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1. Introduction 

In [1] Clarke studies estimation in the M/M/l-queue, observing 

the process until the busy time reaches som preassigned level T. 

In this paper we study the M/G/I-queue under Clarke's sampling 

scheme. In section 3 we show that the maximum likelihood estimator 

for the arrival intensity A is ~ - N(T) where N(T) is the total - R(T) , 

number of arrivals and R(T) is the total observation time. In 

the case with traffic intensity p < 1, we prove that under mild 

regularity conditions the maximum likelihood estimator for the 

parameters in the service time distribution will exist for T + 00 

if the maximum likelihood estimator exists in the problem with 

fixed sample-size. 

r:: N(T) M(T) 
In section 4 we show that for T + 00 (VT(R(T) -A) , IT (-T- -]1» 

is asymptotically normally distributed with independent compo

nents. Here M(T) is the total number of arrivals and I is the 
]1 

mean service time. 

In section 5 we take the M/M/l-queue as a special case and derive 

the likelihood ratio test for the hypothesis P=PO and prove 

that Q is asymptotically distributed as X2 with f=l. 

A A 

The asymptotic results for the distribution of (A,'[i)in the M/M/I

queue are well-known see e.g. Cox [2], Syski [9], Wolff [10]. 

In these papers the simple M/M/l-queue is considered as a special 

case of a Markovian or a birth and death queuing model, i.e. 

the authors assume exponential holding times for both the arrival 

and the service distribution. 

The approach in the present paper is different. We do not assume 

the queue to be Markov. In stead we apply results from the theory 
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of regenerative (and cumulative) processes. This imposes the 

restriction p < 1, since this condition is necessary to ensure 

that the queue returns to 0 infinitely often. 

2. Description of the queue. 

Consider the M/G/l-queue (in the notation of Kendall [4]). In 

this the interarrival distribution is exponential with intensity 

A > 0 and we have a general service time distribution B(v). 

The queue discipline is "first come, first served" and we assume 

an infinite waiting capacity. 

In the following section we consider the problem of deriving 

maximum likelihood estimates for (A,e) using the sampling me-

thod of Clarke [1], i.e. observing the queue until the busy 

time reaches some fixed level T. 

Let 

Ul 'U2 ' ... be time intervals between consecutive arrivals 

and 

Vl 'V2 ' ... the service times. 

Ul 'U2 ' ... are i.i.d. random variables with density 

f(u)=Ae-AUI(u>O) (1) 

Vl 'V2 ' ... are i.i.d. and are independent of Ul 'U2 ' ... We assume 

that B(v) has a density b(v). 

Let Q(t) be the queue length at time t and define 

Tl=min{tIQ(t)=O} 

T =min{tI3s>T l:Q(s»O and Q(t)=O},n=2,3, ... n n-

Tn is the length of the nlth busy period. Tl ,T2 , ... are inde

pendent and ~Z,Tl' ... are identically distributed. 
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Define 

Z =min (t>T I Q (t) >0) n=l,2, ... n n 

Zn is the length of the nlth empty period. Zl'Z2' ... are i.i.d. 

Because of the regeneration property of the exponential distri-

bution the distribution of Zl'Z2' ... is again exponential with 

parameter A and Zl'Z2' ... are independent of Tl ,T2 , .... 

Define for T>O 

m 
M: (T) =max (m I 2: V. <T) 

i=l 1.= 

m 
V(T)=max(ml 2: T.~T) 

i=l 1.-

and let M ,n=1,2, ... be the number of departures in the nlth n 

busy period. Note that for n~2 Mh is also the number of arrivals. 

Since M(T) is defined solely in terms of vl ,V2 , ... M(T) is 

independent of Ul ,U2 , ... and Zl'Z2' ... 

Define finally 

and 

V(T) 
R(T)=T+ L Z. 

i=l 1. 
i.e. R(T) is the total observation time 

N(T) = the total number of arrivals in the interval (O,R~». 

3. Estimation of (A, e). 

To simplify the notation we will assume Q(O-)=O and Q(O)=l, i.e. 

the observation period starts just after a customer arrives to 

an empty queue. The asymptotic results can easily be modified 

to cover the general situation. Under this assumption Tl has 

the same distribution as T2 ,T3 , .... 
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We will derive the likelihood function stepwise in the manner of 

Clarke. 

The statistical model is 

Ul ,U2 , ... ,are independent and exponentially distributed 

1 
with EU1=X' ;\>0. 

Vl ,V2 , ... are independent and have distribution B(v,S), 

where B has density band SEG. 

We shall further assume that Sand ;\ varies independently. 

Let nand m be positive integers with n>m. 

The density of (M(T) ,Vl , ... ,VM(T)) is 

= 

is 

m m m 
1T b(v.,S) (l-B(T- L .. vl,S))I{ L V.<T}. 

j=l J i=l· i=l 1 

m 
-;\ L 

m i=l A e 

U. 
1 

Since R(T) and V(T) are functions of Vl' ... 'VM(T) and Ul , ... f 

UM(T) only, the density of N(T), UM(T)+l' ... 'UN(T) for given 

M(T) =m, Vl =vl' .. ·'VM(-r) =vm' Ul =ul ' ... , UM(T) =um' R(T) =r is 

-;\ 

n-m ;\ e 

n 
L 

i =m+l 
U. 

1 

e 

n 
-;\(r- L 

i=l 
u. ) 

1 n 
I{ L u. <r}, 

. 1 1 1= 
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Hence 

where h does not depend on A and e. 

From (2) follows readily 

( i) 

( ii) 

8 and A can be estimated separately 

if A<~ the queue returns to 0 infinitely often 
EVI 

and one would expect that some kind of regenerative 

process argument would suffice to ensure the existence 
/\ 

of 8 in the cases where one had a maximum like li-

hood estimator of 8 for fixed sample size. 

That this is the case is seen from the following: 

Theorem 1. 

The MIG!! '.,...·queue has for T+OO a unique maximum likelihib.0d esti-

mator (A T,8 T) for (A,8) under the following conditions: 

Proof: 

(i) EVl<oo 

(ii) E Ilog b (VI' 8) 1<00 

(iii) vl ,V2 '.'.'Vn admits for n+oo a unique maximum likeli

hood estimator 8n for 8 E 8. 

From (2) we have 

M(T) M(T) 
LT (A,8) = IT b(V. ,8) (l-B(T- L: V. ,B))AN(T)e-AR(T) ~h. 

i=l 1 i=l 1 

It is immediate that 

(3) • 
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To find e we maximize 
T 
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M(T) M(T) 
L (8) = 

T 
1T b(V. ,8) (l-B (T- L: V. ,e)) 

i=l l i=l l 

or minimize 

We note, that M(T) is a cumulative process in the sense of 

Smith [7] with Vl ,V2 , ••• defining the associated renewal process 

(actually M(T) is the number of renewals), and by Theorem 7 of 

[7] we have 

M(T) + 1 T + 00 (5) 
T EVI 

with probability one. 

Lemma 1: For T + 00 

1 M(T) 1 
1---· L: log b(Vi,e) - "T 
M(T) i=l [EV ] 

[E~ ] 
1 L: log b(V.,e) 1+0 

l 
i=l 

1 . 

with probability one. 

Proof: Since ~Ilog b(Vl,e) 1<00 by condition (ii), we have 

If E~lJ 
'[~J' . L: log b (Vi' 8) +E log b (VI' e) for T+OO 
-'- l=l EVI 

with probability one by the strong law of large numbers, and 

1 M(T) 
--(--) L: log b(V. ,8) = 
M T ' i=l l 

T 1 M(T) 
M(~) . - L: log b(V. ,8)+ E log b(Vl ,8) 

L T i=l l 

with probability one by (5) and theorem 7 of [7]. 
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Lemma 2. For T + 00 

+ 0 

.wi th probability one. 

Proof: We have 

1 M(T) 
o ~ - M(T) log (l-B (T- l: V., 8 )) < 

i=l 1 

1 
- M(T) log (l-B(VM(T)+l' 8)). 

Since condition (ii) implies - E log (l-B(Vl ))< oo,the result 

follo.ws from the strong law of large numbers together with (5). 

Lemma 1 and 2 together with (4) shows that 

fiLJ 
1 1 VI 

1- M(T)log L (8)+~~-- l: log b (V.,8)I+O for T+OO (6). 
T [ __ T_] i=l 1 

EVI 

with probability one. 

n 
Since - l l: log b(V. ,8) has a unique minimum for n + 00 by 

n i=l 1 
1 condition (iii), the same obtains for - M(T)'log LT (8). 

Remark 1. We have actually proved that the existence of the 

maximum likelihood estimator in the process-case and in the 

fixed sample size case is equivalent. 

Remark 2. In most practical situations conditions (i) and (ii) 

are needed to establish the existence of the maximum likelihood 

estimator in the case with fixed sample size. 

Corollary 1. From (6) and the uniqueness of the maximum likeli-

hood estimator follows 

8 -8 
T T 

[EV ] 
1 

+ 0 for T + 00. (7) 



with probability one. 

4. Asymptotic distribution of (M(T), N(T)) 
T R(T)' 

In many practical situations the service time distribution is 

parametrized by ~=E~ , and we might have ~T=M~T), i.e. the rela-
1 

tive frequency of departures. This is f. in. the case in the 

M/M/l-queue. 

For a more general discussion, see Keiding and Lauritzen [3]. 

In this section we derive the asymptotic distribution for 

(M(T) N(T)) using results from the theory of regenrative pro
T 'R(T) 

cesses. 

1 Let ~=EVl' and assume A<~, i.e. assume the traffic intensity 

p<l. 

The essential argument is the following: 

The queue regenerates itself every time an arriving customer finds 

the server idle, (see e.g. Smith [8] p. 257). By the assumption 

A<~, the queue is empty infinitely often. Hence the asymptotic 

results from the theory of regenerative processes apply. 

With the notation from section 2 we have the following theorem: 

Theorem 2. In the M/G/l ::-,queue 

IT (M (T) - 11, NR (( TT)) -
T to' 

where ~ means weak convergence. 

assume VVl =0 2 

(02 3 

A) "N (0, \ : 

<00. Then 

Proof: For A~~ we have P(T1<oo)=1 and for A<~ ETl<OO ([6] p. 75), 

i.e. V(T)+OO for T+OO with probability one. In the rest of the proof 

we shall restrict ourself to the case rtf ={w I V(T) (w)+ 00 for T + po}. 
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We can write N(T)=M(T)+N'-M', where N' and M' are the arrivals 

and departures respectively in the last uncompleted busy cycle. 

We have M'<N~ and since = ' 
v (T) 

R ( T) - 2: (T . +U . ) <T ( ) +1 
i=l 1 1 V T 

we have 

N' <N = v(T)+l 

and the relation 

p{N~ >c}<E~' <~NJ + 0 for T + 00 

vT V"C·C T.C 

gives 

(9 ) 

R(T) is a cumulative process relative to Tl ,T2 , ... , hence 

< 00 

with probability one. 

From this result together with (9) follows 

IIT(N(T) - A)-IT(MR «TT») - A) -N' P 
. R(T) 1~v'TR(T) + o. 

Hence by Slutskys theorem (IT(M~T) -~) ,IT(~~~~ -A}) has the 

same limiting distribution as (1T«M('r) -~), v'T(M(T) -A» if any. 
T R (T) 
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We need the following 

Lemma 3. Let T be the length of a busy period and let M be the 

number of customers served in T. We have 

ET 1 EM ]J = ]1- A = ]1-1.. 

3 21.. ]131.. 20 2+1..]12 
VT = ]1 0 VM = 

(]1-A) 3 (]1-A) 3 

A 3 2+ 2 
ETM = ]1 0 ]1 

3 (]1-A) 

Proof: Let ~(e) = Ee- ev , where V is the service time. 

We have 

1 
- ~'(o) =]1 

~ , , (0) - (~' (0))2 = 2 o • 

(10) 

( 11) 

From [6J p. 153 and p. 158 follows, that B fulfils the functional 

equation 

B = z~(e+A-AB) ( 12) 

Differentiation with respect to z and e gives for z=l, e=o 

EM = _~.!.-.'-.:( 0;...:.)_ 

l+A~'(O) 

ET = ~ , (0) 

l+A~'(O) 

1 
EM(M-l) = l+A~' (0) AEM(~" (0) AEM - 2~' (0)) 

(13) 

(14) 

(15) 
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1 = l+Al/J1' (0) 
( l/J' , (0) (1 + AE T) 2 (16) 

ETM = 1 
(l+AET) (l/J' (O)-l/J" (0) AEM) ( 17) 

l+Al/J'(O) 

Substitution of the values from (10) and (11) in (13)-(17) com-

pletes the proof. 

Next we note that M(T) is also a cumulative process relative to 

Lemma 4. For T + 00 

-(IT(M~'r) -]1) ,IT(R~T) - t)) => N(O,f), 

where 

]130'2 
-A-

Proof: The result follows from [7] theorem 10, and lemma 3, 

since 

= EM 
ET 

Et,nR (T) ET+EU 
= ET ET 

= ]1 

Vt, (MJT) -]1) = V(M-!IT) 
n' T I-' 

3 2 = ]1 ~O' 
1 ]1-?- A 
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To find the limiting distribution of (iT(M(T) -11), iT(M(T) -"A)) 
T R(T) 

we write 

= _T_ ( IT (M ( T ) - 11) - A IT ( RT( T ) - ~)) . 
R(T) T I\. 

By lemma 4 

( 
3 2 

11 a 
=>N(O, ....... . 

. 0 

T P A 
Moreover R(T) ~ 11 for T + 00 Hence by Slutskys theorem 

(IT{M~T) - 11) ,IT{~~~~ -A)) => N(O, ) for T + 00 

This completes the proof. 

A For the traffic intensity 0 = - we have , 11 
A 

Corollary 2: 
A A 
p =- = 

A 

N(T) . T 
R ( T ) M ( T ) and 

A A 1,.2 2 2 
IT (p - -) => N (0, - + A a ) for T + 00 

11 p2 

Proof: We have 

c(N(T) . T. A) = 
]I T R ( T ) M ( T ) -il iT _T_. _( (N(T) -A) _ ~(M(T) _ )). 

M(T) R(T) 11 T 11 

T 
Since M(T) ~ 1 the result follows from theorem 2. 

11' 

We have restricted ourselves to the case 1,.<11. It is therefore 
A A 

natural to require A<11. That this is the case asymptotically 
A 

follows from corollary 2, since ~ ~ ~<l. 
11 



13 

This result enables us to find asymptotic distributions for 

various quantities connected with the steady state, since most 

of them only depends on p, se e.g. Lilliefors [5]. 

5. Hypothesis testing. 

In this section we specialize to the case M/M/l, i.e. we assume 

exponential service times with departure intensity ~. 

In this case we have 

and (18) 

We want to test the hypothesis 

Under HO we have 

A 
A N (T) +M (T) and ~T = T+POR(T) 

(19) 

:::t 
The distribution of ~ under HO is given by 

Theorem 3. For T + 00 

CT· (N (T) +M (T) ) N (0 ~) 
Y·l R () - ~ => '-2· T+P O T 

Proof: We have 

R( T) IT N (T) 
= T + P 0 R( T ) T ( R( T ) - P 0 ~) + 

T R(M(T) _ ~). 
T+PO R(T) T 
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Now E(T) -.Er 1 for 
T+POE(T) 2P O 

T + 00 

T P 1 
T+PO E( T) 

-+ "2 for T + 00, 

and by theorem 2 

~IT(N(T) - PO~)+-2llT(MT(T) -~) ~ N(O, ~2) for T + 00 

2PO B(T) 

An application of Slutskys theorem completes the proof. 

Note that (18) and (19) are valid also for p~l (and PO~l). 

The likelihood ratio test for HO is 

or 

- 2 log Q 

~ ~ 

LT(PO~T'~T) 
QT = "---",--",--

LTC\'~T) 

POR{T)M(T)-N(T)T 
= ~2(N(T)10g(1+ N(T) (T+POR(T)) ) 

TN(T)-POR(T)M(T) .. 
+M(T) log (1+ M(T) (T+POR(T) )); 

By a Taylor expansion we obtain 

- 2 10 Q = N(T)+M(T) 
g T+POR(T) 

Since 

and 

N(T)+M(T) 
T+POR(T) 

(N (T) 
R (T) 

.( . M ( T ) .N. ( T) ) 2 TP-----.. 0 T E(T) + S (T) . 
N(T) . MeT) T+POR(T) 
R (T) T R (T) 
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we have 

- 2 log Q ~ X2 with f=I for T 7 00 

if we can prove 

Let 

Is (T) I ~ 0 for T 7 00 

Y (t) = 
TN (T) - Po R (T) M (T) 

T+POR(T) 

Be theorem 2 we have 

hence 

We have 

where 

and 

Y(T) ~ Y(T) ~ 
M (T) 0, N (T) 0 for T 7 00 

+-2Ilgif (8 )-0" (Y(T)) IM(T) 
2T OJ M(T) 

0<8 <Y(T) 
IT N(T) 

0<8 <Y (T) 
2T M(T) 

-I 
g " (x) = I+x • 

(22) 

(20) and (21) imply for T 7 00 

Ilg" (8 )_g,,(Y(T)) I ~ 0 
2 IT N(T) 

llg" (8 ) -g" (Y(T)) I ~ 0 • 
2 2T M(T) 

(20) 

(21) 
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Moreover by (20) we have for T + 00 

M(T) (~~~~)2 => X 2 ,f=1. 

Hence IS(T) I ~ o. 

This completes the proof. 
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