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The limit theorems for general supercritical Markov branching
processes presented in [1,2] are incomplete insofar, as the 1limit
degenerates, unless an additional moment condition ("xlogx") is
satisfied. Also, they provide no further information on the limit
distribution except possibly existing moments. It is the purpose
of this paper to overcome these deficiencies. To avoid technical
conditions, we work in the setting of multigroup branching diffu-
sions (Sec.1l) already adopted in [16]. The reader will not find
it difficult to extract a more abstract formulation in the style
of [15]. It is not always pointed out, but the treatment covers
also the case of a finite set of types, including fo some extent
non-embeddable discrete time processes.

Normalizing constants leading to a non-degenerate, finite
1limit without "xlogx" were first given for Bienaymé—Galton—Watson
(BGW) processes by Seneta [28]. His convergence result was later
strengthened by Heyde [17], who discovered the relevant martingale.
For n -type processes proper normalizing constants were construe-
ted by Hoppe [18,19]. Fusing elements of his approach with the
machinery of [15,16] and a sufficiéntly sharp transience result
(8ec.2), we obtain a solution of the normalizing prbblem in gene=
ral (8ec.3).

The investigation of the limit distribution function itself
hag a longer history. Already the paper by Harris [12] on BGW
processes with finite second moments gives proof of the existence
of a continuous density on the positive reals, assuming the dis-

tribution is not concentrated at one point. It also contains some
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information on the behaviour near zero and infinity. The condi-
tions for the existence of a continuous density were gradually
relaxed by Levinson [25], Stigum [32], and Dubuc [6-9], who has
continuity and positivity of the density on the posgitive reals
without assumptions beyond first moments. A different existence
proof for the density has been given by Athreya [3]. Another
positivity proof can be found in Athreya and Ney [4]. For n-
type processes, whose 1limit distribution is not concentrated at
one point, Kesten and Stigum [23] have shown existence and conti-
nuity of the density, assuming "xlogx". Hoppe [18] has existence
without "xlogx". We obtain existence and positivity in general
(sec.5). Continuity is guaranteed under an additional assumption.

The behaviour of the 1limit distribution near zero has been
studied for BGW processes by Dubuc [6=0], See also Karlin and
McGregor [22], Athreya and Ney [4]. There seem to be no results
on the multitype case in the literature. In the continuous time
setting some of the problems encountered by Dubuc do not occur.
On the other hand we have to go through additional analytical
preparations, due to the non=trivial set of types. Our statement
arises as a simple consequence of a result on the rate at which
the generating functional converges to the extinction probability
("Q=1imit", Sec.4). No serious new problem occurs in connection
with the behaviour near infinity. Here the argument of Seneta
[30,31j goes through in general.

Finally we turn to theproof of gtrdng convergence for arbi-
trary non-negative averaging functionals. It was already indicated

in [16] that it does not suffice to simply replace the geometric



-3

5

normalization in the proofs of [11, with a generalized normalizing
function. Instead we look at the Kurtz ratio of the process, work-
ing with a random cut-off and a different type of estimate for the
remainder term (Sec.6). We conclude with a strong convergence result
for processes with immigration (Sec.7). For BGW processes with sta-
tionary immigration strong convergence with generalized normali-
zation was obtained by Seneta [29]. The necessity of his logarith-
mic moment condition on the immigration was shown by Cohn [5].
Hoppe [18] has convergence in probability for the n-type case.
He also considers Markovian immigration schemes. We proceed in the
spirit of [2], admitting not only a general set of types, but also
a completely general immigration process. As in [2] the theory
becomes strikingly simple when restricted to processes with a

finite set of types.
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1. Multigroup branching diffusions
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Let Q ©Dbe the union of K connected open sets Qv’ v=1,...,K,
in an N-dimensional, orientable manifold of class C°, let the closures
ﬁv be compact and palrwise disjoint, and let the boundary dQ consist
of a finite number of simply connected (N-1)-dimensional hypersurfaces of

class CB, ILet X Dbe the union of K Borel sets Xv such that
Q, < X, C‘ﬁvg ve=1,...,K,

in a way to be determined, and suppose to be given a uniformly elliptic

differential operator A]D(é)ﬂ represented in local coordinates on X by

N N .
A: = I L2 x)/é x) - L b (x) -ET
~ i,J=1 Ja(x) ax 3x? i=1 X
D(A): = {ul,: uec®(M A (au+p)|., = 0}
i © . X: L < i a BQ 9

where (alJ) and (bl) are the restrictions to X of a symmetric,

second-order, contravariant tensor of class Cg9k(ﬁ) and a first-order,

contravariant tensor of class Cl"(ﬁ) s

a: = det(alJ)wl ,
0< a,B € CQ’X(BQ), a+p=1l,

N X: = {B=01}

By é%’ we denote the exterlor normal derivative according to (alJ) at

o0 .
Define B as the Banach algebra of all complex-valued, bounded,

Borel-measurable functions on X with supremum-norm || -], B+ as the

cone of all non-negative functions in B, further

ot = ful s wect@my,
ot o ful L ue;c%(ﬁ),\ ul=., = 0}
o° X* QX
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in B 1is the 08-

contraction semigroup {Tt}tf*ﬁ in B, This semigroup is non-negative

AO}

the closure of é]{€€:D(é):‘é§ezGO generator of a

respective B+, stochastically continuous in tz_o on B, and
strongly continuous in t» 0 on 08, with T, B € Cg for t)>o0. It

can be represented in the form
T 8(x) = [ip, (x,7)8(v)dy,

where pt(x,y) is the fundamental solution of apt/at==§pto That is,
pt(x,y) is given as a continuous function on {t» 0}®®(1, continuously

differentiable in x and y for t >0, such that

pe (%,5) > 0, (xy)eX ®X, v=1,...K

(7.1)
pt‘(x)y) = O, (X9y) € XV@XHB W ’Tl S
<T°2) pt(xﬁ.) :pt('ax) = 0, x e QN X
op, —
—txy) < 0, (xy) € (ANX)ex,
X
(T.3) P,

"g’ﬁ_’(x,vY) < 0, <X9Y) € X\)®(_ﬁ\)\ X\)): Vo= 1-9° o o5 K,

and for O<'t§;to, to arbitrary but fixed,

oP4 opy _

(T.4) sup {|—2(x,5) | + [ —e(x,y) [T =0(™H)/2) s 1y,
X,yeX BX ay

(T.5) sup [y H—-—w (%,) | +lmw, V] Jay = o(t“l/g), i=1,...,N,
xeX BX X

cf. [21], [&6].

The semigroup {Tt} determines a conservative, continuous, strong
Markov process {Xt,PX} on XU({3}, where 3 is a trap. Now suppose
to be given a keB , and define KO(X)::=K(X) for xeX, ko(a):==0,

and
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t
Nt o= exp{afko(xs)ds} .
0

Let {xg,Pg} be the nt-subprocess of {xt,PX}, defined as a conser-

vative process on XU {3} U{A}, where A is a trap corresponding to

the stopping by m.. For E£eB define go(x): = E(x), if xeX, and
go(a): = %O(A): = 0. Then
0 X 0
Tté(x): = Eoio(xt), xeX, t)yo0,

defines a non-negative contraction semigroup {Tt}teﬂ. on B. It is the
+

unique solution of

0 G 0
(1.1) T =T, - [T kT, ds, t ) O,
0

and it is stochastically continuous in tELO on B and strongly con-
tinuous in t» 0 on 08, with TgB c Cé for t ) O .
Let X(n),llzjq be the symmetrization of the direct product of

n disjoint copies of X, X(O): = {#} with some extra point 6. Define

and let g_ be the o-algebra on % induced by the Borel algebra on X.
Define

X[E€]: = O, =0,

n
- D oa(xy), R=Cxpeexp ex™ ) nyo

for every finite-valued Borel-measurable & on X. Suppose to be given

a stochastic kernel W|X®§ such that

mg(x): = [ R[E]m(x,dR), EeB, xeX,

P

defines a bounded operator m on B.
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The pair (Xg,ﬁ) determines our (multigroup) branching diffusion,

A R
a conservative, right-continuous strong Markov process {ﬁt,Px} on (ﬁ,@),
constructed according to tpe following intuitive rules: All particles

at a time move independently of each other, each according to {XO,_P?;}°

A particle hitting o disappears, a particle hitting A 1s replaced

where Xt

A
is the left limit of the path at the hitting time of A, cf. [20], [27].

by a population of new particles according to 1T(xJC )
A

In terms of the generating functional

R = ERAR)
ﬁ(ﬁ) =1, X =090,
o I N
= vEln(Xv), K = <xl,ao.,xn> s
t ) 0, ReX, nesS: = {€eB: [[&]] C 13,

the assumption of independent motion and branching takes the form

(F°l) Ft(%,ﬂ) = 1, =0 s
n
= T R Kxp,m), R=(xp,.ex), 0O
v=1
Defining F, : S+S by Ft[oj(x): =F Kx,), xeX, (F.1) combined

with the Chapman-Kolmogorov equation yields
(F.Q) Ft+s[°] = Ft[Fs[']]J t,s Z 0

For every t» O define f%m on ¥ with Y:=xU{3}, and let A

be the set of open spheres intersected with X. Define

Ti = inf{t) 0: JUeAy: & _[15]#R (111 -
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N
It follows from the strong Markov property of {:)'E_b,PX} that for every

neS the function Fy [n] (x), t>0, xeX, solves

u (x) = KP4, 1

t
X o) 0 A A
+ IIP (x- = A, x._edy, Teds) [ Tr(y,dx)Ft_S(x, n)
X
0X

0 I O¢y.
= Tt’n(x) +Ht(x) + ITS {kf[ut_nsj}(x)ds,

0
, .0 t,_ 0,
H,G(x): =1 - Tt(x) - g T k(x)ds ,

- The uniqueness of the solution is easily verified by means of

[£0n] - £L831 C Hml] [[ n-8]]

We shall use the equation in the more convenient form of

' t
(1F) 1 - F [n](x) = TP (1-nx) + [TO{k(1-£[F,__[m]D}x)ds.
0

The assumptions guarantee that for every tZO
M E00: = KPR (8], £eB, xex,

defines a non-negative, linear-bounded operator Mt on B. It follows

from (F.1) that

(1.2) E*E(x,) =X[M E], ReX, €eB, t)0,

and from (F.2) that {Mt}teIR is a semigroup: Simply set mn=(+ AE,
+
differentiate with respect to N at A=0 and let (-1, wusing

dominated convergence. Similarly, (IF) implies that for every E&eB
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. t
0 , O¢, .
(IM) M E(x) = Ty 8(x) + | 7 (M, 83 (x)ds
0]
Again, the solution is unique.

- We. assume that the K¥K-matrix with elements

Myt = J k(x)mlX (x)dx, Vyu=1,...,K.
X H
v

is drreducible. This entaills primitivity of the moment semigroup {Mt}.
To obtain a satisfactory limit theory we need a positivity result for

{Mt} which is stronger than what can be inferred from the KreYn-Rutman

theorem. To this end we assume that m has a bounded extension to L2
such that
sup [ km* &[] < e
geB: | &]] (=1

or, 1f the Xv are congruent,
K

g (x) = 5 () 8(xx) + mos(x)

Mo 2— 0 [B—l-] 5

sup [mx8ll < e
geB: || €]l =1 © ’
where m* and m¥ are the adjoints of m and my, W, €B,, ,,°“p

denotes the norm in Lp, lgjpig% and nx is the picture of x
produced in Xv by the given congruence.

A simple example for the first kind of branching law is the
following model: A branching event at x results with probability

pnl“"“x(x) in np+..4n  new particles, n, of them in X, v=1,..,K.
The places of birth are distributed independently, a location in X,

with the distribution density f\)(;x:jv),n v=1,...,K. That is




K
m(x,y) = &1, (y)f (x,¥) L n_p. (x)
’ -1 £y A nl,...,nKZO vpnl,...,nK

The idea behind the second type of branching law, mo==o, is this: There

are K different kinds of particles moving on the same physical domain.
To the kind'_vf'we'aséign- X,, as abstract domain of diffusion, v=1,..,K.
In'the’physiCal-domain_new particles are always born at the termination

fpoiht'(léft 1imit) of their immediate ancestor. That is,

A
T(x,4) = p (x)1a(8) 4 L P, (%)
0..0 A anQ,.,,nKZQ Dpefy
nl+,.+nK>O
n, Ny
e N P i A A
X lﬁ(nlx,..,nlx,,..,%Kx,..,me), xeX, AeA,

where 1a is the indicator functlion of A, b, 4 (x)} a probability
17K

distribution on ZE for every xe X. Here

Y np0,..,n20 1Pk
Define

uecH (T, wo on KLu=0AW 0 on AL

Dot = {uIX: Yo

(1.3) PROPOSITION ([14], [16]). The moment semigroup {Mt}tzp is

stochastlcally continuous in t» 0 on B, strongly continuous in t)> 0

on 08 with MtBECé‘ for t> 0. It can be represented 1n the form
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(M) Mt = th* + Ats t> 0o,

*[g] = IXw*(xmx)dxg € e B,

Oﬁ

where O0<{ peR._, meiDg, ¥ eD, [w]=1, and A : B>B such that for

all t>0
cp§*At = Atcp@* =0 ,
* *
- tgoé i Atia’twé [B+]5

with a.: B+f>E+ satisfying

p_tat 0 as t T ow

By first-order Taylor expansion

(FM) 1-F [8] =M [1-8] - R (§)[1-8], EesS,
Rt(’ﬂ>€(X) = E<X>w(ﬂ3€9xt) )
UJ(’V],C,}/%).‘; = 0, }?[l] i 1,
n 1
= Z 1 - 0 J71-A(1- d R
E)@eT 3 aGent) e

R={Xy5e000x, 0yl

The mapping Rt(-)[-]:géB»B 1s sequentially continuous respective the
product topology on bounded regions, non-increasing in the first and

linear-bounded in the second variable, and i1t satisfies

(RM) 0=R (1)¢ L R (¢ Mym, (n,¢)eS, 8B,
where S+:=:SﬂB+. |
To obtain a sufficiently sharp estimate for RJC in terms of Mt’

-+

we assume that for some and thus every §ezDO there exist constants

c,c*¥ such that
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(c) kmg { cg
(cx) Je(x)k(x)mn(x)dx  c*[E(x)n(x)dx, mneB,_ .
X X

In case of the first type of branching law with

mg(x) = [ m(x,y)&(y)dy, EeB,
X

it suffices for (C), (C¢*), to hold that

mg(x) = [ m(x,y)&(y)dy, EeB, xeX,

where yl,..,,yN are local coordinates of ¥. In case of the second

type of branching law, mO==O, the conditions are always satisfied.

(1.4) PROPOSITION ([15], [16]). For every t > 0O there exists a mapping

8¢ ¢ S+->B+ such that

Rt(g)[l%]=gt[€]pt®*[l~€]c@9 Ees,
(R)
i |le, (81l =0,
I1-gll~0 ~°F

where the convergence is uniform in t on any closed bounded interval

[a,b] with a) 0.

We assume throughout that {%t,PX} is supercritical, i.e., that

4 > 1. By Cv’ v=1l,2,.., we denote suitable positive real constants.
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2. Extinction probability and transience
SN NI AL N AN A A AAAIIANAS A A P, S AP NI INAA R e

Laned A A

A
Note that P*(X, = 8) = F,(%0). It follows from (F.1-2) that
Ft[O] is nondecreasing in t. Hence, the limit

g(x): = lim P<X'>(§\<_‘JG =8), x € X,

t>00
exists. For the moment fix t > 0. By (FM), (M) with p > 1, and
(R) Wwe.can find an . e > 0 such that @*[1=Ft[1~§g],> é*[gj whenever
|| €] < e. Suppose 3 [1-g] = 0. Then é*[l=FS[O]] > 0, as s > =,
By (F.2), (FM), (BM), and (M) there must then exist an s > 0 such
that || 1-F_[0] || { e and consequently & [1-F,, [0]] > & [1-F_[0]].
But this contradicts the fact that FS[O] is non-decreasing. Hence,
qg< 1 on a set of positive measure. From (IF) and ¢ = Ft[q], t > 0,

t

(2.1) 1-q = TP(1-q) + Io Tg{k(l=f[q])}ds ,

By (T.1), the boundedness of k, and the irreducibility of (mvu)’

iteration of this equation yields g < 1 on X. Using TB C C,

s> 0, and (1.1) with (T.3-5) we geﬁ

+
O °

l-9q €D

A prerequisite of the 1limit theory we are aiming at is a
sufficiently strong transience result. We shall need that
F.[€] > 9, as t > », for a rather large class of E ¢ §; .

Particulary if sup g = 1, as is the case if {B = 0} is non-
empty, our task is facilitated by .a transformation first

used for the Bienaymé-Galton~Watson process by Harris [12]:

The functional F%(X,‘)|§' given by
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— F,la+(1-q)g]-q
Ft[E]: = 1-q P

t(j’(}ﬁg)c = 15. X = 8

n
= A
= \)ElFt [E] (XV) s X = <X13 cooy Xn> s

generates the transition function of a Markov branching process on

(%,@)g In fact, from (IF)
t
(TF) 1-F, [€] = T§<1—5>4—fo TOR(1-F(F,__[g]])ds,

79[ (1-q)e] -

=.,O N
T E: = o3 > § € B,

k: = l:ﬁLﬂl,k R

= Y13

Fle]: = f[cﬁ(i:g)ﬁ]-f’[q] e cd.

- Clearly, Tg is a non-negative contraction semigroup on B. It is

stochastically continuous in t Z=O on B, and using the c¢c mtinuous

+

differentiability of ptﬁxjy) with (T.5) and 1-q € Dy, » we have

TQB cc® for > 0. Hence, Tg has a restriction to C° which

is strongly continuous in t Z}Og cf. [11]. Expanding
1=-£[q] = m(1l-q) -r(q)(1-q)

in analogy to (FM), it follows from (C) that k is bounded. From

(2.1)

=0 =0m
l-«Ttl-i-f T k ds
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That is, the process determined (up to equivalence) by Tg is the

subprocess, corresponding to stopping with density k, of a

conservative process, whose transition semigroup {Tt} is simply

the (unique) solution of
' t
= _ =0 g W
T, = Tt—FfO Tk T, . ds
REMARK. Assuming 1-q € Ggg we can formally calculate the

differential generator of Tt as

Al (1=q) 1-flg
= - k& + k =I:%—lg o

Using
N oF _[q]
_ g_%, _ -=-—-—-=—=§15 = AF, [q] +k(£[F [q]] - F,[q])

= Aq +k(f[q] - q)

this becomes

3

_A[(1-9)g] _ A(l-q9) .
Qg - 1-q = 1-q g

or explicitly,

Q. .
lJ( 3 q\ o
1=q axi 7dx. 7

L=4-2 T
J

i,
M%):{ﬂf&%ﬂlwﬂﬂ§+%@m3%%]N2=OL
That is, recalling 1-gq € DEB the transformation preserves
reflecting barriers, turns elastic barriers into reflecting ones,
and makes absorbing barriers inaccessible.
Let 7 ©Dbe the stochastic kernel generated by T and (Rt,?%)
the Markov branching process determined by (Tﬁ,%ﬁ, By definition,

A
the extinction probability of (ﬁﬁﬁﬁx) is zero,
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Ft[

1]
(@]

0]

Its moment semigroup is given by

Defining

Li O '
lim 55F[el + 28] (x) [, _q
el

il

il

(1-q) ', [(1-q)g] () .

e *
(1-a) "¢, o = (1-d)g,

E5: = (1-q) T8 [(1-0)€] .

the following statement is an immediate consequence of (M) and

_l_
1-g € DOO

The semigroup {ﬁ%} is stochastically continuous on B and

. o . " . .
strongly continuous on ©C in t » 0, and it can be represented in

the form

inf @ > 0, inf %ﬁ > 0, and Zt:B - B such that
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Similarly, we can expand
l“Ft[gj = Mt[l'ig] - EJC(§> [l_%‘]ﬁ
R (g)[1-8]: = (1-q) 'R (a+(1-2)g)[(1-q) (1-£)],

and obtain the following analog of (R):

For every t > 0 ‘there exishs a map EE:E; = B+, namely

el = g, [a+(1-a) €]

such that

)

(R) R.(£)[1-5] = B [€]F [1-£]5 ,

i el = o

uniformly in t e [a,b], 0< a<{ b <{ =,

7y A
Thus, we can switch freely between QtﬁPX} and {%tsPX},

according to convenience. The advantage of the second process is
its monotonicity, which follows from the fact that T£ is conserva-

tive and f[0] = 0, i.e., 7(x,{8}) = 0.

(2.2) PROPOSITION. For every n > O and % # 8

Proof. Irreducibility of (mvg) implies irreducibility of (mvu),

Hence, {k > OjfﬁXV has positive Lebesgue measure for every V.

Moreover, since p > 1, there exist a W and a & » O such that
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even {k > 0} n {x:7m(x.%[1] > 1) > 81N XM has positive Lebesgue
measure. Define

Ay ={kE> o} n {F(-,%[1] > 1) > s} n Xy Vo= i

(k> o} nx, V£ W

o= inf{t > 0:%, [1] # % [1]}.

+

Then, using (T.1-5) and 1-q € Doy
G b gop
P {1, ?;[lAv] =1} = fo TSKlAv(X)ds

S I E Fl(l=q)=lT [(1-a)k1, 1(x) > e > 0, x € X
L Yo st 'A\)‘ v ’ vV’

€ independent of x. Hence, by irreducibility and monotonicity,
Y

there exists an integer n such that

%S, . . 1
L§<X/§§n[1] > 1) > 6@15 x € X,

From this, by homogeneity,
?<X>(§£m[1] = 1) g}(1~5e“)mﬁ m=1,2,...

Using the branching independence and again the monotonicity, this

proves (2.2). [ ]

(2.3) COROLLARY. For all & € S:={neB:|n| <1}
lim || F [g] || = o.
T>00 ’

Proof. Pointwise convergence follows from (2.2) by

£ -
|7, (8] ()] gn§f<x><%tm o)) 1P (a1 g DT e M




-19-

convergence in norm from polntwlse convergence by

i

> P

I Fylel || = || F,[F, _

9]

T LR, (5] =F,_ (01111 = Il B,IF, 4[] [

(2.4) COROLLARY. If & = g+{1-q)¢, ¢ € S, then

Lin || mylgl-a |l = o.

t->00

(2.5) PROPOSITION. For § € E; with € { 1 on a set of positive

Lebesgue measure

lim || Folgl-q (] = 0 .

t>oc0

\

Proof. We have Ft[O]{x) =+ q(x) for every x. As in the proof of

(2.3) H q=Ft[O]!] <+ 0. Now fix & as assumed. Clearly,

Ft[O] _\_= Ft[g] ;: Ft[g\/QJ,@

so that we may consider. Eyq instead of €. By (F.2) and (2.4)
it suffices to show for some + > O that (luq)_l(l-Ft[§VQJ) is
bounded from below by a positive constant. For n € E; define

t

(0 0 (n+1) 70, n
Ty )ﬂﬁ = T;m, Tgo T me = fo isk(l=f[l=T£=é(l=ﬂ)])ds .
such that
The irreducibility of (m ) and (T.1) imply the existence of an n ’

W
{k(l~f[l—Tém)(l-§vq>])> o} n X, has positive Lebesgue measure

for all s > O and wv. Hence, using (IF) and (T.1-5),

1-F. [8vq] el t 7 \
E~q 2 = T-q fo Tsk(l‘f[l“Téié(l~§VQ)])ds > e >0

which completes the proof. ]
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3. _ Proper normalizing functions

N R T W st o

As in case of a finite et of types proper normalizing functions

can be obtained via solving the backward iterate problem for Fta We

call (§ )*GB S+ a sequence of backward iterates, if

Such a sequence is non-trivial, if for some ¢ Z=O neither gt =

a.€., nor &, = a.e.

(3.1) PROPOSITICON. There exists a non-trivial sequence of backward

iterates.

Proof. Except for the use of Arzela's theorem the argument coincides

with the proof given for processeg with a finite get of types by

Hoppe [18,19]7.

Step 1. ILet Q: = {g€ €.8,:8 » g}. Since g and 1 are fixed points,

+
F.[Q] is decreasing in %, by (F.2) and the monotonicity of F 8]

in €. The continuity of Ft[gj in & implies connectedness and
compactness of Ff[Q] in the topology of pointwise convergence.

Hence, Q. : = N <NFn[Q] is connected, and as q,1 € Q, and g < 1,

—

there exists =z €5 € 9

oy

uch that g <,§@ { 1 on a set of positive

re exists for every n e IN a

D

measure, B«y deI 1ini CJ_L,'*A (-i Q‘AF/ e}
_ ¢ SULC 1;‘* a I/ g s = l g °

Step 2. It follows from (IF) and the continuity properties of Tg

finite seguence E B
5€q (§m03>g:©ﬂlgeoaﬁh

that the family {g J J<n,n e W} is equicontinuous and thus,
3

by Arzela's theorem, relatively compact in the topology of uniform

convergence on Q N GDO Hence, there sts for every J elN a

sequence (§n 3j)ngﬁ n, = @, as £ = o, converging in norm to some
1

gJ € Q, and by continuity of Al[gj in E, §J F1[§g+l] Finally,




=21 =
define Ey: = Fpy 07 ([€r4,09] Tor © R~ and recall (F.2). []

If & 1 on a set of positive measure, it follows from (T.1)

and the irreducibility of (mvg)ﬂ by iterating (IF), that F (] 1

on X for all t > 0. Similarly, if & > g on a set of positive

measure, it follows by ilterating the equation obtalned by subtracting

(IF) from (2.1) that F.[€] > ¢ on X for all t > 0. In particular,
let ﬂﬁgf) be a non=trivial sequence of backward iterates. By

definition, €. < 1 on a set of positive measure for some s > O.

Coneequently, §t <1 on X for all %< s, but also gt.< 1l on a

i . e .
depending on t, for t > s. Hence, g, <1

set of positive messure,
.

on X for all t. On the other hand, € » F [0] = g, n > », That
is, §t.2:q onn X for all +t. By definition €_ > g on a set of
(=]

positive measure. Hence, by the same argument as before,,gt > q on
X for all t.

(3.2) PROPOSITION. If (g%} iz a non=trivial sequence of backward

iterates, then

Proof. In view of

and (M), it suffices to show & [1m§t] - 0. Suppose §*[l=§t] # 0.
Then there exist a v, a sequence tjﬂ*wf and a constant c, > 0
such that

) 1 N o .
[1y (18, )] 2 ey J €W

Restricted to functions on Xv’ the semigroup {Tg} has a repre-

sentation analogous to (M): The role of k(m-1) is simply taken
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by =k. Thus for s fixed sufficlently large, there exists a

c3 > 0 such that

*
ng Z=CB§'ELX9§1lew9 g eB, .

Recalling (F.2) and (IF),

€ = Py _olFolE; 11 < th_sfleS(l--gt )]

J

< F’tu_s[l-—cgcslx wl, J € N.
AY

[

By (2.5) the righthand side converges to g, as J - o. This is a
contradiction, and (3.2) is proved. ]

(3.3) PROPOSITION. Let (gt) be a non-trivial sequence of backward

iterates, and define

*
Cpt = ~log By yyp: = 8 [Ct]’

Then there exists, for every t > 0, a sequence (et) in B such

that

CJD = (l+€t)YtCP3 t > 0,
1im || e, || = o.
>0 , t

Furthermore,

where L(s) is slowly varying, as s = O.

The statement follows from the next two lemmata, which will be

needed again later.
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(3.4) LEMMA, For every non-trivial sequence of backward iterates

(gt) there exists a sequence <ht) in B such that

lqgt‘: <l+ht)§*[l“gt]@5 t > oF

lim || by |l =0 .

t>00
Proof. The proof is similar to that of Lemma 1 of [15], or Lemma 4

of [16]. Using (F.2), (FM), (M), and (R),

0%(1-p"%a, - || & [8,, 1 )& [1-8, _Tg

S

g@ l"FS[“gt%-ﬂs] é_ Ps(l+p— as)§w[l_§t+s]C’j ’

Combining these inequalities with those obtained by applying @* to
them yields
-S -
Q o

- ® ¥
1H+p ™ a 6 [1-F_ [&,, 1]

2p o |l e L5y, 0 |

1-p"%a -l g[8, .1

Replace Fs[gt+s] by g, and let t > =, using (3.2) and (R).

Then let s = «. 1

(3.5) LEMMA. If (gt) is a non-trivial sequence of backward

iterates, then

*

¢ [l_gt] I
lim =5 =p, 8
e @ [1-84 ¢

N
O

Proof. Note that, by the definition of (g.), (M), (M), and (R),

¢ [1-8,] = p%¢ [1-g,, 18 [(1-g_[g, Del. [




=Dl

Proof of (3.3). Note that l=§tggﬁ(l+g(gt)>5 where
1l-otg) I =o(ll-gll), recall (3.2), and apply (3.4-5). [_]

(3.6) PROPOSITION. Let (gt) be a non-trivial sequence of backward

iterates. Then there exists a random variable W such that

‘ A
, : %
lim Qt[gt] = %ig yt%t[¢] =W a.s. [P7],

t>00

s

PX(1 = 0) = 4(3), PRHC ®) =1, £ e

3
with &(s)(x): = E<X>exp{msw}g s eR,, x € X, satisfying F

(3) 2(sp”) = Fyl8(s)], 5,62 0.

A .
Proof. Let F_ = G{XS§S { t}. Then for t,s > O

Stre' Fopg! 1 Eg) = Fepg\Re Bppg) = Spl%g) a.se [PT].

By the martingale convergence theorem and (3.5), this implies the

convergence statements. Using (F.2), (3.5), and dominated
convergence,

t . t
$(sp”) = lim F_ [expl-sp v, o}l

>0

I t -1 ~

= Ft[éiﬁ Folexp{-s(p v “ve, ) v 0l = Fele(s)].
It follows that ¢(0+) and &(»-) are fixed points of F, in
corw§;. By (2.5) the only fixed points in Corﬁg; are q and 1.

Clearly, &(w-) ¢ 8(1) { #(0+). On the other hand,

$(1) = lim F.le

>0

Ct,.

1= go € GO



_and .q,<.go {1 on X. Hence, §(w=) =g and &(0+) = 1. [ ]

(3.7) PROPQSITION. For every non-trivial sequence of backward

iterates
0< 1implyy =y < =,
t>00
A
E*W = yx[¢] , X £ 8 .

Here y < o if and only if for some and thus all t > 0

- (XL0G X) é*[E<f>£t[w]log.§t[@]] o

Proof. Using (F.2) and (FM),

t+g,

T G % r
ple (18] = p"8 [1-F [, 11 p" o8 (18, ]

Hence,

1im p Yt = llm P é [1- gt] = vy
t>00 T

exists and is positive, possibly infinite.
It was shown in [1] that p“tQE[mj has a finite, non-degenerate
strong limit if and only if (XLOGX) is satisfied. That is,(y < =)

and (XLOGX) are equivalent. [ ]
'REMARK. It is known that (XLOGX) is equivalent to
¢ [I 2) X[ ollog X[ o]l < =,

cf. [1], [16].

(3.8) PROPOSITION. For any t > O the solutions of
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Proof. We have to show that, given a solution V¥(s) not identical

1 or .g, there exists a positive real o such that V¥(s) = &(as),

s > 0. Consider the family of backward iterate sequences
-t s, -t
gy = 27", g% = w(sp™), s> 0.

(s)

Since by (3.6) the corresponding normalizing functions Vs Yi

lead to non-degenerate, finite, strong limits W,W(S), we must have

Tim Yt 1y£S> = a(s) > 0, s> 0.
't'wév oo ’
Using (3.5),
y v(®) . 37 [1-51% ] L +"[1-8{%) ] a
1m = im = im - = e
tim —rgy ) Ta) " 5
b g tow 8 [1-gp 7] toe 8 [1- Sttlog, (a/b)]

That is, a(s) = as, o a positive real constant. Accordingly,
- s -
(1-5,)asc, < ¢1®) ( (1+s,)ase, |

lim &, = 0O .
t>c0 ©

Taking the exponential function and applying th
. el )
¢, ((1-8y)as) { Fel¥(sp™ )] L 2 ((1+8,)as).

Note that the middle term is equal to ¥(s), and let t = w. []

(3.9) COROLLARY. For every non-trivial sequence of backward iterates

(gt) there exists an a € R such that

-t ,
gt = @(Pa ): t > O .
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4, Extinction probability and transience continued
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With an additional indecomposibility assumption we prove a rate of
convergence result corresp@ndiﬁg to (2.3). It will be used to obtain
the behaviour of the distribution function of W near zero.

Let 6Ft[n;§] be the Fréchet derivative of F, at meS in the

direction of E. Since Mt 1s bounded,

i

8F, (q)&: = l;l}_,m 6F, [€q; 8], EeB

defines a linear-bounded operator on E. Since g dis a fixed point of
F_ for all t, {éFt(q)} is a semigroup. The same is true for
{6F (0)}. The two are connected through

(4.1) 6F, (0)€ = (1-0) " 6F, (1) [(1-a)€], EeB, t)O.

(4.2) LEMMA. Suppose the mabrix (fVH) ,

f\),u::IX k&_]_(O) les Vo = lyes., K,
4

is irreducible. Then {8F, (0)} can be represented in the form

— -t-'— — \,
6Ft(0) = o Jx+T, , t)o0,

T[] = fx_l!!*(X)%(X)dxg g€ B,

where o€ (0,1), W,E*ezcos

inf §> 0, inf §* > 0, and T% : B>B such

that




S )
~
=0

Proof. It follows from ESF(O)g:zk(lwq)mléf(q)[(l—q)i] that

irreducibility of kéf(qg) and K&f(0) are equivalent. From (IF)

t .
O O o »
67, (a)8 = T, & + [T kéf(q)6F, _(q)Eds
O
Also,
0f(q) {m  [B,]
Hence, the proof of (M) also applies to {6Ft(q)}. Application of (4.1)
to the resulting representation leads to the proposed representation for

{6F_(0)}. To see that {1, note that

87, (0) 1, (x) = Ko {i/c\t[l] =1}-0, xeX,
by (2.2), further

6F, o (0) 1, (x) { (%4B ) VT [6F, (0)1,] ,
so that || 6“F‘t(o)1xll >0, t-w . 1

(4.3) PROPOSITION. There exists a functional @ on 3; such that for

all £eF,
CoTUF (8] = (146,[51)A[ETy .
Yim || 8, (871 =0 .
L |l e L&l

We have Q[E]=0 4if and only if E£=0 a.e., while Q[§]=w if and

only if =1 a.e.

The proof will be based on three lemmata. Note that

Fy[8] = &F (0)E + G [E] ,
(4.14) ) |
G, [8]: = i‘,g %3 8 F (058, ..., 8]



= DG

~,

(4.5) LEMMA. For every + > 0O there exists a mapping ay §£~>B such

that

G,[5] = a,[8]0" 7T,

Hléﬁio”at[g]” =0

uniformly in te[a,b], 0< ad b .

Proof. The proof resembles the proof of (R). We have

t
F [8]=T0t + [ T) KF[F, __[&]]ds ,

0
—_ =0 t () e —
6Ft(O)§ =T, 8 + [ T k&f(o)éFt_s(o)gds

For every €> 0 and Eezgég @%[i] is the only bounded solutilon in

[e,etN], N> O, of

¢ t_q~0~'—
v, = A+ B + J TkeT(0)v,_.ds ,
0
t o
Ag: = JTKe[F, _,[§]1]ds,

By the inherent positivity, this solution equals the 1limit of the iteration

-~<v) (O) = INdakel 7 3
sequence (vt (X>)de, ve ! =0, which we now estimate.

By the mean-value theorem we have for every @esg;

grel  Tre] € of( §)§ mg
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Fixing A, let 0 8{ ¢/2 and e t{ e+th. Then using (M) ,

8 6 t-6

A, [+ [ W EEM, _gds+ [ W _Kg[M,__§]ds
0 t-98 b
t
{ 6Cy () p ®E*[E]
S — S
+ Cp(6,6) @ [g[C5(8)8*[E]w]]C5(8)p W [E] ,

where Cl,Cg,C3 are constants depending on the choice of € and

as indicated.

S such that

+

(4.6)

Secondly,

(4.7)

Using (4.6),

we get

1im V(v)
t>00 ©

Since ¢

. Hence,

was arbitrary, this proves (4.5).

there exists for every € a functional ®€

A, < 8 [51p"F[8]5 ,

lim © [E] = O .
lEll-o *©

‘—’O—-N ~
T kmB_ _ ds { By .

O “—i

and the fact that

(4.7), (),

$ AT, T T [B,],

C cor ()% (e%F0 8] + co) (14p7 " %0y, ) PP [ETT

|

o,

on



(4.8) 1EMMA. If (T ) is irreducible, there exists for every t> 0

Vi
a_mapping D, :E;f*B such that

F[8] = (L+b [T (F[E]11V ,

Lin [[b,[2]]] = 0

00

for every Eezg; with § (1 on a sgt of positive measure.
Proof. The proof is similar to the proof of (3.4). From (F.2), (4.4),
F[F,_([§1] = 6F (0)F, (81 +T[F,_[8]] ,
and from this, by (4.2), (4.5),
(1-07%8,) ®¥*[F, _[811T < T[]

< (0™ + [la [Fy ([E1111) 0" T[T, €117 .

To estimate (T*[F%[%]])"lﬁt[é]-vT, combine these two inequalities

with those obtained by applying ¥* to them. First let t -0, then

s>, recalling that || ﬁt[O]H»o, as t=>w, by (2.5). []

be the spectral radius

(4.9) LEMMA. For t)»0 and mneS_ let o (n)
of 6F (n) . Then
lim o,.(n) = o
~ T
| ml[-0
Proof. For t> 0 and nes,

V4 1=

§F, (m)1=6F, (0)1+ T 1 6" F_[0,n..,m1]

v=1 Vi

C 8F (001 + 2| nf] (1=l )52

1
Hence, for ||| 5o



| 6F (01l < Il & (T leni T VeF, (0) V1]
‘ =) .
Lo, n-v _tv
e Z <v')HG i C
V=
= ¢ (8] nf]+0")"
5 (8

Since we are dealing with positive operators, this proves (4.9). E__[

Proof of (4.3). For EeS,, using (h.4),

I P < S e e o

_ oft”sg*[gﬁs(o)ﬁt[ij}%"G"t— PG [F [E]]]

O__.E;T* r‘jﬁt [l

N

That is, O"-t'f*[ﬁf[gjj converges to some functional Q[&]. Combined
with (4.8), this implies f:i—‘tﬁr [E]=>Q[E]V in the way proposed.

If €>0 on a set of positive measure, then by (IF) and (T.1)
7081708y e 1Kt 1)~ In [(1-9)8 > 0 .

on.a set of positive measure, thus Q[&] ) O.

Finally, suppose €< 1 on a set of positive measure, E&#O0.

Using (4.4),

1 1% o— n-1 _1 VG [T [E11]
o MIHE, (811 = o 1T [F (8] U (1ot — Yy,
. oov=l YRR LE]]
n YO[G,[F [E]]] n - oy WFESLEI
L o (-]|F el Tt o ||F L8]]
v=1 ¥ [F [E]] V=1 YOLE
Ivn view of (4.8), it suffices to show that H__F‘-QH[E]H =0(\") with some

A1, in order to secure that the limit of o ¥*[F [E]] is finite.



Since ?%[0]5909 (F.2) and the mean-value theorem yield

o [8] L 8F, (F (BT, [E]
Iterating this inequality, we get

By (51 < OFy (B, 1 T8D) 67, (Fy 0 o[81). .. 67, (F,[81)F,[5)
C oF (sup [|FLE1I)™,  m,jen

VJ

Recall that [[F [E]]l >0, as vow, and apply (4.9). 1

REMARK. The specialization of (4.3) to Bienaymé-Galton-Watson
processes is well known, cf. [12], [13]. In fact, it first occured in
a paper by Koenigs [24] on the classical problem of fractional iteration.
In view of the useful role this result has played as a tool, a theory

of the general case with decomposable (fvu) seems desirable.
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5. Properties of the limit distribution.
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We prove that the distribution function of W has a positive
density and loek at its behaviour near zero and infinity. As

before let o be the spectral radius of 6Fl(q), and define

€y 1= - logpc .

(5.1) PROPOSITION. For every X# 8 there exists a measurable

function 'wﬁl]R+ such that
X ara A
P(WQ%)=qM)+IwﬂuMm A > 0.
0]

(u)  1is

If we have 2[1]eo>1, or if (XLOGX) is satisfied, then w

<

bounded and continuous in u .

It suffices to prove that the distfibution function of the
limit W for the transformed process {ﬁt,ﬁﬁ} has a Lebesgue
density Wy and that in case ﬁ[l]eo > 1, or (XLOGX) is satisfied,
this density is bounded and continuous. Recall that éFl(q) and
'5Fi(o) have the same spectral radius, and.note that (XLOGX) is
equivalent to its analog for {it,ﬁf}. Let 3(5)(x) denote the

Laplace transform of W respective §<x>.

(5.2) LEMMA. For every bounded, cloged interval IcIR not

containing zero,

sup || F(it)] > 1.
tel

1 for all t . Then

Proof. Suppose |&(it)|
§(it) = e °°,

g measurable, finite. Inserting this into
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(5.3) T(1p%t) = F_[F(it)]

yields
"
Exexp{it(ﬁs[g]—psﬁ[ﬁﬂﬂ =0, t > O.

From this

2.[g] = p R lg] a.s.,

M g(x) = E<xi>>“cs[§] = pg(x), x e X .

S

That is, € =.ag , where o is a constant. Since W is non-
‘degenerate, a # 0. However, since our process is super-critical
— . , N o= SaA
and @ continuous, we cannot have XS[@] = p XO[@] a.s. for all s,
‘

Hence, for some +t # 0, x € X,

F(it) (%) ¢ 1.

Since Fs[gl(x) is continuous in x, by (IF) and the continuity
and boundedness of Tg, so is §(it)(x), by (5.3). We can therefore
find for every x € X a 6(x) > 0, and for every +t with

0 |t ¢ 8(x) a U(x,t) ¢ X of positive measure such that

|8(it)(v)] < 1, o |t] < 8(x), vy e U(x,t).

]

If n € S+
then Tgn > e"kSTgﬂy which is uniformly pogitive in X, by (T, 1+5)

is positive on a set of positive measure in Xv,

and 1-qg € Dg. Iterating
1-|E(p®1t) | 2 1-F []F(1%)]]

&=
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[ e(it) || < ¢, t # 0.

_Since ¥(it) 1is pointwise continuous in % and bounded, it follows

by

I &(it)-F(1(t+e)) || I M [T (1tp™%)-F(i(t+e)p ")]] |
and (M) that &(it) is strongly continuous in +. Hence, || T(it) ||
is continuous, and the proof is complete. ]

(5.4) LEMMA. For every positive ¢ < €y

8, t £0 .

[ 3(it) || = o(]t

Proof. As in the proof of (4.3)

| Fp g[8 I R IR [1E(18) 1]

n- s

< SFi(iggH FLIE(6) 11 1)7F, [ 3(1t) )

By (5.2), || #(it) [ {eg <1 on [Lpl, so that [[F [|E(1t)|] ] > o,
as Vv = o, uniformly in t e [1,p]. According to (4.9), there then

exlists for every poSitive e < €g @ Jj such that

sup || ., [8(it)] ] = o(p™™®),
Kip I
or equivalently,
sup || F(atp?™) || = 0(p™"%)
1K
Hence,
s F) [ Lol
with ¢, independent of n. ]

7
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(5.5) COROLLARY. If (XLOGX) is satisfied, then

I 5701) | = o([£] 7179, ¢ 4 o

Proof. Denoting 33(5)/3§ by &' (s)
P F (1t ™) | L 6F (F L1 T(2t) [ 1) 67, (13 (1t) )] T (18)].

Also,

and by assumption of (XLOGX),
| E{X/}W = E(X>@ x € X,

cf. [1]. That is, [Fr1(it)] { @. Continue as in the proof of (5.4).
]

Proof of (5.1). Given Qo[l]eo > 1, or (XLOGX), the characteristic

function of W is absolutely integrable, by (5.4-5), and this
implies that the distribution function of W has & bounded continuous
density. Given Qo[l]eo‘< 1, the argument of [3] can be adapted:

For every Q # B the probability space carrying {ﬁt} can be
enlarged in such a way that it also carries a set of independent
random variables Wgy i € X, which are independent of Qt and

satisfy
BT e 1) = K®(Te 1), xex,

for every Borel set I ch+m Since the characteristic functions of
p_HQH[W%] and W coincide, so do their distributions. That is,

for every I of Lebesgue measure zero,
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A A
BA(T e 1) = j£\F£(2n e )PPV, ] € p"T)

n 4 ‘
[ FNE e af)F(FIw ] e pTI),

A
PX(% [1] 1
< F(x[11ey < >+{§;~[1]eo>11 -

the first term on the right vanishes, as n = o, by (2.2), and the

second term is identical zero for all n. ]

(5.6) PROPOSITION. For every % # 8 the density W& is positive

on the positive reals.

/ A A
Proof. Let A" be the measure induced on A™): = (Anx(m).dehy
by the Lebesgue measure on A, and let g(“) be the class of elements

- of A(n) which have positive x(n>=measurec Defining
<X15 oo °Jxl;l> +<ylﬂ e oy yJ) = <Xl3 ey XI’J.’ yly °® ey ya>9

we have
S

wa a(s) = IO

25 w%(smu)w§(u)du .

4

' A
Let ?£(X,ﬁ) be the transition function of {ﬁt,?x]. From (5.3)
(5.7) Tg(s) = [ By (Ry, a8)p ia(p®s)
o é\{ g 42 p 7 p ..

Step 1. For e X(n), neg, > 1, Wé(s) is continuous, and since W
is non-degenerate, it i1s also positive somewhere. That is, W& > 0
on some open interval IQ e?m+, It follows by (5.7) that for each
u e pﬁl% there exist a J = j(%,u) ¢ N and an ﬁﬁ;k € g(j) such
that ﬁf(ﬁﬁAQ,u) > 0 and W?(u) S0 for Ve ﬁﬁ,uo; Because of

¢ p(n)

(T.1) and k € B, there then exists a neighbourhood ﬁé #
2

of % on which ?£(°’ﬁ§,u) > 0, and thus

(5.8) Wﬁ(s) > 0, s €In ye Us,%'
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Step 2. In view of (T.1), the irreducibility of (m\)u)u9 and p > 1,

~ : , LA,
there exists an integer d such that for X # 8

(5.9) §£(£;ﬁ) S0, t>0, A e‘g<%d)9 n e N.

If WQ >0 on I and ﬁ§ > 0 on J, then ﬁ§+§ > 0 on

I+J: = {z = xty:x ¢ I,y € J}. That is, given any 8, > 0, we can

choose § ewxﬁ%d),%deo > 1, such that ﬁ§.> 0 on some interval

(a,b), b > sy, and thus, by (5.7-9), ﬁ§s> 0 on (0,b). Now let

S 7 - ]

(5.10) PROPOSITION. There exists a function L(s) on R, , slowly

varyihg as 8 = 0, such that for x ¢ X

B> ) = oL plx), A > .

Proof. By (3.4) and (3.5) with g, = @(p=t)

1-3(s) = (l+h;) sL(s) s

*
1im || hsli =0 .
50

From this, by Karamata's Tauberian theorem, cf. [33],

the
Now apply Seneta's version of\Tauberian theorem of Landau and

Feller, [30]. [ ]

) is irreducible, then for x € X

(5.11) PROPOSITION. If (fvu

€y
;lu-awowm N> 0,

@ |

R0 -alx) ~ 00 8




it

where I' 1is the Gamma function and §: = (l1-q)y. If in addition

0 > ‘3 .;t}i??”
W (?\) ~ g 7\6 %‘l ==@EU 1 l(«,{) A= 0
<X\‘ 0 I €3+ls VLX) ' °

Proof. From (é} and (4.3)
0" F(p") (x) = 0T FT(1) ] (%) ~ UF()IT(), &> o .

That is,

— 0= —, —
§(s)(x) ~ = “QLE(L)IV(x), s = o

Now apply Karamata's Tauberian theorem, to obtain the first statement,

and the argument on p.250 of [4] together with Corollary 4.4a on p.194

of [33], to obtain the density version. f:j
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6. Strong convergence with general non-negative test functions
NNl ™ i e NIt

N\R’ T TN e T ™

(6.1) PROPOSITION. For every a.e. continuous mneB

1im ytxt[ﬂ] = @*[n]W a.s. [P7]

=00

On account of the followling lemma, it suffices to prove convergence

of discrete skeletons.

(6.2) LEMMA. If for all e» 0 and EeB,

X . [E]
lim -2E = $¥[E] a.s. [PX] on (W) 0}

A
I oo xne[@]

then for all a.e. continuous nNeB

M
x [ ] ‘ 4
1im & = 8"[n] a.s. [P*] on (W) 0]}

too X[ 9]

Proof. The lemma is a special case of Lemma 9 of [16].

Proof of (6.1). It suffices to prove skeleton convergence for €=1.

Due to (Fnl) we can assume without loss of generality that

2\
Xn[l]ﬂ\r f\
ly.] X
? fﬂ_‘.{[g‘! 2o S [P ]

A

Xn+%[§]

AT, J P A o . : :
where the xnigg J=:l,ooa§xn[l], are Eh;wmeasurable and independent

A A
conditioned on Eh, and for every AeA

g‘%/&nya A j> A ,\3 ’;%
P (Xn+LEEALEn P ) (X% A) a.s. [P7]

with %27d = <Xj>° Define

n
Bn: = x [o], ll’l = l{ﬁ’n\)o} 5
j — 'ﬁ‘nwj J* . - o
ané B Xu+&[€1 ’ Zny&° - n, & {Zj 8
éi - l




A .
xn[lj m[l] '
S, o=1 B oz g o= s zd”
n, 4 n-1Pn-1 yo1 n, 4’ “n, 4 n-1Pn-1 jEl Zn, 4
_ X
én,é‘ B (Sn L S;,& ,—n
Then
1 ,erh R L
n+tPn+b¥ns el ]
1 % X
- n” 3 K a% _ X
B ln+LBn+LBn—l(bn,L B (bn,L]En) 6ngb4‘E (SngL]E )
We estimate the terms on the right, proceeding as indicated in [16].
Define

() = K (R8¢, Ay o

Step 1. Using (1.2), (M), and

(6.3) 1lim ﬁ; Bria= 11m Y iLy = pL>>l a.s. [P*], L> 0,
N—>o0
we get
nglE (5, 4 ~F 8k 4 | B 171 By q)
. W
< B EM{1B° 1 BN (275 )71 E) 1By )
S o1,
g_ -Z—:]_E n- lﬁl’l l = l[M [ I A dH<,.>(7\>]]
n= 0
Bn 1
g,cq 2 1n lﬁn N j 224 8 [H< >( )]
o M) )
{ Cs [ nas [H<°>(%)] + Cg s
0
0 A

X *
nilP {Sn,Lfésn,Ll‘Enwl}



[ee] A [oe} r &
< B L% g U [ [oagy s (V1]

Bnml
Ly1Bn {48 TE S ()]
Bnnl

§_08j7\d§* <>(x)] + Cq

< ¢

n=1

The Cuyaa.yog are finite, but in general random. It follows by
application of Chebychev's inequality and the conditional Borel-Cantelli

lemma that

P>

A
lim (8, -FE(s* ,|F))=0 a.s. [P"]
SRR < PE \Pn, 4! =n

Step 2. Using (M),
{1 BT R 1M, 1811 (p™ay) 8216, #°TE]
n L>"n-1"n- l n- 4 P L/ Fn=1"n :

Hence, in particular,

1lim sup B—lQ.[l] { o a.s. on {W)> 0}.
oo n “n

Now

c< | €]l 1. 5n Jx [1]sup j A dP<X> (X, [11< )
xeX B

From (IF)
;jjde<X>( (11 < ) —kaNys(x)ds, v > 1,

W () = [.5 o (x, 4%) B 9% L[1] = n)

Notice that



iy

lim N (x) = 0, s> 0, xeX,
yéob

Nz'gzm[MS[l]] guellmﬁum{l]y s> 0, vy, 0.

Hence, by dominated convergence

1lim sup j A dP<X> X, [1] {N) =0,
y>o xeX vy

IITSII§,19 and the boundedness of ps(x,y) on

. 0
using T ﬁ,TS’
[a,t]8X®X for ap 0. Thus, since f_ > on {w> o},

A
lim 8 ,=0 a.s. [P*] on {W)o0}, 4>o0.

. Y1—>00

Step 3. We have

A
- X _
It aPnitPn-1® (Sn,&lgn)'_ n+L5n+L n[M (511

Again by (M) and (6.3),

lim sup 1,677, % (M¥[8]]  (1+p %) 1]

n—>o0

lim inf 1T 2 ef(e)] )y (1-p7%a, 180 (8]
n->co

Now let & = « . [j

REMARK. The difference to the method of [1] lies in the use of

and the argument of Step 2.
X.

a random normalization, a random cut-off,

Notice that the result of Step 2 is trivial in case of a finite
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7. Procegses with immigration
SN S

The aim is a theory in the spirit of [2], but with general
normalizing functions, that is, a non-degenerating limit. As in [2]
we adopt the superposition point of view,

In addition to our branching process we assume to be given an

immigration process {Tv5§v,P}, where (TV), 0 i,TvT‘w is a -sequence

of (not necessarily finite) random times and (;Qv_)\)e]N a random

gequence in. (ﬁy@)g both defined on the same probability space with

measure P.

Let {Qv St 2 TV} be the branching process initiated at T,
5

by §v’ and denote

Ni: = max{v:Prv th .
Define
A p A A
X+y: = X, v = 8,
A
= <Xl,oo.,xn,yl,.a.5yb>, X = <xljo.,,xh>
A
Y =LYqseees¥y -

The immigration-branching process {9%,3} is then given by

A A
zZ, = & X

t v, ©
VgNt

and the corresponding probability measure P defined on the

appropriate product space.

Let E% be the o-algebra generated by {QS;S < t} and define

W : = lim X
O Yt-TV v, tL9ls
w T
W:= & p Vi -
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(7.1) PROPOSITION. If

[e¢] A )
Z v, Y lel =
v=1 V

then

R s
1im ’Ytzt[ o]

t>00

W

il

exists almost surely, and

F=% <o a.s. [P].

Proof. We condition throughout on

1=

A
:Gﬁwy&vemh

o

Step 1. The limit W always exists, but may be infinite. Since

; N VAY )
(I .gt(xv t)ﬁg )
e
is a positive supermartingale, W also exists, but again may be
infinite.
Step 2. We first show that W and W& are finite almost everywhere.
The Laplace transform of the distribution function of Qt[gt] is

~ A

v.(s) = 1 F (v.,€5).

t t=1T v et
\ENt A

Let § ='<y%3.n.,y?>. For 0<u< t< e~ and 0<s<1
A

\ A
4 81 (o Y J
0 (1R [8lr)) < 3 o (1-g, (yy))
v=Nu+l j=1 v v:Nu+l j=1 v

. » A
C(A+ey) T v, v lels
v=N_+1 v
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where (eu) is a numerical null sequence., Hence, still for

0< s< 1,
?(s); = 1im V. (s) = 1 1imF, _ (3 ,8%)
trw O v=1 tow Ty VT
® A =T A ~ ~ o
= 1 &(p Vs)(yv) = Bexp {-W's} =2 ¥*(s)
V=
with
¥
Y(0+) =Y (0+) =1
That is,

B ¢ w) = B < »)

Step 3. We now show that W and W* are equal almost surely. Let
Cl — ; /\ 3 7 © — /\
W.\)J £ T )Yt-ﬂ’l’vx\),t[&p‘l’ w’t‘ = Y‘tzt[w]'
Then
WA - ()4 o (vl V)
W= (W-W) + -1(Yt—T VeWy, ¢ = P v
TS \Y
~T
LR ‘Yt - P, -
s(TUgt v Tv>S

As t = «, for fixed s, the first term on the right tends to zero

and the third term to a finite limit U_ Z 0O, non-increasing in s.

Next let s = o, Then US tends to a fiinite 1limit U Z}O, and the

X
last term tends to zero. Thus, we have W = W +U, all three variables

being finite and positive. Since the Laplace transforms ?(s) and
~% ¥ -

¥V (s) of W and W coincide for s € (0,1], this can only be true
if U = 0 almost surely. ]

Recall from (5.10) and its proof that there exists a sequence

(Bt) in §; such that



tp<@(w

4

o
> t) =8 (x)f P (S wdu, £ > 0,
0

1lim et(x) =0, x € X.

t—>o0

Note further that always

1im inf W Z a.s. [P].

t—>o00

(7.2) PROPOSITION. If
lim sup|l 8.f < 1,

t >
then
W=w a.s. on { Z yv_ T [¢] == }.
— =1 Ty VY

Proof. Condition on I . Then either W* { o a.s., or W'= w a.s.,
by Kolmogorov's zero-one law, Moreover, ﬁ*< © a.s. only if
-T

Y e va KD .
S := Vzlp y,[E 7wl o ] o,

by Kolmogorov's three series criterion. Since yt~p-tL(p-t), cf.(3.3),

and

t
[ KV (W>u)du] ~ (67, e,
0

cf. the proof of (5.10), there exists for every s » 0 and u > Mg s

Mg sufficiently large, a CS " such that
5

.
_ T [I P< D (W< u)du]
§>c. oz .
Z. S,HVEHYTV pTV
[ B (W pPu)au
0

Observing that

t

S ; t
Io uP<y>(w Cu)du = (1~et(x))f P<x>(w > u)du
0
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and
P<X>(w S ou) = K K0 > ulF)
> EOR K (0> o)
2 (ps~as)m(X)¢*[P<'>(W'> pu)l;
we get
§y ¢ (pP-a) inf (1 -|la.]) = S [o] -
2 Cg lpag t}j;m( el 2 Yr 9y 0]
By (M), we can choose s gsuch that a, < pS. I:]

REMARK. From (IF)

X0 s b 0 b'e s
P(W S b)) = Tk [ (s, dR)PH(W > p°t)ds .
0 X ‘

Using this, it is easily verified that the existence of a cg >0

such that

k(x) [, 7(x,d?)n (%) g‘ccé*[K Il 7(+,d5)nh(X) ], x e X,
X S g
for all bounded measurable h, 1s a sufficient condition for H st||—>0.

(7.3) PROPOSITION. If
Eov, I <> aes. [P
v=1 Y ‘

then for all a.e. continuous mn € B

N A * ~ ~
1im ytzt[n] =% [n]W a.s. [P].

t>w
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We break the propogition up into two lemmata. Define
) . . A . * . -

U,s o= lg ¢ B :1lim vox (8] =@ [g]W]}.

T—>wo

(7.4) LEMMA. Given a € §+

such that

lim ytét[ﬁ] = @*[3]W

a.s. [ﬁ],
t>00
we have for every & € U+
e - /\ - " * - e o~ ‘.—-J
lim ytzt[ﬁgj =% [JE|W a.s. [P].
>0 )

Proof. The argument is essentially the same as in [2]: From the

e A s
definition of z, as a superposition

N * ~
lim inf ytét[n] > e [mW

1>

for n e B+, in particular, for

g(1-9) € U,. Thus

n = J§. Clearly g € U+ and

13 £ [9€] = 1im v,z [9] - 1i
im sup v,z = lim v,z [ - 1lim
o0 Tt too U U t-

t->

inf v, 2, [§(1-8)]
¢ 8 (oW - o [s(1-8)1W = & [9EW. |

This already proves (7.3) if

inf ¢ > 0, as is the case if and
only if {B > 0} = aqQ.

In that case we simply take

F: = ®-
(7.5) LEMMA. If

Fa) r i

T y\)l_l_l < o QoS [P]’
1 Vv

then

1lim sup Ytgt[l] g)@*[l]ﬁ a.s. [P].

t->00
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Proof. .Similarly as in [2] we first consider discrete skeletons,
assuming 7 to take its values on the time skeleton, and then
reduce the continuous time case to the treatment of skeletonsa As

in the preceding section we work with a random cutoff.

Part I. First let Ty be integer wvalued. Define

= {Z'\n[-cp]! Tn: = {;Bn > O]’

né
Nn”lA - Zn,O ;
z = B X 1] = I z s
n, 4 v=1 Vv, N+4d g=1 n, 4
z
~ ~ n, O
~ i o ""j_. (a3 . B N__l 3 J
Sn,L’ n~iBn—1Zn,&’ Sn,&' ln—15n~i Jfl Zn, 1 ~ ?
n Lg'Bn—
~ oy JA
A = 1 B z X 1]
n, 4 n+4 n+d n~l<70§p+£ V, T4
Then
~.1 A ~ o~ ~ ~
n%&n%lﬁi[]g n%ﬁn%[(nLIH%bUE&3+E l%1]+A L’

Step 1. As in the proof of (6.1), step 1,

~ N
=0 a.s. [P], ¢+ O.

o] ¥
Lin(5, ,-E(8, 1)) ‘

Step 2. Define

¥ [

An,&: - Yn+£ﬁn+&An,& .
Then
LE(a LI)< Ty, I v, [M [1]1]
-1 Wt n=1 "t n~l<Tvgn+& veontd-eT,

. A
e (4+1) T v_ vy [1] .
9 v=1 Ty VY
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*
That is, A =+ 0 a.s., and thus
n, 4

lim A =0 a.s. [P], 2> O.
n, 4L
>o0

Step 3. Using (M), we have

- ] ~
1im sup 1n+£ n+&ﬁn 1ﬁ(%mwdji9
I1—>o0

= 1im sup ln+£3 +LAH[M [1]]
n>m ’

Combining steps 1 to 3 yields

Moo . N""l/\ - . * ; ~
1im sup B Zn[l] Cd[1] a.s. [P].
11>00
Part II. We now return to general Ty For every € » O the

A ') 3 ° .
process {zne} can be considered as discrete-time process with

immigration

ﬂ .

= ([Tv/e]+l)e, §v: = X, .

Doing this from now on, define

2 = X [LJ+4Tb:R,_[1] > %, (115 0< t L e,

¥e,J. _ Ane,J me,J Ane, J
Z,)%: = Z(n+1)e 1]+#{t:z " [1] > Zy [1];ne < t { (n+l)e}
v < e 1 o - - J - €, J
Step 1. Repeating step 1 of part I, with Zn,& replaced by Z
- A .
and 4 = 1, Zne[1J
-1A -1
1lim sup ﬁt ztfl] { lim sup ﬁt JZ Zg’J
t>o0 téoo j=1

NJ/\ <‘o> ) ~ ~
C ]1E>iup ﬁnpzne[E z1 a.s. [P] on {W> 0}.



Step 2. We have

s -

rw o, A K al e y e ‘-.,‘_“_ A o
B(y,[1111) I &772% [y [1],

cO

Ay :
s "y"T%Y?\;[l] ooy
v=1 v

Hence, according to part I,
A

, AL/
1lim sup ﬁp‘z
n—>oo 1€

L[ ¢ $7[1] a.s. [P] on (W > 0},

Step 3. Notice that

I E<E>Z€ll g’e” k[ (Jfmll+1)e 1, €0 .

¢,

Combine steps 1 to 3 to complete the proof. [_]

EXAMPLE. As a special case, suppose Tl;ngeeu are the epochs

: A N
of a renewal process and ﬁj,ygﬁe.e are independent, identically

distributed, and independent of {TV}B Then, for any ﬁ € B+, the

condition
= — % +- ~ e }/
(7.6) E log §y[nl {

is sufficient, and if the mean interarrival time A 1ig finite, algo

necesgsary for

This follows from the fact (cf.[2]) that (7.6) is sufficient, and if

A < e0, also necessary for

~

co

- YA y
2 BT Il (@ avs. [P]
V=1



m5bu

i

with any g > 11 Since Tv/v > N, a8 Voo, and oy o=p L(p

we can find a By > 1 such that Yo i}¢1 N
Y] - )
v, and 1if AN { », & ﬁ? > 1 such that Yo gaﬁpv Tor large enough w.

REMARK. In this section we have made no explicit use of our
branching diffusion setup. We needed (M), the existence of a non-
trivial sequence of backward iterates, and - only in the case of

o

o P o PR o v s g I o VAN F -
continuous time with inf ¢ = 0 - the existence of 77 > xg[l],

SN
t > s > 0, such that || E\°/th] 1, as t} 0. As in [2] the special

n
n

case of a finite X has emerged as almost a triviality: Finitene

of X implies inf @'> 0 and || Ef{l <> 0, T = o,
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