j+l)th birth to the parent individual. Let 

{K(t) :t~o} denote the process counting births to the individual. 

K(.) is a fairly complicated function of the {Aj(O) :j=l,2,o .. }. 
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(cf. the Appendix). Let L denote a random variable (the life length) 

independent of KC·) with support on [O/W] (for O<W<OO) and distri-

bution function 

We call vex) the force of mortality. Note that vC·) is a function 

of age alone. Let p(x) = l-q(x) and tPx = p(x+t)/p(x) . 

Now let E . denote the expectation operator, conditional on the 
u, J 

event that the individual is of status (u,j) and that L>u. Define 

w .(t) = E .{K[(U+t)t\L]-K(U)} u,J U,J 

and 

kW . (t) = P{K(Ut\L)<k~K[(U+t)t\L] IK(U)=j,L>U}. 
u, J -

Then the usual computation shows that 

<IJ • (t) = 
u, J 

00 

l: 
k=j+l 

k 
w .(t). 
u, J 

In the appendix we shall derive formulas for W .(.) and kw . (.) 
u,J u,J 

which will show that it is permissible to work with the following 

derivati Ves: 

¢ . (t) 
u, J 

3 = "'.t w . (t) 
(]I U, J 

and kiJI . (t) = 
u, J 

3 k 
";\t w . (t) • au, J 

Note that WO, 0 (.) is the net maternity function and <IJ 0,0 (x); ~ 

EK(xt\L). We can carry out our calculations in terms of 

w . (0), etc. and need not express our results in terms o£ p(.) 
u, J 

and m.(·), as is done explicitly in KH. 
J 
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Employing the notation of KH for family trees and family histories, 

let 

and 

zia,j (t) = X{<i>€ J is born, and at time t is 

alive of status (x,j), some x~a}, 

L: z.a,j(t), 
i€I (w) 1 

Z a (t) = L: Z a, j (t) . 

j 

We have here introduced the notational convention that a missing 

index denotes summation over that index. Suppose that the popu-

lation of interest begins·· at time t=O with a single ancestor 

of status (u,j). The proof of the next result makes use of the 

fact that in our set-up we can still make an additive decompo-

sition of the population into the lines begun by the offspring 

of the original ancestor. Y (t) denotes the number of individuals 
n 

born before time t in the nth generation and ky (t) denotes the 
n 

number of those counted in Yn(t) descended from <k> in II' Let Sk 

be the time at which <k> is born. 

Proposition 1.1. (confer KH, Theorem 3.1). 

E . Y (t) = qJ . * qJO 0 * (n-l) (t) for n~l. 
u,J n u,J , 

Proof: From the definitions we have qJ J.(t) = E .Yl(t). u, U,J , 

Assume the result true for n<N. Then 

= L: JtE .(kYN+l(t)ISk=s]kcp .(ds) 
k 0 U,J u,J 
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= ~ ft EO,O YN(t-S) k~U,].(dS) 
k 0 

= ft ~O 0* (n) (t-s) ~ . (ds). 0 
0' U,] 

t w . (k) = P{individual has parity k at time t u, ] 

she is alive at time t and was 

(u, j) at time O}, 

E . za,k (t) 
U,] , 

Na . (t) = E . Z a (t) . 
U,] U,] 

We are now ready to present a basic (backward) renewal relation, 

and the reader should note the role of the term tW .(k). u, ] 

Proposition 1.2. (confer KH, Theorem 4.1) 

( 1.1) 

Proof: 

where 

E 

Na,k.(t) = ( +t) (k) X[ ] u t P t W . U,] o,a u U,] . 

za,k (t) = za,k (t) + o 

+ ft NO
a , kO (t - s) ~ . (ds) . 

0' U,] 

00 

~ 
t=j+l 

~ Z<:,k (t) . 
1 t 

iE J 

P {K (u + 't ) = k I L 0 > u + t , (u, j ) a t time O} 

u,j 
tza,k(t) = ft E {tza,k (t) 0 u, j I St = s}t~ . (ds) u, ] 

ft Na,k t = (t - s) ~ . (ds) . 
0 0,0 u, ] 
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<P . (S) = 
u, J 
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co 

L: 
l=j+l 

l <P .(S).D 
U, J 

Corollary: N a .(t) = 
u, J X[O,a](u+t)tPu + ft Na (t)~ (d) O 0 -s ~ . s. 

0' u, J 

Proof: Follows immediately once we notice that 

co 

L: tW . (k) = 1. 0 
k=O u, J 

Remark: In the derivation of (1.1) it was essential that each 

newborn begin life with status (0,0) and, hence, subject to the 

same birth intensity AO(·). This is, in fact, the justification 

for the term Ng;~(t-S) in the integral. 

With the crucial Proposition 1.2 in hand we are ready to derive 

the classical results on the growth of stable populations. 

Readers who wish to maintain the logical progression should go 

directly to section 1.C. 

In section B below we indulge in a small digression in order to 

derive Lotka's integral equation for births. 

B. Lotka's Integral Equation 

* Firstly, we require some notation. Let ZO(t) = 1 and 

* * * Zi(t) = X{S. < t} foriEJ-{o}and,finally,Z (t) = L: 
1 = iEJ 

Z. (t). Then 
1 

'" Z (t) denotes the number of births in [O,t] plus one for the 

* * original ancestor. Also let N .(t) = E .Z (t). 
U,J u,J 

In analogy with Proposition 1.2, we can easily show that 

* N . (t) 
U, J 

t * =l+~ NO,O(t-s) <PU,j(dS), 
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or,al ternately I (as in Theorem 4.3 of KH) that 

* (*)N . (t) = u, ] 1 + qJ . (t) + It[N* . (t-y) -1] qJO,O(dy). 
U,] 0 U,] 

* d * n .(t) = "'t N .(t) u,J 0 U,] 
is a well defined quantity (cf. 

Theorem 3.2, Corollary 2 of KH) , we have by differentation: 

* n . (t) = 
u, J 

¢ . (t) + It 
u, J 0 

* n'- . 
u , J 

(t-y) qJO,O (dy). 

This is Lotka's equation in the case of a single ancestor. 

We now go on to deal with the case of an arbitrary initial 

population. Suppose that za,j(O) denotes the number of indivi-

duals of age ~ a and parity j at time O. We assume that the 

initial population is almost surely finite and that Na,j(O) = 

EZa,j(O) exists, is finite and absolutely continuous as a 

function of a. Let na,j(O) = dNa,j(O)/aa. 

Now multiply equation (*) by nu,j(O), carry out the approriate 

integration with respect to u and summation with respect to j, 

obtaining 

()() 

qJ .(t)nu,j(O)du N* (t) = N (0) + l: I 
j 0 U / ] 

+ It[N * (t-y) - N(O) ] qJO,O(dy) , 
0 

* 
()() 

* nu,j (0) where N ( t) = l: I N ( t) duo 
j 0 u, j 

FinallY,differentiate with respect to t, to get 

* n (t) = 
()() 

l: I ¢ . (t) nu,j (0) du 
j 0 u, J 

This is the usual form of Lotka's equation. 
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c. Asymptotic Results 

The formal analysis of our process will now resemble the one 

in K~ with the main change being the redefinition of the stable 

age distribution and the reproducti~e value in order to take 

account of the finer classification of the population. The stable 

age distribution is the limiting distribution of ages towards 

which the population, on average, converges. The reproductive 

value of an individual represents, in some sense, his worth from 

the standpoint of the growth of the population. That is to say, 

expected births due to the individual are exponentially discoun-

ted with time. Further discussion of these points can be found 

in Keyfitz [1968]. 

It should be recalled that the analysis below depends very 

heavily on the fact that each newborn is subject to the same for-

ces of transition. Thus, the model can not be generalized to permit 

secular changes in these forces, nor their variation among the 

individuals in the population (except in a rather special formu-

lation - see section 3) 

Let us first establish some notation. Let 

00 

I (p) 
-px = J e·· cI:> (dx) 

0,0 

° 
The normal arguments show that the equation 

1(0) = 1 

has at most a single real solution. For all human populations 

the solution, call it r, certainly exists. The use of r mathema-

tically is simply a normalization of the function cI:>O,O(o) which 
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permits later application of a renewal theorem. 

Now define, 

h(x) = e- rx p(x), H(x) = JX h(s)ds 
o 

1jJ (x) -rx 
= e ¢ 0,0 (x) 

c(x) = h(x)/H(oo), C(x) = H(x)/H(oo) 

00 

00 

V(x) = J e- rt ~ (dt) . 
X,o o 

Also define, 

-rx = e p(x) xwO ,0 (k), Hk (x) = 

00 

V(x,j) = J e-rt ~ . (dt) ° x, J 

The quantities in the first group are direct analogues of those 

in KH (page 165). In particular, c(·) is the density of the stable 

age distribution, 1jJ the distribution of the age of childbearing 

in the stable population, A its mean, and V(x) the reproductive 

value of an individual who is (x,O). The quantities in the second 

set are required in order to deal with the question of parity. 

In particular, the stable age distribution and the reproductive 

value have been suitably modified. Note that V(x) = V(x,O) . 

A population is called Malthusian if the solution r to the charac-

teristic equation exists, A< 00, H(oo) < 00, and V(·) is bounded. 

In what follows, we assume that there are no difficulties with 

boundedness and that direct Riemann integrability is available 
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where needed (and hence,that the usual renewal theorem applies) . 

This can be done without loss of generality, since the arguments 

of KH apply here as well. 

Proposi tion 1. 3 • (confer KH, Theorem 5.2) As t - > 00 in a 

Malthusian process, 

(1. 2) 

(1. 3) 

(1. 4) 

Proof: 

e - rt Na,k )) 
O (t) ~ Ck(a)V(u Hk(OO /A u, 

e-rt Na (t) ~ C(a)V(u)H(oo)/A u,O 

e-rt N a . (t) ~ C(a)V(u,j)H(oo)/A. 
u, J 

Taking a special case of (1.1) gives 

-rt Na,k 
e 0,0 ( t) 

Applying the renewal theorem (see KH, Theorem 5.1), 

Equation (1.2) now follows by the same arguments as in 30 of the 

proof of Theorem 5.2 in KH. Equation (1.3) is obtained by summa-

tion over k. For (1.4) we argue that 

-rt a 
e NO,O (t) ~ H(a)/A. 

From the Corollary to Proposition 1.2 we have 

+ ft e-rt a NO 0 (t-s) 1? • (ds) o ' u, J 
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00 

-+ H (a) f e -rsq:, . (ds) 
A 0 U,] 

= H(a) V(u,j) 
A 

as t -+ 00 0 

The following result is useful in establishing the properties of 

the stable age distribution and the reproductive value in this 

new setting. 

Proposition 1.4. (Confer KH, Theorem 6.1) 

00 

a 
N 0 (s+t) u, = L J NdX

O' j (s) Na . (t). 
j 0 u, X,] 

Proof: Apply the argument of KH separately for each j. 0 

Proposition 1.5. (Confer KH, Theorem 6.2) 

00 

rt 
e Ck (a) = 2: f c. (x) N a , ~ ( t) dx . 

j 0] X,] 

Proof: As an immediate consequence of Proposition 1.4 we have 

Na,k(s+t) 
u,O 

00 

= 2: f NdXo,j(S) Na,~ (t). 
j 0 u, X,] 

Apply Proposition 1.3 to get 

Na,k (s+t) rt 
0,0 -+ e Ck(a) as s -+ 00 

NO,O (s) 

Finally as in KH we have 

00 dx,j 00 

2: f NO,O (s) Na,~ ( t) -+ 2: f c. (x) Na,~ ( t) 
j 0 x, ] j 0 ] x, ] 

NO,O(S) 

00 

Corollary: 2: f c. (x) Na . (t) dx rt C (a) . = e 
j 0 ] x, ] 

dx. 0 
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00 

Proposition 1.6. ~ J V(u,j) Ndx,j(t) = e rt V(u). 
j 0 u,o 

Proof: From Proposition 1.4, 

e rt e-r(s+t) Na 
u,O 

And, 

(s+t) 

LHS + e rt H(a) V(u)/A 

00 

RHS + ~ J H(a) V(u,j) Ndx,j(t). 
j 0 A u,O 

o 

These last two propositions establish the fundamental proper-

ties of the stable age distribution and the reproductive value. 

One way of interpreting the latter result is as follows: 

On average, the reproductive value of the population at time 

t, multiplied by e-rt , is a constant - namely, the reproductive 

value of the initial ancestor. In fac~ this "martingale property" 

lies atthe core of more sophisticated treatments of the problem 

(see Athreya & Rama Murthy [1976J). In order to obtain sensible 

results, we must have a proper definition of the reproductive 

value for each age-parity segment of the population. 

D. A GENERAL MODEL 

Keeping in mind the constraints on our model described at 

the beginning of section 1.C., we now formulate a fairly general 

setup which can be dealt with by the simple extensions of the 

methods in KH developed in sections 1.B and 1.C. 
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Suppose that the status of each individual is described by 

a vector x = (xl' ... ,x ) of continuous parameters, and a vector - n 

m = (ml, ... ,mn ) of discrete parameters. For example, we might 

have xl = age, x 2 = marital duration, ... , ml = indicator of 

marital status, m2 = parity, ... Each individual has associated 

with her a status vector (~, ~), which changes to reflect the 

developing life history. 

We make the crucial assumption that every newborn begins with 

the same status vector, denoted by (Q,Q), and is subject initially 

to the same forces of transition. These forces may depend on some 

or all of the parameters in the status vector. 

if 

As is usual in vector notation, we say that ~ ~. l if and only 
. l 

xi ~ Yi (i = 1,2, ... ,n). Now let zX'-(t) denote the size of 

the population alive at time t having status vector (~, ~) such 

that x ~ y and ~ ~ ~. Conditioning on a single ancestor of status 

(~, ~) let 

For convenience of notation, suppose that the vector variable 

x takes valuesin a subset * of n-dimensional Euclidean space, and 

the vector variable m takes values in a subset M of the n-

dimensional Cartesian product of the positive integers. Assume 

also that the first component of ~, xl' is age. 

The theory developed so far carries over then quite directly, 

and there is no need to present new proofs of the results. For 

the sake of completeness, we list some of these results which, 

with the compact symbolism we have at hand, are almost the same 
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as their counterparts in sections 1.B and 1.C. 

The basic renewal relation (Proposition 1.2) becomes 

where 

N5!:,~ (t) = 
~:t .1 

+ ft N5!:O'~O (t-s) ~ . (ds), 
o -'- ~,.1 

v . (5!:'~) = P{individual is alive and of status 
t _~/.1 

(5!:'~) at time t I she was of status 

(~,i) at time a}. 

Note that this probability is necessarily zero if u l + t ~ ale 

As before, the variable of integration is time. 

Lotka's integral equation becomes 

* n (t) = 1:: 
M 

+ ft n*(t-y) ~ (dy) o ~Q,Q. 

The Malthusian parameter r is the root of the following equation 

in the unknown p: 

00 

~ e- Px ~Q,Q (dx) = 1. 

Again, this is just for purposes of normalization. The asymptotics 

follow directly and we can find, for example, a stable age distri-

bution C(·,·) satisfying the relation; 

1:: 
rt e C (y,g) . 

M 
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This setup should be sufficiently general to cover most needs. 

One major practical difficulty that has been passed over in the 

discussion is the actual calculation of the relevant net mater­

nity functions. The appendix has a brief sketch of one set of 

calculations for a typical model which can incorporate conside­

rations of fetal wastage, postpartum amenorrhea, and so on. These 

models have been discussed in Hoem [1970], Sheps and Menken [1973] 

and further developed by Mode [1975] and Mode and Littman [1975]. 

It should be emphasized that these elaborations do not affect the 

gross mathematical structure, but only how the status-dependent 

birth intensities are constructed. 

2. MULTIREGIONAL MODELS 

A. Preliminaries 

Consider a population dispersed over a domain composed of a 

finite number of regions. In a given region all individuals are 

assumed subject to the same age-dependent forces of fertility 

and mortality. However, since these forces may vary from region 

to region, the mathematical apparatus of the previous section 

proves inadequate. Movement from region to region is permitted, 

with migration intensities that depend on the region of residence, 

the destination and the age of the individual. For the sake of 

simplicity, duration dependence is disregarded; thus, an indivi­

dual upon migration is immediately subject to all the forces be­

longing to her new home. 

The status of an individual is determined by her age and 

region of residence. The age variable can, in fact, be replaced 
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easily in the present analysis by a more general status variable 

(cf. section 1.D), upon which the various forces of transition 

would depend. Because such an approach would complicate the mathe-

matics only by rendering the notation unwieldy, we confine our-

selves to the use of the age factor alone. Lastly, to make the 

notation more transparent, the Greek alphabet will be used only 

for the region variable. The letters a,S,Y, ... denoting particular 

regions, with n and ~ serving as indices of summation. 

Let Za,S(t) denote the number of individuals living in region 

S at time t, aged ~ a and descended from a single ancestor at 

time O. E denotes expectation conditional on the event that u,a 

the individual (usually the ancestor) is of status (u,a) and 

L > U , at some given time. We then define: 

and 

Na I S = E Z a, S (t) , 
u,a u,a 

~n (t) = E [number of children born in region u,a 

n by time t, to an individual who 

is (u,a) at time 0], 

tVu,a(S) = P{individual is alive and in region S 

at time t I she was (u,a) at time O}. 

This last term is an analogue of a conditional probability de-

fined in section 1.A. (using "w" rather than "v") I but including 

the probability of being alive at time t. We then have the 

following analogy of Proposition 1.2. 
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Proposition 2.1. 

(2.1) Na , S ( t) = X [ 0 ] (u+t) tV ( S) + L: ft Na , S (t-s) q,n (ds) . u,a I a U, a 
n 0 O,n u,a 

Proof: Za, S ( t) = Za, S ( t) + L: L: k,nza,S ( t) <0> 
k n 

where k,nza,S (t) denotes the number of individuals alive 

at time t in region S and aged < a, descended from the kth child 

born to < 0 > in region n. 

The desired result now follows by taking expectations, for 

clearly 

E Z a, S (t) (t) ( Q) u,a <0> = X[O,a] U+ tVu,a ~ 

by definition, and using exactly the argument of Proposition 1.2 

separately for each n gives the last term in (2.1).0 

Equation (2.1) is a multivariate renewal equation. A dis-

cussion of this topic can be found in ~inlar [1975] pages 323 ff. 

We give here only a brief sketch of some of the mathematical 

considerations. As in the univariate case, the main problem is 

the proper normalization of the functions (s) with respect to 

which the integration is carried out, in this case q,no (.). ,a 

We begin by writing 

and 

(2 .2) 

Then {3~n (.)} are probability measures by construction and 

are assumed nonatomic. This is realistic in view of their role 
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as normalized net maternity functions. Interest now centers on 

the matrix R = (R~n). Note that each R~n can be interpreted as 

a net reproduction rate. 

The mathematical theory requires that R be irreducible and 

of spectral radius 1. In demographic applications this latter 

requirement is not fulfilled in general. This parallels the uni-

variate case where the function ~O,O (.) is not a probability 

measure and must be normalized. Such a normalization was carried 

out by introducing the Malthusian parameter as the solution of a 

characteristic equation (see section 1.C.). A similar approach 

can be carried out in this case. 

For each real p define 

and let 

00 

= J e- Px ~6,~ 
o 

R(p) = (R~n(P)). 

(dx) , 

Clearl~ there exists a unique value of p, call it r, such that 

R(r) is a matrix with spectral radius 1. Alternatively, we may 

say that the matrix 

-rx 
e 

has 1 as its dominant characteristic root. In this form,there is 

an obvious analogy between the univariate and multivariate cases 

(see also Rogers and Willekens [1976a] I pages 13-15). Using the 

Malthusian parameter r, we can obtain asymptotic results having 

the characteristic exponential form. 
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B. Asymptotics 

Proposition 2.2. In the setup described above, suppose that a 

real solution r to the generalized Lotka equation exists. Let 

.* 
~sn (t) = 

and 

J t e-rx n 
1 <l? a, s (dx) 

Rsn (r) a 

co 

* = J x ~ s n ( dx) . 
a 

We assume that ~sn < co Vs,n and that 

00 

-rt 
Jet va,n (s) < 00 ven. 
a 

(These are just the usual finiteness assumptions). Let ~ and ~ 

be left and right eigenvectors of R(r) . Since R(r) is positive 

and has spectral radius 1, l and h both positive can be found. 

We then have as t -+ =. 

(2.3) -rt Na,S ( t) -+ h L: Ja -rs 
sVa,n(S) ds, e c e a,a a n a n 

where 

Proof: The particular form of the result follows directly from 

some work of Asmussen & He<riLiJ.:g: [1977J. Similar expressions can 

also be found in ~inlar [1975J pages 328-335. 

Remark: The components ha of the vector g will play an impor-

tant role in defining a single measure for the reproductive value 

of an individual. Note that the initial region of residence a of 
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the ancestor enters the limit on the RHS of (2.3) only through h . a 

In fact we may write 

( 2. 4) 

where 

f(a,S) = l: c n fa e-rs Vo (S) ds. 
nOs ,n 

Making a formal comparison bewteen (2.4) and (1.4), leads 

one to suspec't that f(a,S) must be involved in the definition 

of the stable age distribution. To see that this is so, we re-

quire a. simply established analogue to Proposition 1.4: 

(2.5) Na , S (s+t) 
u,a 

00 

= l: f Ndx,n (t) Na,S (s). 
n 0 u,a X,n 

Consequently, it is an easy matter to derive the result that in 

the stable age distribution, the proportion of the population 

aged < a in region S is given by 

f (a,S). 
l: f(oo,n) 
n 

C. The Reproductive Value 

In deriving an index of reproductive value, we will let the 

mathematics lead us naturally to an appropriate expression. From 

equations (2.1) and (2.4) we find that as t ~ 00, 

00 

e -rt Na , S ) f -rs ~ (d) u,a (t ~ L f(a,S) h~ e ~u,a s. 
~ 0 

We now argue exactly as in Proposition 1.6. That is, we obtain 

appropriate limiting forms for both sides of equation (2.5) as 

s ~ 00: 
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00 

rt -r (s + t) Na,S (s + t) 
rt 

1: f(a,S) h~ J 
-rs 

<IJ ~ (ds) -+ e e e e U,a. 
~ 0 u/a. 

and 

00 

-rs 
1: J Ndx,n ( t) Na,S (s) e 
n 0 

u/a. x,n 

00 00 

-+ 1: J Ndx,n ( t) [1: f(a,S) h~ J 
-rs <IJ~ (ds) ] . e 

n 0 
U,a. 

~ 0 x,n 

Equating the two sides, we have 

00 

(2.6) J Ndx,n 
[1: h~ 

00 

1: ( t) 
J 

-rs <IJ~ (ds) ] 
0 U,a. e 

n ~ 0 x/n 

00 

rt [1: h J -rs <IJ~ (ds) ] . = e e 
~ ~ 0 

U,a. 

In view of (2.9), we are forced to define the reproductive 

value of an individual aged u residing in region a. to be 

00 

V(u,a.) -rs 
e <IJ ~ (ds). 

U,a. 

We ma~ therefore, rewrite (2.6) to parallel Proposition 1.6: 

00 

1: J Ndx,n (t) V(x,n) = e rt V(u/a.) • 
n 0 U,a. 

Relative to a region ~, the reproductive value of an indivi-

dual of status (u,a.) is given by the quantity 

00 

-rs = J e 
o 

(ds) . 

Because children born in different regions have different net 

maternity functions, the {v (~)} can not be simply added to­U/a. 

gether. Rather, they must be weighted by the factors {h~} before 

being combined into a single expression. These weights are quite 



23 

natural since we have from (2.4) as t ~ 00 

(t) ~ 

( t) 

h~ . 
h n 

Thus, the components {h~} measure, from the standpoint of total 

eventual population, the relative worth of newborn in different 

regions. Rogers and Willekens [1976b] contains a discussion re-

lated to these ideas. 

D. The Lotka equation 

The derivation of the Lotka equation for the multiregional 

model is a fairly straightforward generalization of the technique 

used in Section 1.B. Let 

N*,B (t) = number of births by time t in region B, 
u,a 

starting from a single ancestor with 

status (u,a) at time O. 

In analogy to equation (*) of Section 1.B we have 

(2.7) N * I B (t) = 
u,a 

l+<I>B (t)·+l: Jt<I>oB (t-s) N*,n Cds) 
u,a n O,n u,a 

= 1 + <I>B ( t) + l: J t [N * , n (t-y) - 1] <I> B 
n 0 u,a O,n u,a (dy) . 

In the middle expression, each term in the summation represents 

the contribution of those children of the ancestor born in region n. 

Suppose that the density of individuals of status (u/a) at time 0 

is denoted by nu,a (0). Multiplying (2.7) by nu,a (0) I integra-

ting with respect to u and summing over a, yields 
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(2.8) * 
00 

N ,S (t) = N (0) +L: .l iJ? S (t) nu,a(O) du 
a 0 

u,a 

It * +L: [N ,n(t - y) -N(O) ] 
n 0 

00 

* 
1 S (t) N*'S nu,a(O) N = L: I duo 

a 0 
u,a 

where 

Differentiating (2.8) with respect to t, we have 

(2.9) n * ,S (t) = 
00 

L: I iJ?S (t) nu,a(O) du 
a 0 u,a 

+ L: It * n Q 

O n' (t-y)iJ?1-' (dy). 
n O,n 

iJ?S 
O,n (dy) 1 

The LHS of (2.9) is the density of births at time t in region 

S only. The first sum on the RHS represents the contribution of those 

alive at time O. The second sum represents the contribution of 

those born after time 0, with the contribution of each region 

counted separately (hence the summation over n). The Lotka equa-

tion for the population as a whole would be a vector of equations 

like (2.9), with each component being an equation for another 

value of S. Understandably, the number of components would equal 

the number of regions in the model. 

3. A HYBRID MODEL 

There is a clear contrast between the models of Sections I 

and 2. In the former, all individuals are initially subject to 

the same forces of fetility and mortality, though these forces 

will change in different ways as the life histories develop. In 

the latter, individuals begin life on different footings, depend-

ing on the region of birth. Because only a finite nJumber of 
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different regions are permitted, the model is somewhat primitive. 

Below will be found a brief sketch of a model which at first 

sight is more advanced than the multiregional models, but the 

analysis of which ultimately reduces to that of Section 1, rather 

than Section 2. Understanding why this is so will help us to 

modify thecanclusions of the first section. 

Suppose then we have a parameter n taking values in a space E, 

such as [0,1]. At birth, each individual is assigned a value of n 

at random according to some distribution G (.), independently of 

the parameter values of the parent, any previous offspring, etc. 

The individual retains this value of n through her lifetime. Now 

assume that with each value of n is associated a function ~ (.) 
n 

where 

~n (x) = E [number of offspring by time x to an 

individual aged a at time 0, and 

having the particular value of n as 

her parameter value]. 

Thus,we have an infinite multiregional model, each value of n 

corresponding to a different region. 

Furthermore,let 

Na ( t) = E [number of individuals alive and 
u,n 

aged i a at time t I population 

begins with a single individual at 

time a of age u and parameter n]. 

In what follows, we only consider u = O,and so,drop this 

subscript entirely. Let also 
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J Na (t) G(dO. 
E ~ 

Arguing formally, it is easy to see that 

Na (t) = Jt [J Na (t - s) G(dn)] <Pc (ds). 
~ 0 Ens 

Now,if the parameter value ~ of the ancestor is also chosen 

according to the distribution G(·), then we have 

Ma ( t) = J Na ( t) G (d~) 
E ~ 

= J [Jt Ma (t - s) <Pi; (ds)]G(d~) 
E 0 

= Jt Ma (t - s) <P (ds) , 
0 

where <P (s) = £ <P~ (s) G(d~). 

This is, of course, a simple renewal equation of the type met 

in Section 1, except that the role of the net maternity function 

is played here by a weighted average of individual net mater-

nity functions. 

This last result suggests that it is not heterogeneity/per 

se,which precludes an analysis by the methods of Section 1. 

Rather, it is only when the heterogeneity is determined (at least 

in part) by the history of the process up to the time of birth, 

that the methods of Section 2 are required. In the multiregional 

models, for example, the history of the individual is affected 

by the status of the mother (i.e. region of residence) at the 

time of birth. On the other hand, in the present section the 

individual's history is quite independent of the past. Put more 
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crudely, at birth each individual has the same chance as any other 

of obtaining a particular value of n and the associated net ma-

ternity function. 

These considerations make clear that the group of models of 

Section 1 is very large and can accomodate various family planning 

schemes. For example, we could allow each individual, upon reach-

ing a certain parity, to decide with probability one-half to have 

no more births and with probability one-half to have another. Of 

course,the more complicated the model, the more involved the cal-

culations. 

4. THE AGE AT CHILDBEARING PROBLEM 

The function 

~ (x) = e-rx ~ (x) 

was introduced in Section 1 as the (density of the) distribution 

of the age at childbearing in the stable population. A justifi-

cation for this term from the point of view of the stochastic 

theory was given by Jagers [1975], who computed the expected 

number of individuals born by time t to mothers aged ~ a. As 

t + 00, the ratio of this quantity to the expected number of indi-

viduals born by time t converges,as a function of a, to the age 

at childbearing. 

Keiding [1973] has given a heuristic derivation from another 

point of view. He examined the probability that a child born at 

time t had a mother aged < a and argued that this should converge 

a to J ~(a)da as t + 00. A direct proof seems to involve measur-
o 

ability difficulties, but probably can be worked out using Palm 
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functions. We present here a more elementary approach involving 

the reproductive value. 

Working with the model in KH, let A(·) be the intensity func-

tion of the Poisson process generating births. Define for x > y, 

Then 

v (x) y 

v 
x 

(x) 

()() 

f -r [s+ (x-y) ] = e p 
o s+(x-y) y 

A(Y+ [s+(x-y) ])ds 

= discounted value to an individual aged y 

of births from age x onwards. 

()() 

-rs = f e 
o P 

s x 
A(x+s)ds 

is the ordinary reproductive value. 

Define 

v x (x) - V 
x 

-rs 
e P 

s x 

(x+h) 

A(x+s)ds. 

Then Wh (x) is that portion of the reproductive value "spent" 

between ages x and x + h . 

Consider now the quantity 

A (h) 1 fa () dx ( ) D fa = h Wh x Z t. 
tJ 

That is, ~(h,a) is the normalized change in the reproductive 

value of the population from t to t + h due to those individuals 

aged < a at time t. Then 

EO [ lim :LX (h, a) ] = EO [ fa A(X) zdx (t) ] 
h + 0 0 

= fa A (x) Ndx (t) . 
0 0 
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As t -+ 00, 

EO[lim !::"(h,a) ] fa A (x) Ndx ( t) 
0 h -+ 0 = 0 

EO[lim !::,. (h ,,(0) ] co 

Ndx h -+ 0 f A (x) (t) 
0 

0 

-+ fa l/J (x) dx = '¥ (a) , as t -+ co 

0 

Thus '¥(a) measures for large t the proportion, on average, of 

the instantaneous change in the reproductive value of the popu-

lation due to individuals aged ~ a. 

The same calculation can be carried out for the model in 

Section 1. Define 

Then 

As t -+ 00, 

~ 

= 

Wh (x, j) = V (x, j) - V (x + h, j) . 

E [1 ' fa 1 '" V (x,)') zdx,j (t)] 00 1m 6 h 
h-+OO Iij 

= fa L: ¢ ,(0) Ndx,j (t). 
o j X,) 

fa L: ¢ , (0) Ndx,j (t) 
o j X,) 
00 

f L: ¢ ,( 0 ) Ndx , j ( t) 
o j X,) 

fa -rx p(x) L: ¢x,j (0) e 
0 j 
00 

-rx 

w 
X 0,0 

f p (x) L: ¢x, j e (O)xwO,O 0 j 

fa -rx 
¢O,O (x) dx, e 

0 

(j) dx 

(j) dx 
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where we have used the identity 

q>o,o (x+h) - q>0,0 (x) = 2: q>x,j (h) xWO,O (j) p (x). 
j 

.APPENDIX 

We now develop some formulas :for the cohort net maternity 

function. To facilitate comparisons,we use the notation of Mode 

[1975] • 

Consider a cohort aged 0 at time O. Let T 
0 

be the (random) 

time of marriage and Tk (k > 1) 

Note that time and age coincide 

Pn,n+l(y,t) 

be the 

in this 

time of the kth 

scheme. Define 

tiT = y}. n 

birth. 

Clearly,we have 

(A.l) Hn· + 1 (x,t) = It P (s,t - s) H (x,ds), o n,n+l n 

which is called a Markovian convolution by Mode. Note that our 

formula differs slightly from his (4.2.8). It should be remem-

bered that the conditional distributions P + 1 (y, t), since n,n 

they take account of mortality, are defective in the sense that 

P + 1 (y, co) < 1. The connection between these expressions and n,n 

the functions p(.), A(·) introduced in Section 1 is obvious: 

Pn,n + 1 (y,t) 
I t IS A (u)du 

= 0 Py [1 - e - Y n ] An (s) ds. 
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Finally, 

00 

E [K(tAL) = x] = L: 
n=l 

H 
n 

(x, t) , 

so that 

(A.2) 11>0,0 (t) 

00 

= ft L: 
o n=l 

H n (x, t) GO (dx) 

where GO (x) is the cumulative marriage curve; i.e., GO (x) = 

P{TO ~ x}. In constructing the functions P + 1 (. , .) one can 
n,n 

take account of such features as fetal wastage, postpartum amenorr-

hea, etc. Finally, the P 1(·'·) are generally taken to be n,n + 

continuous functions of their arguments. Together with (A.l) and 

(A.2), this implies the differentiability of the net maternity 

function. 

Note added in proof: Two further references have been brought to 

the author's attention. "Master Equation Treatment of Aging Popu-

lations" by N.G. van Kampen (Reports on Mathematical Physics 11 
TV 

[1977] pp. 111-122) develops the asymptotics of the Bellman-Harris 

process from a point of view slightly different from the usual 

one. It is claimed that this approach can easily be applied to 

the analysis of models involving interaction among individuals. 

The second, "Reconciliation of the Integral Equation and the Pro-

jection Techniques in the Age-Parity Specific Stable Population 

Model" by P. Das Gupta (Reprint No. 463, Institute of International 

Studies, U. of California at Berkeley) studies a particular discrete 

time deterministic population model, and contains some interesting 

historical references. 
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