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The limit theorems for general supercritical Markov branching 

processes presented in [1,2] are incomplete insofar, as the limit 

degenerates, unless an additional moment condition (1'xlogx") is 

satisfied. Also, they provide no further information on the limit 

distributi-on except possibly existing moments. It is the purpose 

of this paper to overcome these deficiencies. To avoid technical 

sonditions, we work in the setting of multigroup branching diffu­

sions (Sec .1.) already adopted in [16]. The reader will not find 

it difficult to extract a more abstract formulation in the style 

of [15]. It is not always pointed out, but the treatment covers 

also the case of a finite set of types, including to some extent 

n0n-embeddable discrete time processes. 

Normalizing constants leading to a non-degenerate, finite 

limi t without "xlogx" were first given for Bienaym~'-Gal ton-Watson 

(BGW) processes by Seneta [28J. His convergence result was later 

strengthened by Heyde [17], who discovered the relevant martingale. 

For n-type processes proper normalizing constants were construe­

ted by Hoppe [18,19]. Fusing elements of his approach with the 

machinery of [15,16] and a suffiCiently sharp transience result 

(Sec.2), we obtain a solution of the normalizing problem in gene­

ral (Sec.3). 

The investigation of the limit distribution function itself 

has a longer history. Already the paper by HarriS [12] on BGW 

processes with finite second moments gives proof of the existence 

of a continuous density on the positive reals, assuming the dis­

tribution is not concentrated at one point. It also contains some 
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information on the behaviour near zero and infinity. The condi-

tions for the existence of a continuous density were gradually 

relaxed by Levinson [25], Stigum [32], and Dubuc [6-9], who has 

continuity and positivity of the density on the positive reals 

without assumptions beyond first moments. A different existence 

proof for the density has been given by Athreya [3]. Another 

positivity proof can be found in Athreya and Ney [4]. For n-

type processes, whose limit distribution is not concentrated at 

one point, Kesten and Stigum [23] have shown existence and conti­

nui ty of the density, assuming rrxlogxfY. Hoppe [18] has existence 

without rrxlogxrr. We obtain existence and positivity in general 

(Sec.5). Continuity is guaranteed under an additional assumption. 

The behaviou,;r ,of the l.imit distribution near zero has been 

studied for BGW processes by Dubuc [6-9], See also Karlin and 

McGregor [22], Athreya and Ney [4]. There seem to be no results 

on the multi type case in the literature. In the continuous time 
~ 

setting some of the problems encountered by Dubuc do not occur. 

On the other hand we have to go through additional analytical 

preparations, due to the non."I"tri vial set of types. Our statement 

a.risesas a simple consequence of a result on the rate at which 

the generating furlCtional converges to the extinction probability 

("Q-limit rr , Sec.4). No serious new problem occurs in connection 

with the behaviour near .infinity. Here the argument of Seneta 

[30,31] goes through in general. 

Finally we turn to theproof of stt6ng convergence for arbi-

trary non-negative averaging functionals. It was already indicated 

in t16] that it does not suffice to simply replace the geometric 
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normalization in the proofs of [1] with a generalized normalizing 

function. Instead we look at the Kurtz ratio of' the process, work­

ing,with a random cut-off and a different type of estimate for the 

remainder term (Sec.6). We conclude with a strong convergence result 

for processes with immigration (Sec.7). For BGW processes with sta­

tionary immigration strong convergence with generalized normali­

zation was obt~ined by Seneta [29]. The necessity of his logarith­

mic moment condition on the immigration was shown by Cohn [5]. 

Hoppe [18] has convergence in probability for the n- type case. 

He also considers Markovian i:prmigration schemes. We proceed in the 

spirit of [2J, admitting not only a general set of types, but also 

a completely general immigration process. As in [2] the theory 

becomes strikingly simple when restricted to processes with a 

finite set of types. 



1. Multigroup branching ions 
~,~.A~~V\<f'~"l\.,/, .. .rv-~~~,-\!-,"v:_LV"<"""'fV"=_~~.~,,"''''/"''''¢-..f!''''>') 

Let 0 be the union K conne ed 

in an N-dimensional, orientable manifold 

en sets 0V 7 v=l~o .. ,K, 

class Coo, let the closures 

0v be compact and pa.irll\li.se dis,jnt and let the boundary 00 consist 

of a finite number of simply connected -l)~dimensional hypersurfaces of 

class C3 . Let X be the union of K Borel sets Xv such that 

v - lyooo,K.~ 

in a way to be dete 9 and ose to be given a uniformly elliptic 

differenti.al operator AI D (A) , resented in local coordinates on X by 
'"V rv 

l\T 1 0 a,ij d N 
b i (x) 

0 A: .- t ==-..."..~~--- ., (x),JaTxT 
a~ 

+ I; 
~ rv i,j=l ,jaN aX .. L 

i=1 oX 

D (!;): = [u I x: tl E C 2 1\ (CiU + f3 ~~) I 00 = o} _, 

where (aij ) and (b i ) are the rest ctions to x: of a symmetric, 

d d t . t t f' c2,~(n) secon -or er J con ·ravarlan, ·ensor o. c~ass ~6 and a first-order, 

contravariant tensor of class 

o '", X: = [f3 = (]} 

By we denote the exterior normal de ive according to at 

00 . 

Define B as the Banach algebra of all complex··valued, bounded, 

Borel-measurable functi ons all. X wi.th supremum-norm II· II, B + as the 

cone of all non-negative functions in B, further 

c t ; ,-- [u I "I: UE: ct(rj) } 
A 

_"t tuJ X: u E (" t ( 0) ul O\X o} G r- : ,-, \ - 0 

~J 



the closure of AI [~ E D(~): ,~s E cg} in B is the cg-generator of a 

contraction semigroup [Tt}t E]R in B. This semigroup is non,-negative 
+ 

respecti ve B+, stochastically continuous in t > 0 on B, and 

strongly continuous in t > 0 on cg, with TtB c c6 for t> o. It 

can be represented in the form 

where Pt(X'y) is the fundamental solution of OPt/at = ,h-Pt . That is, 

Pt(X'y) is given as a continuous function on [t > 0 }®O®.O, continuously 

differentiable in x and y for t> 0, such that 

Pt (x,y) > 0, (x,y) E X\)®X\)., \) = 1, ... ; K, 

(T.l) 
Pt(x,y) - 0, (x, y) E X\)®Xf-l' \I 1= f-l , 

(T.2) Pt (x, . ) = Pt ( . ,x) ~ 0, X E O\X , 

(T.3) 

and for 0< t (to' to arbitrary but fixed, 

OPt OPt -(N+l)/2 
sup [I-r(x,y) 1+ l---r(x,y) I} == oCt ), i = 1, ... ,N, 

X,YEX oX oy 
(T.4) 

(T.5) ( -1/2) . o t , l=l, ... ,N, 

cf. [21J, [c6]. 

The semigroup [Tt } deteTImines a conservative, continuous, strong 

Markov process [xt'p x } on X U [o}, where 0 is a trap. Now suppose 

to be given a k E B+, and define ko(x): = k(x) for x EX, ko(O): = 0, 

and 
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t 
rt: = eXPt~fkO(xs)dS} 

° . -~ -:"---; 

Let tX~'P~} be the 1ft - subprocess of [Xt,px }, defined as a conser­

vative process on XU ta} U [L.}, where L. is a trap .corresponding to 

the stopping by 'rlt. For S E B define So (x): = S (x) , if x E X, and 

go(a): = sO(L.): = 0. Then 

defines a non-negative contraction semigroup It is the 

unique solution of 

(1.1) 

and it is stochastically continuous in t) ° on B and strongly con-

tinuous in Coo, with TOB c Cl for 
t - ° t ) ° . 

Let be the symmetrization of the direct product of 

n disjoint copies of X, x(O): = ie} with some extra point e. Define 

00 
1\ 

X: = U 
n=O 

and let 
A A 
A be the a-algebra on X induced by the Borel algebra on X. 

Define 

xes]: = 0, 
A 
X = e , 

= n) ° 
for every finite-valued Borel-measurable S on X. Suppose to be given 

a stochastic kernel ~IX®A such that 

ms (x): = f xC s]~ (x, dx), s E B, x E X, 
A 

X 

defines a bounded operator m on B. 
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The pair determines our (multigroup) branching diffusion, 

a conservative,ri.ght~continuous strong Markov process 

constructed.according to tre following intuitive rules: All particles 

at a time move independently of .each other, each a.ccording t 0 {X~ ,::p~}. 

A .particle hitting 0 disappear.s., a particle hitting 6. is replaced 

by a popul.ation of new .particles according to v(xt _,'), 
6. 

where x t _ 
6. 

is the left limit of the path at the hitting time of 6., cf. [20], [27]. 

In terms of the generating functional 

ll(X): ==1, x = e 

n 
= n ~(x), 

v=l 

t ) 0, 
1\ 1\ 
X E X, r]ES: = {SEB: IIsll ~ l}, 

the assumption of independent motion and branching takes the form 

(F.l) 
A 
X = e , 

Defining Ft : S->-S by Ft [. ] (x): == Ft «x), .), X E X, (F.l) combined 

with the Chapman-Kolmogorov equation yields 

(F.2) 

For every t) 0 define 
A 

on Y with Y: = XU{o}, and let 

be the set of open spheres intersected with X. Define 

A -0 



It follows from the strong lVlarkov property of 
I\. 
x Lxt,p } that for every 

nES the funct.ion Ft[nJ(x), t)O, XEX, solves 

t 
+ JJp~(X;=L\J x;_ E dy, T E ds)J rr(y,dx)Ft _s (x, n) 

X OX 

- T~rl(x) + Ht (x) 
t < 

+ fTU s 
o 
I t () ( , - Tk x)ds , s· 
n j 

f[nJ(x): - J rr(x,d5{) X)o 
X 

The uniqueness of the solution i.s easily verified by means of 

II f [nJ - f [ SJ II ~ II mil II n- s /I . 

We shall use the equation in the more convenient form of 

(IF) 
t 

1 ,- Ft[nJ (x) = T~(l-n)(x) + fT~[k(l~f[Ft=s['I1]J)}(X)dS. 
o 

The assumptions guarantee that for every t) 0 

defines a non-negative, linear-bounded operator lVlt on B. It follows 

from (F .1) that 

A 

(1. 2) EX S ( x t ) = x [Mt t; J, X EX, S E B, t > 0 J 

and from (F.2) that [Mt }td\. is a semi,group: Simply set n = , + AS, 
+ 

differentiate with respect to A at A = 0 and let ,-7> 1, using 

dominated convergence. Similarly~ (IF) implies that for every S E B 
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Again, the solution is unique . 

. We_assume that the KXK-matrix with elements 

is irreducible. This entails primitivity of the moment semigroup {Mt }. 

To obta.in a satisfactory limit theory we need a positivity result for 

{Mt } .. which is stronger than what can be inferred from the Krel:n-Rutman 

theorem. To this end we assume that m has. a bounded extension to L2 

such that 

sup " km* sll < 00 

SEE: 1/ sl/l=l 00 

or, if the Xv are congruent, 

where m* and 

K 
kmS(x) = i ~v(x)s(~vx) + mOS(x) , 

v==l 

m* o are the adjoints of m and 

denotes the norm in LP , l~p~oo, and ~vx is the picture of x 

produced in Xv by the given congruence. 

A simple example for the first kind of branching law is the 

following model: A branching event at x results with probability 

p (x) in nl+ .. +nK new particles, nv of them in Xv' V=l, .. ,K. n l , .n . 
. K 

The places of birth are distributed independently, a location in Xv 

with the distribution density f )x, . ), v == 1, .. "K. That is 
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mg(x) = Jm(x,y)~(y)dy , 

x 
K 

m(x,y) = t lx (y)fv(x,y) 
V=l v 

t n D. (x) . > 0 v n l , ••• , nK n l , .•• ,nKi-. 

The idea behind the second type of branching lavv, mO = 0, is this: There 

are K different kinds of partic1es movlng on the same physical domain. 
- , 

'To the, kind v we. assign Xv as abstract domain of diffusion, V= 1, •• ,K. 

Ih -the 'physical. doma:l:n new particles a.re a.lways born at the termination " 

point '(left limit) or thei.r immediate ancestor. That is, 

Po 0 ( x) 1 A ( e)· + t p ( x) 
. . n ;> 0, • . , nKf 0 n 1 •• nK 

n1+· .+nK>0 
n 1 nk 

)( 1~(R~, ... ,)t~), X€x, 

where lA is the indicator function of A, (Pnl .. nK (x)} a probability 

distribution on z~ for every x E X. Here 

K 
m~(x) = E m)x) ~()tvx), ~ E B, x E: x, 

v=l 

v::= 1, .. ,K . 

Define 

(1. 3) PROPOSITION ([ lh J, [16J). The moment semigroup is 

stochastically continuous in t 2. 0 on B, ~~gly continuou.s in t L 0 

on cg with MtB ~ c~ !£!. t> o. It can be reE:resented in the form 



(M) 

ip* [ sJ = f cp* (x) S (x) dx~ S E B, 
X 

where 0 < p E 1R+, cp E D~J 

all t) 0 

iJ?* [~J = 1, and 6 t : B-+B such that for 

wi t h a 0: 1R + -+ m. + sat i s fyi ng 

as t t 00 , 

By first-order Taylor expansion 

(FM) 1-F t [ sJ = Mt [ 1- sJ - Rt ( S) [1- r; ] , S E S J 

Rt ( Tl) , (x): = E< x) w ( Tl, " xt ) , 

W ( Tl, C, x): == 0, x[l] ~ 1 

n) 1 

The mapping Rt ( . ) [. J: S®B-+B i.s sequentially continuous respective the 

product topology on bounded regions, non-increasing in the first and 

linear-,bounded in the second variable, and it satisfies 

where S+: = SnB+. 

To obtain a sufficiently sharp estimate for Rt in terms of Mt , 

we assume that for some and thus every 

c,c* such that 

S E D+ there exist constants o 



( c) 

f~(x)k(x)mn(x)dx 

X 

c*fs (x) Tj(X) dx, 

x 

In ca.se of the first type of branchlng law with 

ms(x) - f m(x,y)s(y)dy, 

X 

S E B, 

it suffices for (C), (00*), to hold that 

m S ( x ) == f m ( x J y) ~ ( y) dy, S E B J X EX, 
X 

m (x, y) :::. m ( x, y) J ( x, Y ) E X0X , 

mE cl(ooo), ffi(.,x) =m(x,·) "" 0, XE O,-X , 

1 N dy: = Ja:rYT dy . 0 0 dy- .9 

where y\ .. , ,yN are local coordinates of y. In case of the second 

type of branching law, mO = 0, the conditions are always satisfied. 

(1.4) PROPOSITION ([ 15], [16]) 0 For every t> 0 the re exist s a mapping 

g . -S -7 B such that 
t· + + 

(R) 

where the convergence is uniform in t on any closed bounded interval 

[ a, b ] wi th a> o. 
A 

We assume throughout that {xt,pxJ is supercritical, i.e., that 

p> 1. By cv ' V=1,2, .. , we denote suitable positive real constants. 
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2. ExtJinction probability and transience -
" Note that- pX(~t = $) = Ft(~JO). It follows from (F.l=2) that 

Ft[O] is nond.ecreasing in t. Hence, the limit 

q(x): = lim P<X)C~t = e), x E X, 
t-+oo 

exists. For the.lllDment fix t) O. By (FM), (M) with p) 1, and 
, 

* * eR) we .. can find an .8 > ° such that iii [l.;..Ft[l-~ll)iIi [~J whenever 

II·~·H < €-e. Suppose * * gi [ 1-q ] = ° .Th en iii [ 1-F s [ OJ ] ~ 0, as s -+ 00. 

By (F.2), (.FM) , (RM)~ and (M) there must then exist an s) Osuch 

that IIl~Fs[O] II(e, and co.nsequentlYP*[l-Ft+s[OJ] ) iIi*[l-Fs[O]J. 

But this .contr.adicts the fact that F s [OJ is non-decreasing. Hence, 

q < 1 ona set of positive measure. From (IF) and q = Ft[q], t) 0, 

t 
l-q = T~(l~q) + f TO{k(l-f[q])}ds. ° s 

(2.1) 

By (T.l), the boundedness of k,and the irreducibility of· (mv~), 

° 1 .i terationof this equation yJields q < 1 on X. Using TsB c CO' 

s ) 0, and (1.1) with (T.3-5) we get 

+ 1 - q E DO • 

. ,A prerequisite o·f the limit theory we are aiming at is a 

sufficiently strong transience result. We shall need that 

FtC:] -+ q, as t -+ 00, for a rather large class of ~ E S+ . 

Particulary if sup q = 1, as is the case if (~= O) is non­

empty, our task is facilitated by ,a t~ans.formation first· 

o "" used for the Blenayme-Galton-Watson process by Harris [12J:, 

The funCtional F\ (x,, ) I·, s given by 



x =SJ 

gener~tes the t~ansition function of a Markov branching process on 
1\./\ 

(X, A).. In fact, from (IF) 

(IF) 
t 

l-Ii\[r;] == ~(l'-~) + J ~k(l-f[Ft_s[t]J)dS, 
. • 0 

T~[(l-q)~] 
l-q 

k~ == I-f[q] k 
l-q , 

f[~] : == f[q+(l-q)~J-f[q] , ~ E S 
l-q 

Clearly, T~ is a non-negative contraction semigroup on B. It is 

stochastJ.ca.lly continuous in t 2. ° on B, a.nd using the c mtinuous 

diffe.rentiability of Pt(X,y) with (T.5) and l-q E D~ , we have 

;:;;OT -B- c CO t > -0 ° t for 0. Hence, Tt has a restriction to C which 

is st.rongly continuous in t 2 0, cf. [11]. Expanding 

1- f[q] == m(l-q) - r(q) (l-q) 

in analogy to (FM) , it follows from (C) that k is bounded. From 

(2.1) 
t 
~k ds 1 = ~l+ J 

° 
s 



That is, the 'process determ;Lned (up to equivalence) by ~ t is the 

subprocess, corresponding to stopping with density it, of a 

conservative .process" whose transition semigroup [Tt } is simply 

the (unique) solution of 
t 

if ~ + f rrPk if ds. t = t 0 s t-s 

REMARK. A.ssuming 2 l-q E CO' we can formally calculate the 

differential generator of Tt as 

Using 

= Aq + k(f[q] - q) 
.v 

th.is becomes 

L~ = A[(l-q)~J _ A(l-q) . ~ J 

- l-q l-q 
or explicitly, 

That is, recalling l-q E D~, the transformation preserves 

reflecting barriers, turns elastic barriers into reflecting ones, 

and makes absorbing barriers inaccessible. 
1\ 

Let ~ be the stochastic kernel generated by f and (~t'px) 

the Markov branching process determined by (~,~). By definition, 
""-

the extinction probability of (tt'px) is zero, 



~ts moment semigroup is given by 

Befining 

-1 -* ( * ep~ == (l-q) ep, ep ~ = l-q) ep , 

the following statement is an immediate consequence of (M) and 

+ l-q E BO: 

The semigroup [Mt } is stochastically continuous on Band 

strongly continuous on CO in t L 0, and it can be represented in 

the form 

(M) 

with 

- t- -* -
Mt = P .q>. ~ + ~t' t > ° , 

'f*[~]: == J ep*(x)~(x)dx, ~ E B, 
X 

- -* -inf ep> 0 3 inf ep > 0, and ~t~B ~ B 

- -* - - -* ep iIi ~t == ~t ep ~ == ° , 

such that 

where' 'p an,d at are the same as in (M). Recall that p -t at t 0, 

as t t 410, • 



S.imilarly, we can expand 

l-]\[~l= Mt[l~~] - Rt(~) [l-~], 

RtC-C) [l-.,.,~] ~ :::: (l-q) -lRt (q+( l~-.q) .~) [ (l-q) (l-~) J, 

and ob~in the following analog of (R): 

For every t > 0 there exists a map gt~S+ -+ B+, namely 

such that 

(iI) 

uniformly in t E [a, b], o < a < b < 00. 

" 1\ 

Thus, we can switch freely between [:Qt .9 pX } and [stt' pX}, 

ac.cording to convenience. The advantage of the second process is 

its monotonicity, which follows from the fact that Tt is conserva­

tive and frO] = 0, i.e., rr(x, (e)) = o. 

(2.2) PROPOSITION. For every n > 0 and x ~ e 

A 

lim pX ( 5ct [ 1 ] ~ n) = O. 
t-+oo 

Proof. Irreducibility of (mv~) implies irreducibility of (mv~)' 

Hence, [k' > 0) i1 Xv has posi ti ve Lebesgue measure for every v. 

Moreover, since p > 1, there exist a ~ and a 6 > 0 such that 



even [k > OJ n{x~7T(X .. ~[l] > 1) 2:, 6) n XiJ has positive Lebesgue 

measure. Define 

AV: = [k> 0) n (7T(·,~[1] ) 1) L o} n Xv' v =-jJ, 

== [iC) O} n Xv~ 

Then, using (T.l.,-5) and 

v 1= IJ., 

0, X EX, v 

€v independent of x. Hence, by irreducibility and monotonicity, 

there exists an integer n such that 

From this, by homogeneity, 

Using the branching independence and again the monotonicity, this 

proves (2-.2). 0 

(2 .• 3) COROLLARY. For all ~ E S:== [ 'tl EB: 1/ nil < l} 

lim 1/ Ft[~J 1/ == o. 
t-+oo 

Proof. Pointwise convergence follows from (2.2) by 
-e, 

I Ii't [ ~] (x) I {. . t P< x) (J~:t [ 1] == n)" ~ /In + (1-11 ~ /I ) -111 ~ /I ~+ 1, 
n=l 



convergence in norm from pointwise convergence by 

and (M). [J 

(2.4) COROLLARY. If ~:= q+(l"'q)C, , E S, then 

lim II F t [ ~ ] - q /I == o. 
t-700 

(2.5) PROPOSITION. For ~ E s+ with ~ < 1 on a set of positive 

Lebesgue measure 

lim /I F t [ ~ ] - q II := 0 . 
t-3>OO 

Ppoof. We have Ft[O](x) -7 q(x) for every x. As in the proof of 

(2.3) II q;,.Ft[O] II -7 o. Now fix ~ as assumed. Clearly, 

so that we may consider ~Vq instead of ~. By (F.2) and (2.4) 

it suffices to show for some t > 0 that (l-q)-l(l-Ft[~VqJ) is 

bounded from below by a posi tJ_ve constant. For 'll E S+ define 

~-such that 
The irreducibility of' (m ) and (T.l) imply the existence of an n\ 

\i~ 

[k(l-f[l-T(n)(l-~Vq)J» OJ ~ X has positive Lebesgue meapure 
s· \i 

for all s > 0 .and v. Hence, using (IF) and (T.1-5), 

which completes the proof. [J 
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functions 

As in case of a f'ini te set of tJrpes proper normalizing functions 

can be obtBined via solving the backward iterate problem for Ft" We 

cal1C~t) tEJR c S+ a sequence of backward iterates, if 
+ 

~t == F [~t:+ ] J t, s L 0 . s CJ s 

Such a sequence is non-trivial, if for some t L 0 neither ~t == 1 

a.e., nor ~t == q a.e. 

(3.1) PROPOSITION. There exists a non-trivial sequence of backward 

iterates. 

Proof. Except for the use of Arzelais theorem the argument coincides 

with the proof given for processes with a finite set of types by 

Hoppe [18,19]. 

step 1. .. Let .. Q~ ~ .. [~ E s+;: .. ~ 2. q}. Since q and 1 are fixed points, 

Ft[Q] is decreasing in t, by (F.2) and the monotonicity of Ft[.~] 

.in,~. The continuity of Ft[C.J in ~. implies connectedness and 

compactness of FtfQ] in the topology of pointwise cDnvergence. 

Hence, QOo~ == nnENFn[Q] is connected, and as q,l E '4x; and q < 1, 

there exists a c~O E Qoo 'such that q < ~D < 1 on a set of posi ti ve 

measure. By definition of n E 1N a Q J there exists for every 
00 

finite sequence (~ ") "-0 lIe Q such that . n, J J - , J.'" n-

step 2. It follows from (IF) and the continuity properties of 

that the family [S'~~j : j < n, n E m J is eqiJ:tcontinuous and thus, 

by" Arzela's theorem, relatively compact in the topology of uniform 
o convergence on Qn CO' Hence, there exists for every j ~ ru a 

sequence (~nt,j)t8N' nt ~ 00, as 

~j E Q, and by continuity of Fl[~] 

00, converging in norm to some 



define 1J 

< 1 on a 

and the lbi 

on X fora1l t > 
measur f"ollows 

(IF) from (2.1) 

let . (~t) be a non~t 

;" !'" 
L::.r 

I~, 

H' 'e:] ~ + IL.;~ 
u 

definitioDy I! (')lJ a Q', 

ConlSequ 

set posi.tive 

on X for t~ G 

i ~t " L q on X all 

positive measure. 

X for all t. 

(3.2 ) 

iterates, 
.,. ='" "" 

ll.:m 

Proof. In of 

and it es t 

1 
] .J 

t 

posj.ti ve mea 

) te 

eq 

q x 

e b 

rec all (F e 2) . [J 

from (Tel) 

(IF), that Ft[~] < 1 

on a set of positive 

jon obtained by subtracting 

raIl t > o. In particular, 

iterates. By 

p3 ive measure for some 

:c all t also ~ 
/ 

1 wt " on a 

+ :> S0 Hence., ~t < 1 t., on 

F. [0] ~.:p q.$ J1 " 
e n ...". 00, That 

on. ~c, > q on a set of 
tv 

arne as before, ~t > q on 

al sequence of backward 

- F [~ ] [1~ 

* 
"' F,I ':¥ I, 

:!.. 

Then there a a sequence ex), and a constant 

such tb.at 

* qi [ 

Restricted to ti.ons on 

sentation analogous o ~ 

] 

The 

j E ]'L 

{ ) has a repre­

k(m~l) is simply taken 
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by ~k. Thus for s fixed sufficiently large, there exists a 

c3 > 0 such that 

Recalling (F.2) and (IF), 

By (2.5) the righthand side converges to q, as j ~ 00. This is a 

contradiction, and (3.2) is proved. I:] 

(3.3) PROPOSITION. Let (~t) be a non-trivial sequence of backward 

iterates, and define 

Then there exists, for every t > 0, a sequence (€t) in B such 

that 

lim II €t II = o. 
t~oo 

Furthermore, 

-t ( -t) Yt = p L P , t > 0, 

where L(s) is slowly varying, as s ~ o. 

The statement follows from' the next two lemmata, which will be 

needed again later. 



(3.4)LE.MMJi. For every non=trivial sequence of backward itera.tes 

(~t) there exists .. a sequence (ht ) in B such that 

lim /I h t " = 0 . 
t-;»oo 

Proof. The proof is similar to that of Lemma 1 of [15], or Lemma 4 

of [16J. Using (F.2), (FM), (M), and (R).. 

pS(l-P-Sos -II gsL~t+s] /I )ip*[l-~t+s]ep 

~ l~Fs[~t+s] ~ pS(l+p-Sas)ip*[l-~t+s]~ . 

Comhining these inequalities with t):lOse obta.ined by applying 

them y.ields 

Replace Fsf~t+s] by ~t' and let t -;» 00, us.ing (3.2) and (R). 

Then let s -;» 00. [J 

(3 .. 5) LEMMA. If (I;t) is a non=tr.ivial sequence of backward 

iterates, then 

Proof. Note that, by the definition of (~t), (FM), (M), and (R), 

to 



Proof of (3.:.ll~ Note that 1=-~t~Ct(I+Q(Ct)), where 

11··o(.() /I == o(II~~II), rec.all· (3.2), and apply (3.4=5). [] 
~ 

(3.6) .PROPOSITION. LetC't) be a non-trivial sequence of backward 

iterates. Then there exists a .random vari.able W such that 

with 

(~) 

Proof. 

A 

lim Qt[Ct ] == lim Yt~t[epJ = W a. s. [px], 
t~oo t~oo 

A A 

pX(W == 0) = a(~), px(W < 00) = II 1\ 
1, x E X, 

!p(s) (x): = E<X>e;xp(~sW}, s E IRt,xEX,BatisfYi~g 

!P ( sp t) = F t [ !P ( s)], s, t L 0 • 

Let F = a [~ ; s / t}. -s s::::'" Then for t,s L 0 

By the martingale convergence theorem and (3.5), this implies the 

convergence statements. Using (F.2), (3.5), and dominated 

convergence, 

It follows that!P(O+) and !p(oo=) are fixed points of Ft in 

cOns+, By (2.5) the only fixed points in cOns+ are q and 1. 

Clearly, !P ('00-) ~ !P (1) { !P (0+) . On the other hand, 
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.. and .. q <"~O < 1 on ]r. Hence,.~ (00=) = qand ~ (0+) = 1. [J 

(3.7)PEOPOBITION. For every non=trivial sequence of backward 

iterates 

O <1 " t 
lIn P Yt = 

t~oo 
y < 00 , 

~ A 
E W = yx[ epJ , A ' 

x j:. e . 

Here y < 00 if ,and only if for some and thus all t > 0 

Proof. Using (F.2) .and (FM) J 

Hence, 

exists and is positive, possibly infinite. 

-t A It was. shown in [1] that P xt [ CPJ has a finite, non-degenerate 

strong limit if and only if .(J~LOGX) is satisfied. That is, ( y < 00) 

and (XLOGX) are equivalent. [J 

. REMARK. It is known that (XLOGX) is equivalent to 

~ * [r.:1T ( . :; d~) Q[ cp] log ~[cpJ] < 00, 

x 

cf. [1], [16]. 

(3.8) PROPOSITION. For any t > 0 the solutions of 

in S are 
+ 
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Proof. We Pave to show that, given a solution ~(s) not identical 

1 or .. q, there exists _a pos.itive real a such that p(s) == g?(as), 

s > o. Consider the :family of bac.kward iterate sequences 

( -t) (s) (~t) > 't ~ == g? p " ~t ~ == ~ sp ,s 0 0 

Since by (3 .. 6) the cnrresponding normalizing functions Yt' Y~ s) , 

lead to non=.d.eg:enerate, finite, strong limits w, w(s), we must have 

Using (3.5), 

I " . -1 (s) ( 
.~m Yt Yt == a s) > 0, s > o. 

·t--:l>-OO 

Y( a) 
1 ° t 1° .. lm '"f"b'\ == lm 

iIi*[l_~~a)] 

iIi*[l=~ib)] t--:l>-<XJ Y i U ) t-700 

a 
=1)0 

That is, a(s) == as, a a positive real constant. Accordingly, 

Taking the exponential function and applying .F 
t' 

Note that the middle term is equal to ~(s), and let t -7 00. o 
(3.9) COROLLARY. For every non-trivial sequence of backward iterates 

(~t) there exists an a E R such that 

't == iii (p a-t), t > 0 . 

r 
r 
I 

I 
I 

r 
I 

~ 
I 
[ -

r 



4. Extinction probability and transience continued 
~~~~~ 

With an additional indecomposibilityassumption we prove a rate of 

convergence result correspondi.ng to (2.3), It will be used to obtain 

the behaviour of the distribution function of W near zero. 

Let 5F t [1'1; S] be the Fr~chet deri vati.ve of F t at 1'1 E S in the 

direction of S. Since Mt is bounded, 

SEB 

defines a li.near-bounded operator on B. Si.nce q is a fixed point of 

Ft for all t, [5Ft (q)} is a semigroup. The same is true for 

[5Fi(0)}. The two are connected through 

( 4.1) 

(4.2) LEMMA, Suppose the matrix (fVf-) , 

f v : = J k 5f (0) lX' v." iJ. = 1, 0 0 • ,K, 
,iJ. X v 

iJ. 

is i.rreducibleo Then [5Ft (0)} can be represented in the form 

where OE(O,l), 

that 

Y*[S] = J 1*(x)s(x)dx, 
X 

t) ° , 

S E B, 

- - ° ~, ~* E C , inf 1) 0, inf 1* ) 0, and r t : B"'" B such 



Proof, It follows from ·kof(O)r;=k.(l~q)-lof(q)[(l-q)sJ that 

irreducibility of k.6f(q) and k6f(0) are equivalent, From (IF) 

t 
6Ft (q)s == T~S + fT~k.Of(q)6Ft_s(q)SdS 0 

o 

iUs.o, 

6f(q) ~ m 

Hence, the proof of (M) also applies to [6Ft (q)}. Application of (4.1) 

to the resulting representation leads to the proposed representation for 

[6Ft (O)}. To see that 0< 1, note that 

OFt ( 0) IX (x) == P< x) [~t [ 1] := I} -+ 0, X EX, 

by (2.2), further 

(4.3) PROPOSITION. There exl.sts a functional Q on S+ such that for 

all S E S+ 

lim 1/ 6t [ sJ" == 0 . 
t--7co 

We have Q[ s] = 0 if and only if S = 0 a. e., while Q[ S] = 00 if and 

only if S = 1 a. eo 

The proof will be based on three lemmata. Note that 

(4.4) 
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(4.5) LE:MMA, For every t) 0 there exists a mapping at ~ St -+ B such 

that 

uniformly in t E [a, b], 0< a< b< 00. 

Proof. The proof resembles the proof of (R). We have 

f [ sJ = of ( 0) S + g [ sJ , 

t 
Ft[S] =T~S + J T~ kf[Ft_s[sJJdS , 

o 
t 

OFt(O)S = T~S + J T~ k6f(0) OFt_s(O)sds . 

o 

For every &:) 0 ands E S+, Gt [S] is the only bounded solution in 

[8,8+7\J,7\)0, of 

t-8 
vt = At + B~ + J T~6f(0)Vt_sdS , 

o 
t 

= ~~g[Ft [SJJds, J..L. s .I-S 

o 
e: 

= J T~_skOf(O)Gt[sJ ds . 

o 

By the inherent positivity, this solution equals the limit of the iteration 

sequence (v(V) (x)) v(o) = 0 which we now estimate. 
t VE];if' t ' 

By the mean-value theorem we have for every S E S+ 
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Fixing /I., let 0< 5< e;/2and 8~ t ~ 8+/1., Then using (M) , 

5 6 t-6 
At ~ J + J MskIDMt _s s ds + J Mskg[Mt _s S] ds 

o t- 6 6 

~ 6Cl ( e: ) p t~¥'* [ sJ 

+ C2(5,8)1*[g[C3(6)1*[Sl~JJC3(6)ptcpl*[SJ , 

where are constants depending on the choice of 8 and 6, 

as indicated ... Hence, there exists for every a functional on 

S+ such that 

(4.6) 

lim (8l [S] = 0 • 

" s" -+0 8 

Secondly, 

8 

B~ ~ Mt _ e J Me:_skIDMsSdS = 
o 

t-8 
J T~mBe ds / Bt8 • 

s t-s ~ 
o 

Using (4.6), (4.7), (M), and the fact that 

we get 

Since 8 was arbitrary, this proves (4.5). [J 



( 4. 8) LEMMA. If (f v ) 
.1-1. 

Is irreducible, there exists for every t> 0 

a mapping bt : S+ ...,. B such that 

lim //bt[sJII == 0 
t-+oo 

for every S E S + with S < 1 on a set of positive measure. 

Proof. The proof is similar to the proof of (3.4). From (F.2), (4.4), 

and from this, by (4.2), (4.5), 

To estimate ('!'*[Ft[SJ])-lFt[S] -1, combine these two inequalities 

with those obtained by applying ,!,* to them. First let t...,. 00, then 

s ...,. 00 , re c aIling that /I if t [ 0] /I"'" 0, as t ...,. 00, by (2. 5) • 0 

(4.9) LEMMA. For t> 0 and iJES + 
let crt ( 'Il) be the spectral 

of OFt (iJ) . Then 

li.m crt ( iJ) 
t 

= 0 

" 1l"""'0 

Proof. For t> 0 and iJES + 
, W v+l-

OFt ( 1l) I = OFt ( 0) I + t l 0 F t [ 0, 1l, .. , 1l, 1 ] 
v=l vJ 

Hence, for 

radius 
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t n 
= c5 (8111111 +0 ) 

Since we are dealing with positive operators, this proves (4.9) 0 0 

Proof of (4.3). For S E S+, using (404), 

o-t-s,¥* rF . [' s] J - t-s 

= cr-t-s~*[OFs(O)Ft[SJJ +o-t-s'¥*[Gs[Ft[SJJJ 

That is, cr-t '¥* [Ft [S]] converges to some functional Q[ S]. Combined 

with (408), this implies cr-t Ft [S]-7Q[sJl in the way proposed. 

If s> 0 on a set of positive measure, then by (IF) and (To 1) 

On. a set of positive measure, thus Q[ S] > 00 

Finally, suppose S < 1 on a set of posit i ve measure, S ~ O. 

Using (4.4), 

In view of (4.8), it suffices to show that IIFn[S]11 = o ('iP) with some 

A< 1, in order to secure that the limit of o-n,±,* [Fn[ S] ] is finite. 



Since F [0] =' 0 
I::; -' 

( L,O .. :::l) rd' \l'.~, a1 mean va11:1,e theo:cem e1d 

Iterating thi,s j",nequality), live 

Recall -+co (!L )" f' 'I 
~_.l 

REMAEK. alt on ~'ir,J at s on 

processes is well J cr. [12J .. [ Jo fact, it first occured in 

a paper by Koenigs [24J on e:la,::;,sical p 1em of :f ional iteration. 

In view of the 1..18 role 3 Toe as a tool, a theory 

of the general case r', c o2,able (f~ seems desirable, 
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5. Properties of the limit distribution. 
~--~~~~~--~----------~--~~ 

We prove that the distributi.on function of' W has a positive 

density and loek at its behaviour near zero and infinity. As 

before let a be the spectral radius of oFl(q), and define 

(5.1) PROPOSITION. F X"'.te or every r there exists a measurable 

function ·w I R such that x + 

A 

X 
P (W ( A) " 2. O. 

If ~Je have x [1] eO> 1, or if (XLOGX) is satisfied, then 

bounded and continuous in u. 

Wx(U) is 

It suffices to prove that the distribution function of the 
A 

limit W for the transformed process [Xt,pX } has a Lebesgue 

densi tywj( and that. in case x[ 1] eO > 1 , or (XLOGX) is satisfied, 

1-his density is bounded and continuous. Recall that oFl(q) and 

oFl(O) have the same spectral radius, and note that (XLOGX) is 

( A -~) -( ( equivalent to its analog for xt,P .. Lett s) x) den.ote the 

Laplace transform of W respective p<x> • 

(5.2) LEMM:A. For every bounded, closed interval I c JR not 

containing zero, 

sup 1/ f(it)" > 1. 
tEl 

Proof. Suppose I i( it) leI for all t. Then 

~ measurable, finite. Inserting this into 
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¥(ipSt) = Fs[f(it)] 

yields 
"-

El:Xexp[it(Qs[~J-psQ[~])} -.0, t L 0. 

From this 

'lba t is, ~,:=:;.a.Cf" where a: is a constant. Since W is non-

. degenerate,.,a;' 0. However, since our process is super-critical 

and ,~ continuous, we cannot have 

Hence, for some t;' 0, X EX" 

i"(it) (x) < 1. 

s. 

Since F s [~-l(x) is continuous in x, by (IF) and the continuity 

and boundedness of T~, so is f(i.t) (x), by (5.3). We can therefore 

find for every x E X a B(x) > 0, and for every t with 

0< It I (B(X) a U(x,t) c X of positive measure such that 

then 

and 

li(it)(Y)1 < 1, ° (It I (6(x), y E U(x,t). 

If 'T'\ E S+ is posi ti ve on a set of posi ti ve measure in X'V' 

~n L e-ESTsn, which is uniformly po~itive in X'V' by (T.l~5) 
+ l-q E DO' Iterating 

s 
= ~ ( 1-1 r ( it) I ) + J TOE ( 1-f [Fs [ I i ( it) I ]] ) d s sOu -u 

and recalling the irreducibility of (m'Vu) , we get 



'11'1 ¥"('.it)' I' / 
, " t t 0 

,.Since J(it) is se c bounde it follows 

by 

and (iVI) thati'(it) is strongly continuous in t. Hence, II i(it) 1/ 

is continuousJ and the proof is complete, IJ 

(5.4) LEM.JIdA. For every, pc)sitive € < 8 0 

Proof. As in the n 4 'J .') 01 oJ 

j'F ".["f(it J'e,1 < F rF Pll''f )In 
l1-rJ' --- n-' I ~ j 

By (5.2), /I ¥(it) II :( C6 < 1 on [ p] 80 that 1/ F\iC/i'(it) I] /I -7 0) 

as \i -7 00, uniformly t E [lJP]' According to (4.9), there then 

exists for every positive E < 

or equivalently, 

Hence, 

sup II "f(i 
l:(t(P 

j 

a j such that 

sup II f( it) /I ( it I ~ E 

n+j/t./ n+j+1 P ~~~p 

with independent of n. I~J 
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(5.5) COROLLARY. If (XLOGX) is satisfied,~ then 

Proof. Denoting a¥(s)/as by ir(s) 
• 

Also, 

and by assumption of (XLOGX), 

, ~x)W .,;:= ;P(x), X E 4, 

cf. [1]. That is, 1¥1(.it)/ (~, Continue as in the proof of (5.4) .. 

o 
Proof Qf (5.1). Given ~o[l]eo > 1, or (XLOGX), the characteristic 

fLtl1ction of tiT is absolutely integrable, by (5.4=5), and this 

implies that the distribution function of W has a bounded continuous 

density. Given 
1\ 
xO[lJ £.0 < 1, the argument of [3J can be adapted: 

For every ~ ,fe the probability space carrying [~t } can be 

enlarged in such a way that it also carries a set of independent 

random variables 

satisfy 

W :; X E X~ which are independent of x and 

for every Borel set I cm+o Since the characteristic functions of 

p-n~n[WxJ and W coincide, so do their distributions. That is, 

for every I of Lebesgue measure zero, 



the first term on the right vanishes, as n -+ 00, by (2.2), and the 

second term is identical zero for all n. [J 

PROPOSITION. For every t\ 
X I- e the density w~ is positive 

on the positive reals. 

Proof. Let A (n) be the measure induced on A (n): == (~r'1 X(n) ; A ,,€ ~.J 

by the Lebes.gue measure on A., and let p(n) be the'class of elements 

of A(n) which have positive A(n)~measure.Defining 

<Xl'" .,x > +<Yl '" .,y.): ::: <Xl'" .,x ,Yl ,·· .,y.), n J . n J 

we have 

Let 1\ (x,.i) be the transition function of From (5.3) 

step 1. For Q € x(n), neO ) 1, w~( s) 1.s continuous., and since Til 

is non-degenerate, it is also positive somewhere. That.is, w~) 0 

on some op.en interval IQ E JR+, It follows by (5.7) that for each 

u E ptI~ there exist a j::: j(~,u) E ~ and an ~~,k € g(j) such 

that E't (~, A~, u) > 0 and Wy(u) > 0 for y € 1~, u" Because of 

(T.l) and k E B, there tpen exists a neighbourhood ~s,~ € p(n) 

of ~ on which Pt(o,Ax,u) > 0, and thus 

(5.8) Wy(s) > 0, 
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.ste;P' 2. In view of (To 1), the irreducibility of 
. A 

there exists an integer d such that for x f..9 

{m ),'1 and p > 1, 
'ViJ 

If w~ > 0 

I+J~ == [z 

on I and Wy > 0 on J, then wQ+y > 0 on 

== x+y~x E I,Y'E J}. That is, given any. So > 0, we can 

1\ ( x.d) > -choose y E.X. , x.deO 1,'1 sucll that W'lr> 0 on some interval . y 

(a, b), b > sO' and thus, by (5.7=9).. w£ > 0 on (0, b). Now let 

(5 .10) FRO.FOSITION~ There exists a function L(s) on IR. slowly +-
varying as s ~ 0, such that for x E X 

Proof. By (3.4) and (3.5) with. ~t ==~(p=t), 

* . ;!~ II hs II == 0 . 

From this, by Karamatais Tauberian theorem, cf. [33], 

the 
Now apply Senetais version o~Tauberian theorem of Landau and 

Feller, [30].' 0 

(5411) PROPOSITION. If (f'V\.) is irreducible, then for x E X 



where r is the G.amma function and 1V~:::: (l-q)'f. If in addition 

eO > 1, t~ 

Proof. From (~) and (4.3) 

That is, 
-e 

i(s)(x) - s °ij[i(l)]'f(x), s ~ 00. 

Now apply.Karamata IS Tauberian theorem, to obtain the first statement, 

and the argument on p.250 of [4] together with Corollary 4.4a on P.194 

of (33], to obtain the density version. 1:J 



6. stron convergence with general non-negative test functions 

(6.1) PROPOSITION. For every a, e. continuous TI E B 

On account of the following lemma, it suffices to prove convergence 

of discrete skeletons. 

(6,2) LEMMA. If for all 8) 0 and S E B+ 

A 

xne:[sJ f\ 

lim = ~* [S] a, s, [px] on [W) O} 
A 

, 
JN3 n-?>oo Xn €J epJ 

then for all a,e. continuous TlEB 
A 

Xt [ TlJ A 

lim = qj* [ TI] a. s. [pX] on [W) O} . 
/\ t-?>oo Xt[~J 

Proof, The lemma is a special case of Lemma 9 of [16J. 

Proof of (6.1), It suffices to prove skeleton convergence for E: = 1. 

Due to (F.l) we can assume without loss of generality that 

1'\ 
x [1] n . 

t ~n, J [S] 
. 1 n+t J= 

a. s . 

where the 
• 1\ 

J = 1, ., ., x [lJ, n are F - measurable and independent -n 
/\ /\ 

conditioned on En' and for every A E A 

1\ • 1\ < x.) /\" /\. 
pX (~~~ i E A I En) = P J ( x ~ E A) a, s . [ pXJ 

with An, j < ) xn := Xj • Define 

1 : = 1 [f3n>O} , n 

zj* . = zj 1 . n, '('. n,'(' [ZJ iJ3 } 
n, n-l 

, 



Then 
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A 

~[lJ 0 
Q [lJ 

::J.1 (3-1 
n-l n-l 

~ ZJ 
j=l n,.V 

s* . 
D, .t' 

-1 n 
=.1 .1(3 1 r; n- n- 0 J=l 

A 

til J: = EX( S - S* J IF) , n, .... n, .t n, '1.1 -n 

A A 

= .1n+t(3~~.t(3n_l(Sn,.t-EX(S~,tl!'n)-5n,.t. +EX(Sn,.tiFn) , 

We estimate the terms on the right, proceeding as indicated i.n [16J. 

Define 

A > 0 . 

step 1. Using (1.2), (M), and 

(6,3) 

'we get 

li.m (3n- l (3n+ j = lim y- l .y 
'1.1 n+'I.I n 

1\ 

.t" 1 [pxJ, = P / afl S 0 

n-?>oo n-?>oo 

~ C5 j Ad~*[Ht.>(A)J + C6 ' 
o 

.t> 0 , 



The 

/\ 
xn[l] 

L: 
1=1 

OJ -

are finite but in general It follows 

appli.cat:ion of Chebychevl s inequa.1i.ty and the conditi.onal Borel~Cantelli 

lemma that 

1\ 

li.m (S - EX (S * IF) ) = 0 n, ot n, t -n 
n-+co 

step 20 Usi.ng (M), 

Hence,in particular, 

Now 

From (IF) 

Notice that 

lim sup 
n-700 

j3 -l~ [.1 ] < co 
n n 

a. s. on [VJ > 0] . 
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lim N~ (x) = 0, s ) 0, X E X J 

y-'X:IJ 

~~ ~ m[Ms[l]] ~ el/kmllm[l], s 2. 0, y) 0 . 

Hence, by dominated convergence 

o 
using Ts ~ Ts ' 

[ a, t] ®X®X for a) O. 

and the boundedness of p (x,y) s 

Thus, since f3 --» 00 on n [W) O}, 

" lim 6 , = 0 a. s. [px] on [W) oJ, .(.) O. n,"V ,n-+oo 

step 3. We have 

Again by (M) and (6.3), 

N ow let .(. --» 00 • 0 

on 

REMARK. The difference to the method of [lJ lies in the use of 

a random normalization, a random cut-off, and the argument of step 2. 

Notice that the result of step 2 is trivial in case of a finite X. 



The Bim isa theory in the spirit of [2], but with general 

normalizing functions, that is;> a non~degenerating limit. As in [2] 

we adopt the superposition point of view. 

In addition to our branching process we assume to be given an 

immigration process {r ,Ii ;> p L where ('T), 0 s:, 'T t 00 is a > sequence 
v v v v 

of (not necessarily finite) ranqom times and (y~ ) a random 
v· 'JE]\J 

sequenc.8 in ... (XJ1r) J both defined on the same probability spac e with 

measure P. 

L t [ A , 
eXt; 1:; 

YJ 
\ 'T 1 
L V 

be the branching process initiated at 

by y, and denote 
v 

- max [ v ~ 'T < t J • v -

Define 

1'\ 1\ 1\ iii 
x+y: = x, y = Ely 

= <xl-' ... "xn'Yl" 0 .,y,U>, Q = <xl-''' o"xn> 
1\ 
y = <Yl"·· .,Y,,) 

The lmmigration~branching process A '" [Zt'p} is then given by 

and the corresponding probability measure 
Pol 

P deflned on the 

appropriate product space. 

""'" 

'Tv 

Let Ft be the a-algebra generated by [~s;s s:, t] and define 

W lim r, [ : == Yt-r Xv t ep], 'J 
t-700 'J ' 

00 -'T 
'"'"'* P vWv W : == r: 

'J=l 



(7.1) PROPOSITION. If 

then 

P>d A. 
W = lim y z [ t t· 

t~~oo 

exists almost surely~ and 

"'" a.s. [P]. 

Proof. We condition throughout on 

I: = o( T \) EO IN) • 

""'* step 1. The limit W always exist 

/\ 

( II .... ~.t· ( 
V:(Pt 

,...., 

may be infinite. Since 

is a positive sup erma:rtipg.ale , W also exists.9 but again may be 

infinite. 

""' """* Step. 2. We first show thatW and Ware finite almost everywhere. 

The Laplace transform of the distribution function of is 

Let and 0< s < 1 

1)lJ 
E (1-~ (yj)) 

j =1 'T \) \) 



where (E: u ) is a nwner.ical null sequence. Hence, still for 

o < s s:. 1, 

with 

That is, 

} " '1i/ ( ) ... 1m It \ s 
·t-7CO 

00 

n 
\.1=1 

}5(W<ro) 

Eexp £-W*s} -. ;y* ( s) 

step 3. We now show that wand v:J* are equal almost surely. Let 

Then 

+ 

As t -7 00, for fixed Sj the first term on the right tends to zero 

and the thi rd term to a fin:ite 15 mi t u ~ 0 non-increasing in 
c' L. ' 
'" 

s. 

Next let s -7 00. 'l"hen Us tends to a 1'in1 te limit U L 0, and the 

* last term tends to zero. 'Thus, we have W = w +U, all three variables 

""' being fin1te and positive. Since the. Laplace transforms '±'(8) and 

';11* ( s) 0:£' \"'t! "nd N* ( J I W ~ - w coincide for s E 0,1, this can only be true 

if U = 0 almost su:rely. [J 
Recall from (5.}0) and jts proof that there exists a sequence 



-L1-8,· 

t < '" t p < x) (w > t) = 8 t ( x) J P x> (W > u) d u J t > 0, 
o 

lim Bt(X) = 0, x E X. 
t->-oo 

Note further that aL way ~3 

"'" ""'* lim :inf Wt L W 
t-+oo 

cL s. r PJ . 

(7.2) PROPOSITION. If 

then 

Proof. Condition on 

lim sup /I e t" < 1 , 
t--).oo 

I • Then either w* < 00 

, 1 M W ....... *< 00 by Kolmogorov s zero-one aWe oreover, 

a. s., '""* or W=ooa.s., 

a. s. only if 

S .-0-

00 -1" < > 
l: P 'V y [E· 'WI ] < 

'V -1" 
00 !f 

'V=l [p 'V W < 1 } 

-t ( -t) ( by Kolmogorov's three series criterion. Since Yt~P L P . , cf. 3.3), 

and 

cf. the proof of (5.10), there exists for every s > 0 and ~ > ~s ' 

~s sufficiently large, a C 
s, ~ 

Observing that 

t ,( > J uP"x (W ( u)du = 
o 

such that 



and 

p<X) (w ) u) = E<x)P<x> (w ) ul F s) 

L E<X>~S[P<·>(W > psu)] 

L (pS-aS)cp(x)p*[p<'>(W) pSu)], 

we get 

By (M), we can choose s such that [J 

REMARK. From (TF' ) 

< ~ t 0 x 
P x/(w > t) = J' T k J"" 1T('Jd~)P (W> pSt)ds . 

o s X 

Using this, it is'easily verified that the existence of a Cg > 0 

such that 

for all bounded measurable h .• is a suff.icient condition for " St " -? O. 

(7.3) PROPOSITION. If 

00 

t y Y [lJ < 00 a.s. [P], 
'T \I \1;0::1 \I 

then for all a.e. continuous neB 

~. * - -1 i m Y t Z t [rJJ == g? [n J W a, S , [ P J . 
t-+oo 
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We break the .proposi tion up into two lemmata. Define 

U : ;::: {~ E B: 1 :Lm Y t ~t [ ~ ] ;::: 9i)< [ ~ ] W}. -
+ + t-"700 " 

(7.4) LEMMA. Given a -cr' E S+ such that 

Y t~t [{YJ 
* ..... lim = 9i [-8']W 

t-'!>oo 

rV 

a.s. [P], 

we have for every ~ E U+ 

a.s, [P]. Yt~t[ {j'~J * 
,..., 

1.im -- 9i [{Y~JW 
t-'!>oo 

Proof. The argument is essentially the same as in [2J: From the 

definition of 
1\ 

Zt as a superposition 

lim inf Yt~t[~J L ~*[~JW 
t-"700 

for ~ E B+, in particular, for ~ - ",~. Clearly ~ E U+ and 

~(l-~) E U+" Thus 

This already proves (7.3) if inf, > 0, as is the case if and 

only if [,8) o} = 00. In that case we simply take -8': = cpo 

(7.5) LEMMA. If 

00 
1\ 

E Y,.. Y)lJ < 00 a. s. [P]' 
\1=1 \I 

then 

a. s. (P]. 



Proof. : Similarly as in [2] we first consider discrete skeletons, 

assuming .,.. \) to take its values on the time skeleton,! and then 

reduce the c.ont_inuous time case to the treatment of ske1etonsoAs 

in the preceding section we work with a random cut.off. 

Part I. First let ""v be. integer valuedo Define 

1\ ""' ~n~ == zn [~], In: == [f3n > oJ, 

N -1 z n,O n A zj Z . = V:1 Xv, n+.t[l] - 1: n,.t' n,.t , 
.1 ==1 

l1 . 
n,.t' 

'"'" ..... -1 
= 1 f3' E n+t n+.t < (, n-l 'rv=J1+t 

Then 

• 
,step 1. As in the proof of (6.1), step 1, 

rV 

a. s. [PJ., .t > o. 

step 2. Define 

* ,..., 
~ ,~= y [3 6 
n,~ n+t n+t nJt 

Then 

00 

(C9(t+l) E y Y [lJ . 
\)=1 'tv v 

, 



-x-
Tha tis, L'lnJ.t ,"+ 0 B .. S •. ~ and thus 

.... 
Lim ,6, ~-- 0 a. s, [ P], -f, > 0 . n,'V 
n~oo 

ste£2- Using (M), we have 

Combining steps 1 to 3 yIelds 

lim sup j3~l£n[l] ~ gs*[lJ 
n'-»CO 

Part II. We now return to genera1 1" • v 

rv 

a.s. [P]. 

For every e > 0 the 

proc.ess [~ne} can be considered a,s discrete,,-time proc.ess with 

immigration 

'* 1" :-
V 

(['I"/8J+1)8, 

TIoing this from now on, define 

and 

ze:, j: 
n 

Ane,J' ,AnE,j] Ane j 
Z(n+l)e[J]+#[t;;Zt_ [1 > Zt" [lJ;ne < t ~ (n+l)e} 

Repeating step 1 of part I, with z,j 
'-'n, .t 

--111 
lim sup f3 t Zt [1 J ,~ lim sup 

t...,.oo t'""'oo 

2' [ J "'" nE: _.1 
13- 1 L: 

t 'J'-] ,-

replaced by 

/ l' ";-1£ rE<')Z€J ( l.m sup f'-" 
~, ne: n 8' 

a, s" r'FJ on [W > o}. 
Il"'OO 



, I 
II [1] 

co 

E Y [lJ < co , 

\):=1 \) 

Hence, according to part I, 

lim sup -f3~1~ [lJ ( 1*[-lJ 
nlS 1'112 ~ 

(pJ on > o}. 
h--:;.co 

Notice that 

el' k II (II m 11+1)8 1, € 0, 

Combine steps 1 to 3 to complete p:cooL 

EXAMPLE, As a special caseJ suppose TIJ T 2 Y • 0 • are the epochs 

of a renewal process and ,Y are independent, identically 

di§trlbuted, and independent of fL T 1. 
\I" 

condition 

--, 1 +11 1- 1 / 11, ~og 'L "fl ( co 
-- v 1, ~ ~ , 

i~ ~ufficientJ and if the mean erarrival time ~ is 

neces for 

00 

[1l] < co r DJ' L _6 " 

t 

This follows from the fact (cf.[2J) that (7.6) is sufficient, and if 

~ <~, also necessary for 
00 

t f3 
\1=1 

/ 00 

" 
a.s. [P] 



with any (3 ) 1~ .... Since 'T ,/V ~ A, 

we can find.a f31 > 1 such that 

v, an 1. 1\ d o f "\ < 00, a /32 ~) 1 such 

as 

Yr 
v 

that 

v -'» oo.~ 

{ ~V 

/31 

Yr 
v 

and Yt 
-t ( ~t) == p L P , 

for sufficiently large 

( ~V 

/32 for large enough 

REMARK.. In this secti.on we have made no explicit use of our 

branching diffusion setup_ We needed (M), the existence of a non-

trivial sequence of backward iterates, and - only in the case of 

continuous time with inf~. == 0 - the existence of zt L £s[l], 

'\I. 

t L S ) 0, such that 1/ E< ')zt II ~l., as t ~ O. As in [2J the special 

case of a finite X has emerged as almost a triviality: Finiteness 

of X implies inf ep) 0 and /I at 1/ ~ 0, t -'» 00. 
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