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Abstract: 

A short review of the arguments in favour of the likelihood 

principle is given. It is noticed that the likelihood 

principle in itself is not in conflict with inference from 

marginal or conditional experiments. An approach to 

statistical inference, based on the likelihood principle, 

is outlined. This approach includes inference from marginal 

or conditional likelihood functions and significance testing. 
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1~ General remarks on the foundations of statistics. 
==================================================== 

In /1962, Allan Birnbaum proved a result which has had a 

very crucial influence on the discussion of the foundations 

of statistics since then. What he proved was, essentially, 

that a consistent theory of statistical inference , based 

on the idea of a parametric model, leads via some very 

natural principles to the li~elihood J2rin£!pl§,. 

The likelihood principle states that all information 

about an unknown parameter is contained in the likelihood 

function. Distributions, sample sizes etc. should only 

affect the inference through the likelihood function. 

:E'or a review of the most important examples and "paradoxes" 

for and against the likelihood principle, see Basu (1974). 

rrhe likelihood principle fits nicely into the Bayesian 

approach, since the likelihood function is simply the density 

of the posterior distribution with respect to the prior 

distribution. This makes Birnbaum's theorem a very good 

argument for the Bayesian way of doing st-;atistics. But 

many statisticians reject Bayesian inference , because 

they don't want their statements about unknown quantities 

to depend on more or less arbitrary prior distributions. 

The Bayesian answer to the problem of gbjective inference 

is, that all the statistician can do is to report the like

lihood function (or -almost equivalently- a catalogue 

of posterior distributions corresponding to a reasonably 

broad c]ass of priors). But many statisticians feel that 

it should be possible to summarize data in a more accessible 

form. 

Non-Bayesian likelihood approaches to statistical 

inference (see Edwards (1972) , Kalbfleisch and Sprott (1970» 
have had very limited success. The problem is that it is 

far from obvious how to draw conclusions from a likelihood 

function. In the presence of nuisance parameters, it is 

almost impossible. The value of the likelihood function 

at a point can not be taken as a naive measure of the 

"degree of belief" one should have in the hypothesis that 

this is the true value of the parameter. This is most 
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convincingly demonstrated by the case of a single observation 

from a normal distribution with unknovv"n parameters, where the 

likelihood function suggests "infinite belief" in the 
2 hypothesis () = 0 . 

This has forced most non-Bayesian statisticians to the 

conclusion that the likelihood principle is wrong, and 

-consequently- that a formalization based solely on para

metric models is not possible. It has been suggested that 

other structures on the sample space and the parameter space 

should be taken into account (see Barnard's contribution 

to the discussion of Birnbaums 1962-paper). For example, 

it has been argued that certain invariance properties 

of a statistical model should allow for a more concrete 

sort of inference (fiducial and structural inference, see 

Fisher (1956) and Fraser (1968)). It has been argued that 

order structures should support the relevance of tail 

probabilities (see Barndorff-Nielsen (1973) and Cox (1977) ). 

It has been argued that the presence of a "canonical" 

underlying measure Sh0111d support comparison of values of a 

density at different points of the sample space (see 

Martin-Lof (197LI-) and Barndorff-Nielsen (1976)). And it 

has very often been argued, that the presence of a "re-

peti ti ve structure" (that is a natural way of extending 

the experiment, for example by letting the number of obser

vations tend to infinity) should support the use of inference 

procedures Nith desirable asymptotic properties. ,some of 

these arguments have a very strong intuitive appeal. 

Unfortunately, it is hard to see hOlli[ an additional structure 

can affect the very simple arguments given by Birnbaum. 

My intention with this paper is to defend the likelihood 

principle, and to indicate that it is possible to make 

statistical inference under the likeTIihood principle. 

It seems to be generally believed that most classical 

inference procedures (with maximum likelihood estimation 

as the obvious exception) are inconsistent with the likeli~ 

hood principle. As we shall see, this is not quite true. 

Inference from conditional or marginal experiments can 
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be motivated on likelihood grounds, and even significance 

testing has its place in the likelihood hierachy. 

In the following, we are dealing \i>li th parametric models 

( X , (7r-,y. I ~ € e) ). Here, X is the sample space, 

and we have a family Tf-G' & E e, of probability measures 

on 

It should perhaps be emphasized that our starting point 

is that we believe in the model -or, at least, we decide 

to act as if we did. Questions of robustness etc. are 

sometimes put forward in the discussion of the foundations, 

but that seems to be a quite different matter. 

By an e~peri~~g! (or, more precisely, a EerfQEmed experi

!!!:en.1) we mean a parametric model together with an element 

(the ob.§~rvation) x EX. The idea is that 1'18 think of x 

as the observed value of a stochastic variable with distri-

bution 7T.,g , and we want to make conclusions about the 

unknown value of JJ (for example, to estima.te or to 

test a hypothesis about -,g. ). 

If we are to develop a consistent theory of statistical 

inference, based on the concept of a parametric model, then 

there are certain principles which can hardly be avoided. 

Birnbaum stressed two of them: 

~1 ff" " 1 L t t X v b ff" t :::: 1L§u lClepS:Lprll1Clp e; e :.i. -7 1- e su lClen 

for the family (ft1fj-). Then the reduced experiment 

t(x) E (Y , et( TT,;.) I -& E ) contains exactly the same 

information about &- as did the original experiment 

X€(X, (7r~(!I-&€e)). 

The.a~laritY-I2.Einciple (or the conditionalitL..J2Ei££i.:Qle): 

Let s~ X~ Z be ancillary (i.e. the distribution of sex) 

is independent of ). Then, the conditional experiment 

x E (v ( iT S (x) I i9- E e·)) contains exactly the same .L \..!~, ,g. 



_ L~ _ 

information about 19· as did the original experiment 

x E (X ~ (Tl1-Ij.II..-iJ.- E 19) ) • (Here, 7T;(x) denotes the 

conditional distribution of x, given sex) ). 

Notice that by information we mean ~alit§~2:.Y~ infQEmation. 

The idea is that if two experiments contain the same in

formation, then our conclusions from those experiments 

should be the same. 

The two principles are very similar, and they are moti

vated by the same intuitive argument: Suppose that our 

experiment can be simulated by two consecutive experiments, 

where the second experiment may depend on the outcome of 

the first~ And suppose that one of these two experiments 

is completely irrelevant (i.e. the distribution of its 

outcome is independent of ~ ). Then, inference should 

be based on the other part only. 

We shall not give a more detailed motivation here. See 

Birnbaum (1962) or Basu (1974-) for more detailed arguments. 

In the following we shall assume_that the probability 

measures ~fi- have densities p&- with respect to some 

underlying measure. We shall not discuss regularity condi

tions, but readers who prefer to be quite sure about ~vhat 

is going on may assume that X is discrete (or even finite) 

and that the underlying measure is counting measure. After 

all, models with continuous state space are idealizations, 

approximating the case of discrete state space, and general 

principles of inference for the discrete case ought to be 

valid in the continuous case also. 

Birnbaum proved that the above two principles imply the 

following: 

rrhe likelihood princ3:J21e: Let x E ( X , (TTlfl I E e) ) 

and x' E ( X' , (rr;g. I if E » be t\"70 experiments with 

the same parameter space. .Suppose that the two likelihood 

functions are proportional, i.e. there exists a constant 

c > 0 such that Ppt(x) = c.p~(x') for all J9. E e 
Then the two experiments contain exactly the same infor

mation about -&- • 
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It should perhaps be mentioned that the likelihood prin

ciple follows from weaker a,ssumptions than those given by 

Birnbaum, see Basu (1974). 

Example 1. l!et -&- denote the unkno1tm probability of an 
=====-===== 
event. Consider the following two experiments: 

('1) (fixed sample size) 100 independent repetitions 

are performed. The event occurs 15 times. The 

remaining 85 times it does not occur. 

(2) (inverse sampling) Independent repetitions are 

continued until 15 successes have been observed. 

The 15th success occurs at the 100th repetition. 

The two experiments have the same likelihood function 

(namely t9-15( 1 - -&- )85 ) , and so -according to the likeli

hood principle- our conclusions about ~ should be the 

smile after the two experiments. But confidence intervals 

for ,g. and significance tests for specific values of L-CJ

are different in the two eX)Jeriments. Even though the 

differences are small, this indicates that the classical 

concepts of confidence intervals and significance testing 

are in conflict with the likelihood principle. 

Birnbaum's theorem is, I think, a very convincing argument 

for the likelihood principle. But other arguments exist. 

Three of them are given here: 

(1 ) Th~ csmcE!.Et _of likelihood is fundamental: The 

likelihood function gives the probability of what happened 

as a function of the unknown parameter, and what more can 

we ask for? 111any classical inference procedures rely on 

considerations of what m:bgh~ ha:ye hap~ed. 'This argument 

was put forward by Fisher (see e.g. Fisher (1956) ), and 

it seems to be the only argument behind Edwards' acceptance 

of the likelihood function as the central tool in inference. 
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(2) BaYf3sian statistics obeys_the likelihood principle: 

lVlost statisticians agree that if we have a known prior 

distribution (for example if 19- can be regarded as a 

member of a well kn01,,,n population) then the Bayesian 1fil8.Y 

of making inference is the correct one. Now, it is not 

ahvays obvious whether we have a prior or not.. We may 

have a prior estimated from a very small number of's 

etc. It may be acceptable that our methods of inference 

should be different, according to whether Ide have a prior 

or not. But it would be surprising and suspicious if 

information about s8Iilple space etc. -1!vhich is irrelevant 

unaer .!!nx prior distribution- should suddenly become im

portant in case we are not able to specify a prior. 

(3) l1'he S&1112le s~ce is not always well defined: ~'ie 

shall illustrate this by a sequential experiment where the 

stopping rule is only vaguely defined. It is well known 

that the likelihood function is independent of the stopping 

rule (cfr. example 1), and very often this is considered 

an argument aga,2:ns.t the likelihood principle. But it may 

as well be turned the other way around: Consider the 

situation of example 1. Suppose we start out making inde

pendent repetitions \<11i thout much idea about when to stop. 

Our intention may be to prove a theory according to which 

~ = 1/2. When observing the 15th success in experiment 

no. 100, we realize that this is more than enough, and 

since 100 is such a nice number we decide to stop here. 

1tJhat is the stopping rule? And do we really need to 

know it? After all, there is no doubt about what we have 

observed; the stopping rule is merely a part of our 

private opinion about how we managed to observe it. The 

likelihood function is known, and the data seem to contain 

very relevant information about the hypothesis =: 1/2. 

In this and the following section, I shall give a very 

short outline of a likelihood approach to statistical 



- 7 -

inference. I have tried to make a distinction between the 

two main types of inference: Estimation and hypothesis 

testing. However, this does not mean that it is possible 

to skip this section. 

Our starting point can be described as follows: vIe 

believe in the likelihood principle, and we believe in the 

Bayesian argument whenever we ,are willing to state our 

prior knowledge (or lack of knowledge) in terms of a 

probability distribution. But unfortunately we are not 

willing to do that very often. In most situations our 

prior knowledge is better described as a vague feeling of 

what a reasonable prior distribution would be like. 

However, there are situations where such a vague feeling 

is all we need. This is illustrated by example 3 below. 

But before that vIe shall give a very simple example, 

where a direct, non-Bayesian estimation procedure seems 

to be acceptable: 

~~~~R~~=~. Su~opose that the 
two points only, say 1 and 

parameter space consists of 

2. Birnbaum treated this 

case separately in a paper from 1961. We have two proba

bility densities P1 and P2 ' and we observe an x with 

distribution either P1 or P2. Suppose that we have no 

prior knowledge indicating that one of the two hypotheses 

should be more likely than the other. llJhat can we say 

about the true value of We proceed as follows: Con-

sider the values 

observed point 

P1(x) and P2(x) of the densities at the 

These numbers ElTe (proportional to) 

the probabilities of the event observed under the tvlO 
hypotheses. If they are approximately equal, we can 

obviously say nothing of interest. If one (for eXBmple 

P2(x) ) is considerably larger them the 6ther~ the corre

sponding t9- -value is considered_ the most likely, and the 

likelihood ratio (in this case P2(x)/P1(x)) is regarded 

as a measure of "confidence" in this statement about -& • 

This procedure is very acceptable from a Bayesian point 

of view: In case of a symmetric prior, the likelihood 



- 8 -

quotient is simply the ratio between the two probabilities 

of the posterior distribution. Even a Neyman-Pearson-like 

argument supports the procedure: It follows from the 

Neyman-Pearson lemma, that the maximum likelihood estimator 

in this case minimizes the sum of the two error probabilities 

7T1 (estimating to be 2) and '1i2 (estimating va... to 

be 1 ). 

~~g.~R1~=~. ,suppose that is the real axis (or an interval) 

and that we have obtained a likelihood function of shape 

something like fig. 1. It is assumed that our prior 

L(-&-) 

fig. 1 

knowledge about if is almost empty, compared to the 

accuracy indicated by the likelihood function. Typically, 

the likelihood function may be that of a very precise 

measurement (cfr. ,savage (1960) ) of an only ,raguely known 

physical constant "g.,. Our problem is to estimate 1.9- • 

We proceed as follows: Suppose we were to express our 

prior knolt.Tledge in terms of a prior distribution. fJ:1his 

distribution \<"vould obviously have to be very flat, and in 

the small interval of interest (just around the peak of 

the likelihood function) the prior distribution would be 

approximately proportional to Lebesgue measure. This 

means that the posterior distribution is approximately 

equal to the distribution given by the density const.·L 

with respect to Lebesgue measure. Thus, the posterior 

distribution is almost independent of the prior, as long 

as only "reasonable" priors are considered. In this 

case the use of Bayesian estimates and Bayesian confidence 

statements is suggested. 

IV[any statisticians reject this method, simply because 



it is Bayesian. But it can hardly be denied that it is 

possible to make inference from a likelihood function in 

this way. 

The above argument can be applied to any parameter 

space, not only the real axis. But it should be noticed 

that the "robustness" of the likelihood function in 

case of many parameters is very often surprisingly small. 

A seemingly small change of the prior distribution may 

change completely the distribution (prior as well as 

posterior) of certain parametric functions. 

Now, consider a situation where the likelihood 

function is less robust, in the sense that different prior 

distributions give rise to rather different posterior 

distributions. As a more concrete example, suppose we 

obtain a likelihood function like that of fig. 2, 

fig. 2 

being the bounded interval [ l' -&2] ]\Ty personal 

opinion is that all one can do in such a situation is to 

ask questions of the type "What would the posterior 

distribution be like if the prior was •.• The like-

lihood function should be judged on the way it transforms 

prior distributions into posterior distributions. In the 

present situation, it may be possible to end up with some

thing like an upper confidence bov.nd .9-0 for # , ,tJhile 

a point estimate of ~ would be of little use. After all, 

if we are not able to say very much about in advance, 

and if the experiment is rather useless, why should we 

be able to say very much after the experiment? Classical 

statistical methods (like the notion of a confidence interval) 

suggest that it is possible to be very specific in this 
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situation. So much the worse for those methods. 

Until now, the methods suggested have not differed 

much from those recommended by the Bayesian school, see 

in particular Savage (1960) and Dickey (1976). I believe 

that the Bayesian approach is essentially the correct 

one for estimation in the absence of nuisance parameters. 

In the presence of nuisance parameters, the Bayesian 

solution is more difficult to swallow. 

~~g~R1~=d· Let x1 ' y 1 ' ••• , xn ' y n be independent, 
normally distributed 1Hith parameters 

E x. 
l 

E y. 
l 

== 

Varey· ) 
'l 

We want to estimate the variance. Likelihood inference 

from this experiment is complicated by the many nuisance 

parameters. Bayesian elimination of the nuisance parameters 

from the likelihood function is possible if the ~i's 

belong to some welldefined population, but if this is not 

the case, the situation is rather hopeless. It can be 

described as follows: We have made an experiment in order 

to determine (j 2, but we don't know ~Q experiment (it 

depends on the nuisance parameters). Data do not tell us 

very much about which experiment ,,'1e have made, and our 
? 

conclusions 8.bout 0-'- depend very much on this. The 

situation is impossible, and all we can do is to start 

looking for an experiment with a more approachable likeli

hood function. 

Now, we notice that the experiment described above has a 

very nice subexperiment. Suppose, ncunely, that we observe 

onl-y x ,7 X Y These variables are stochastic-" 1 - oJ 1 ' ••• , -11. - n . 
ally independent, normally distributed 1tIi th mean 0 and 

2 variance 20- , and for n large we shall find ourselves 

in a situation like that described in example 3. So why 

not base the estimation of () 2 on this subexperiment , 

pretending that the remaining part of the data was never 
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observed? I think that even orthodox Bayesians 1pJ"Ould 

tend to prefer this solution (or, at least: They would 

tend to wish that they had only observed the differences). 

For some reason, it seems to be generally agreed that 

this method is inconsistent with the likelihood principle 

(see, however, Barnards comment in the discussion of 

Kalbfleisch and Sprott (~1970) and the book of Edwards 

(1972». Obviously, the method involves arguments which 

are not based on the likelihood function of the total 

experiment. However, the method can be justified on 

likelihood grounds as follows: 

Suppose that, Eefore the experiment is carried OlIt, 

we realize that the total experiment is useless, since 

the likelihood function will contain nuisance parcuneters. 

Having realized this, we notice that a certain marginal 

experiment has more desirable properties, and so we decide 

to carry out that marginal experiment. Unfortunately, the 

only way of doing this is to carry out the total experiment, 

followed by a data reduction. But this should not force 

us to believe that the total experiment is the relevant 

one. The likelihood principle tells us something about 

what to do when an experiment ha§. 12.f§.f!: carried out, but 

it does not tell us which experiment to consider. In 

particular, it does not forbid us to consider a marginal 

experiment. 

This justification of the marginal experiment as the 

basis for inference is based on the rather unrealistic 

assumption that the statistician is present before the 

experiment. In practice, this is usually not the case, 

but our common sense tells us that this should not affect 

the argument. All the statistician has to do is to "act 

as if data had not been reported yet ". The decision to 

reduce to a marginal experiment should be based on the 

description of the total experiment, but (at least in 

principle) it should not depend on the data. 

It may be argued that the reduction to a subexperiment 

is somewhat against the ,spirit of the likelihood principle. 



- 12 -

But this criticism of the marginal likelihood method sub

sumes another principle, according to whicb. a bigger ex

periment should always be preferred to a smaller one. Or, 

in terms of likelihoods: The relevant likelihood function 

is always that of the biggest possible experiment involving 

the parameter of interest e I think that principle is wrong .. 

Birnbaum was aware of this problem in 1962. In an 

answer to a question posed by Kempthorne, he suggested 

that the outcome of an experiment based em a randomized 

design should be analyzed as if the (random) allocation 

of treatments to plots had not been observed. This 

suggestion seems to solve the contro~ersy between random

ization and the ancillarity principle. 

Even if reduction to a subexperiment is in formal 

agreement with the likelihood principle, it is obviously 

not a thing one should do whenever it makes inference easier. 

The extreme way of obtaining easy inference is to reduce 

to the empty experiment, where not only the nuisance para

meters, but also the parm-lleter of interest has disappeared 

from the likelihood function. I insist that this behaviour 

would not be in conflict with the likelihood principle, 

but it might violate some other principles which we have 

not discussed here. However, the likelihood principle in 

itself indicates the criteria according to which one should 

choose the best subexperiment: An experiment should be 

jucLged on the likelihood functions it can produce. Two 

criteria present themselves immediately: 

(1) The likelihood function should be such that like

lihood inference is possible (i.e. our conclusions 

should not depend too much on more or less arbitrary 

prior distributions). 

(2) The experiment should be as informative (i.e. as 

big) as possible among those satisfying (1). 

These criteria are very vague, and I don't think it is 

possible to give simple rules as to which experiment one 
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should prefer. Even in the Neyman-Scott example (example 5) 
it is not a trivial matter to decide whether one should 

look at the total eA~eriment or at the differences only. 

It depends on our knowledge about the nuisance parameters. 

However, our conclusion does not depend on a detailed dis

cussion of criteria for optimal choice of an experimente 

The point is that a subexperiment may be preferable in some 

situations, and in such situations we are free to base 

our inference on the likelihood function of that subex

periment. 

Condi tional_ ::md_J2.§:rti_al li~~lil~oods. Until now ~ 1rle have 

argued as if our subexperiment had to be a marginal experi

ment. But obviously, by the same argument we may prefer 

a conditional experiment, or a marginal experiment derived 

from a conditional experiment$ That is, if t(x) ancL sex) 

are statistics such that the observation of t(x), given 

sex), is considered more relevant than the observation of 

the outcome of the total experiment, then we are free to 

base our inference on the corresponding "marginal-condi

tional" likelihood function. 

Even a more general kind of "subexperiments" may be 

considered: Suppose that live make a finite sequence of 

experiments. After any experiment, we are free to decide 

whether or not to go on to the next experiment, and the 

next e:xperiment may depend on the outcome of the previous 

ones. I'1oreover, some of these experiments may be marginal 

experiments. Thus, the final likelihood function -the 

so called ~r~ial li~elihood f~gctl2Q (Cox (1975) )- is 

a product of marginal likelihood functions, each of which 

is derived from a conditional experiment, given the previous 

ones. Such a likelihood function can not ahvays be derived 

as the likelihood function of a conditional or marginal 

(or "condi tional~marginal ,,) experiment. Vile shall not 

give a more precise definition of partial likelihood 

functions here. The following exall1ple illustrates the 

idea in a special case: 



~~glHR1~;=~. Suppose we observe k generations of some animal 

population under conditions where the usual branching 

process model is applicable. However, we are not interested 

in the offspring distribution, but only in the probability 

p that a nev,lborn individual dies immediatel~r after birth 

from a certain disease. The obvious estimate of p is 

the number x of deaths of this kind, divided by the total 

number n of births observed. Intui ti vely vve feel that, 

according to accuracy, this estimate can be regarded as if 

the total nUIflber of births VJaS fixed, in which case 'vIe 

would have the simple situation of estimating in a binomial 

distribution. ~his can be motivated as follows: Let 

denote the total number of individuals born into the 
.th 
1 generation, and let Xi denote the number of those 

n. 
1 

who die from the disease immediately after birth. First 

we observe x1 ' given n1 , which gives us the likelihood 

function pX1 (1_p)n1-x1. f['hen we observe a lot of things 

which we are not intere,sted in, namely the growth and 

parental behaviour of the first generation. All this 

information is disregarded. ide are now in the position 

to make a nel,'l relevant observation, namely x 2 ' given n2" 

The likelihood function pX2 (1_p)n2-x 2 is multiplied 

by the likelihood function of the previous erperiment. 

Continuing in this manner, we end up with the partial 

1 '1 l'h "f L' pX(1_p)n-x. l~e 1_000 -unc~lon 

It is not obvious that it makes sense to multiply these 

likelihood functions together as if they were likelihoods 

of independent experiments. However, the procedure can 

be justified by a Bayesian argument: Suppose we start out 

wi th a prior distribution for the -parameter of intere,st, 

(p , in the example). Then, after the first experiment, 

we end up with a posterior distribution. This distribution 

represents our present belief, and the outcome of the first 

experiment can now be regarded as a given constant. Now 

we are free to carry out any new experiment, for example 

a subexperiment of some experiment which is determined by 

the outcome of the previous experiment. ligain, the prior 

distribution (i.e~ the posterior distribution from the first 



experiment) is multiplied by the likelihood function ·too 

form .9. new posterior distribution. Continuing in this way, 

we obviously end up with a posterior distribution which 

is the product of the first prior distribution and the 

partial likelihood function. Thus, as long as our inference 

from the partial likelihood function is essentially Bayesian, 

the partial likelihood function ha,8 exactly the smIle opera

tional meaning as a proper likelihood function. It shol).ld 

be noticed, however, that a partial likelihood function is 

not a likelihood function of an experiment. It is not 

obvious to me how such a partial likelihood function can 

be ascribed any meaning in a non-Bayesian framework. 

Red~ctlon of~exper~~ent-Kor c9~putational con~enience. 

Our reason. for preferring subexperiments in the previous 

examples was to avoid nuisance parameters. However, other 

reasons may exist. 

~~gr£~~~=2. J-"et x 1 ,·,·, 
distributed with density 

x be independent, identically 
n 

p(x + 1.9-) 1)Tith respect to Lebesgue 

measure on the real line, 

The correct way of 

the likelihood function 

and suppose we want to estimate 

doing this is of course to compute 

= I') (x'l + ~ ) ••• p (x + .- n ) 

and make inference as indicated in examples 3 and L~ • 

However, this ma.y be computationally very tedious. j l.J1 

easy \vay of escaping this problem is the following: 

;Suppose we have a statistic t(x1 , ••• , xn) (for example 

the median or the mean of the empirical distribution) 

which is known to be approximately normally distributed 

with mean t9- and variance close to the Cramer-F{.ao lower 

bound. It is intuitively obvious, then, that t contains 

almost all the information we are interested in. So why 

not act as if we had only observed t? It makes inference 

much easier, because the likelihood function is (approxi

mately) known. 

It may seem surprisirJ,g, that such methods have a place 
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in likelihood inference. But, again, the likelihood prin

ciple in itself is not violated by this method. All we 

can say against the method is that it obviously wastes 

some information, namely the information contained in the 

conditional distribution of the sample given t. But if 

this information is found to be so small that it is not 

worth the trouble to use the correct likelihood function, 

then our marginal inference procedure seems to be perfectly 

well motivated. 

An important criticism against the likelihood principle is 

that it is impossible to make anything like a significance 

test, based on the likelihood function of the total experi

ment. In this section, vie shall see that significance 

testing can be regarded as likelihood inference from a 

subexperiment.. But first, we shall discuss how to handle 

a likelihood function in a testing situation. 

There is one (and essentially only one) testing situation 

where a pure likelihood approach is possible: 

Si@£le h;YI?othesis ~ainst simpl"~ al ternati ve. Suppose 

that the parameter space consists of two points 1 and 21 

corresponding to the densities p and p From a -- ~- 12 • 
single observation x we want to test the bypothe,sis 

-& = 1. That is, we want to know if data are decisively 

against the hypothesis ~ = 1 in favour of ~ = 2 • 

The obvious thing to do is the following: Consider the 

likelihood quotient Q:=: P2(x)/P/L(x) 0 If this number is 

very large, it means that the probability of the event 

observed is very much larger under the alternative hypothesis 

f)- == 2. Thus, if we have to make a decision we shall 

obviously reject the hypothesis ~:=: 1 for Q greater 

than some number c , for example c == 20 or c = 100. 

This procedure has a very desirable property, which may 

also be of help when we are to choose c: The size of the 

test (i.e .. the probability of rejecting the null hypothesis 
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when it is true) is smaller than 1/c. I"loreover, by the 

Neyman-Pearson lemma, this test is the most powerful 

among tests of the same size (i.e. it minimizes 

7T 2( accepting 19- = 1) for fixed 7T1 (re j ecting = 1) ). 

This approach was suggested by Dempster (1974), and the 

following approach to the case of simple hypothesis against 

composite alternative is also very similar to Dempster's: 

Simple h::zJ2Qth~~i§2E5ainsL~~ompo~i te al tern@;ti v~. F'or 

simplicity, the parameter space is assumed to be the real 

axis (or an interval). We want to test the hypothesis 

= against the alternative 

This situation can be reduced to the situation of 

a simple hypothesis against a si~le alternative, if we 

are willing to specify the alternative 19- + o 
in terms 

of an "al ternati ve prior". By an alternative prior we 

simply mean a probability distribution tX on the set 

e \ {-&-o} • Having specified this, the test is carried out 

as a test of the simple hypothesis 1.9-::::: -&- against the o 
simple hypothesis "&- has distribution 0<" The test 

statistic Q can be written as 

= 

where L is the likelihood function. 

The obvious interpretation of ~ is that ~ specifies 

our "prior knowledge ,given that + " ~:he pro-
o 

cedure is essentially Bayesian, since the conclusion of 

the test is very similar to the conclusion we ""ould obtain 

if we started up with a prior distribution of mixed type, 

namely a convex combination of 0( and the Dirach measure 

at -& o. However, the applicability of the test is not 

restricted to situations where such a prior knowledge can 

be specified. The alternative prior ~ specifies the 

alternative, but as to the test itself, this only means 

that c< specifies the conditions under which the test is 

Q}2timal. For example, if we want a test which is pO\Alerful 

against small deviations from ? we should take care 
o 
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that ~ has a substantial part of its mass close to &0. 

j\.nd if we suspect certain alternative v9.lues of if, 0< 

should have a sUbstantial part of its mass at (or close to) 

those points. For statisticians of the Neyman-Pearson 

school, the best interpretation of ~ is probably the 

follovving ~ The alternative prior 0( represents a criterion 

for maxim~zation of the power function. The test we end 

up with is optimal in the sense that the integral of the 

power function with respect to D( is maximal among tests 

of the same size. 

Obviously, the conclusion of the test varies with ~ 

and this is the main argument against the method. Ho1tJever, 

this variation depends very much on the actual likelihood 

function. vie shall illustrate this by three more specific 

examples: 

:g~g~~~~::::~. Suppose we have a likelihood function like 

that of fig. 3. In this case, the conclusion of the test 

fig. 3 

depends strongly on ~ In oreler to apply the method 

indicated above we must be willing to state rather expli

citely what we want to test against (the alternative prior). 

It should be noticed, however, that large values of the 

test statistic Q cLlways indicate that the null hypothesis 

is false. For ex:ample, Q > 100 rneans Jehat the a1 terllB_ti ve 

hypothesis "-JL has distribution c< " makes data at least 

100 times more probable than does the null hypothesis, and 

even if was specified rather arbitrarily (before the _ c.. ____ _ 

. . ) experlmen-c , this is a decisive argument against the null 

hypothesis. For ~ = , the probability of obtaining 
o 
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Q > 100 is smaller than 1/100. 

~~gl~m1~=2. Now, consider a likelihood function like that 

of fig. 4. Obviously, we have to accept the null hypothesis 

fig. 4 

in this situation: For Ql:!;;.z: al ternati ve prior o( (even for 

0( concentrated at a single point) we obtain Q ~ 1 • 

More generally, suppose that 

than L( c9-0) , for example that 

max L is not much greater 

for all 

Then we have Q ~ 5 for any 0( , and so we would accept 

the null hypothesis for any 0(. In this sense, the likeli

hood function allows for 9bjective inference. 

~~g~~~~=lg. This time we assume a likelihood function as 

indicated by fig. 5. f10re precisely, let us say that the 

fig. 5 

likelihood function has its values close to 1 , except 

on a small neighbourhood of ~ ,and that the value at o 
& is .01. Then, for any ~ which is reasonably flat o 
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(or just with only little of its mass contained in the 

small neighbourhood of 0) we have approximately Q = 
100. Loosely speaking, this means that for ~QY reasonable 

alternative prior (even for one-point alternatives not too 

close to -JL 0) the hypothesis -J} t 1.9 0 makes the observed 

data about 100 times more probable than does the null 

hypothesis == -&- 0 ~ and by this argument we re,ject the 

null hypothesis. Hence, in this situation it is not 

necessary to specify the alternative prior in full detail, 

if we are willing to accept that alternative values of ~ 

close to 1J~ can not be detected by the test. In this 
o 

sense, we can reject the null hypothesis on ~ctive 

grounds. 

Thus it seems that likelihood functions like those of 

fig. Li- and fig. 5 are preferable to the (more typical) 

likelihood function of fig. 3. The reader may find that 

-the function of fig. 5, does not look very much like a 

likelihood function. But the whole point of this section 

is~that if we want to be able to reject a hypothesis 

if =.,y.. on objective grounds, then we have to make ex-
o ----

periments that can produce such a lik.elihooo. function. 

Irhis is where significance testing comes in. We shall 

illustrate the idea by a more concrete exarrrple; 

~?f~R1~=22. Let -&- denote the value of some physical 

constant, and suppose that somebody has put forward the 

hypothesis -&- == o' We do not believe in this hypothesis. 

How can we J2.rove that it is false (or, £Jt least, very 

unlikely to be true)? To our disposal Vife have a very 

accurate instrument for measurj_ng quanti ties like 

Whatever we do should include such a measurement. The 

question is hOI!'! to formalize the inference procedure. 

We shall consider two solutions to this problem: 

We specify the alternative -&-
o 

in terms 

of an al ternati ve prior 0(. 'rhen we carry out the 

measurement. If the test statistic Q = 

~L(t9-)O«(d / L(-&-o) is very large (which is what 
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we expect), for eXBJuple q ~ 1000 , then we can 

argue as follows: Even if our specification of the 

alternative is rather arbitrary, it maIms data at least 

'1000 times more probable than does the hypothesis 

== 6" In case o 
probability less than 

if == -va. 0 ' this would happen with 

1/1000. 

This argument E£.9ui~ that 0< is specified be.f2l:§. the 

experiment. Arguments of the type "for any reasonable 

prior... " may be possible in some situations, but a 

reasonable prior can not be defined as a sufficiently flat 

prior. The more flat we make the alternative prior, the 

slnaller becon18s the test statistic i:{ \\fha,te-ver}{ is, 

the hypothesis == -&- will always be accepted for IX o 
flat enough. This means that the "proof" of falsity 

of the null hypothesis depends entirely on our choice of 

0\ • This is not very desirable, since it reduces a 

scientific inference procedure to a sort of gambling. 

In order to reject the null hypothesis, we must be able 

to J2.EQ~ (by Vvl tnesses or whatever) that 0( was chosen 

in advance. 

In order to avoid the se difficulties, we rna;y prefer to 

base the inference on a subexperiment: 

(2) The measurement is carried out, but we reduce to 

the summary statistic 

1 0 if Ixl > 30-
y == 

l 1 if Ixl ~ 3CJ 

where u denotes the (knmm) standard deviation of 

our measuring instrument. In case we obtain y == 0 

(which is what we expect), we have a marginal likeli

hooel function like that of fig. 5 (namely the power 

function of a u-test), and the null hypothesis is re

jected by the argument given in example 10. 

Hence, it seems that the apnroach (2) allows for a 

somewhat more convincing "proof" of the falsity of the 
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null hypothesis. r:[!he reduction to a binary subexperiment 

is very analogous to the reductions made in section 3 in 

order to avoid nuisance parameters. From the point of view 

of hypothesis testing, the specific value of the parameter 

(in case the null hypothesis is false) is a nuisance para

meter, and the reduction to the binary experiment is made 

in order to obtain a likelihood function which is approxi

mately independent of that nuisance parBIJ1eter. 

Si.3nificanc~~stigg. The above eXE'.<mple indicates the 

role of significance test±ng in likelihood inference: A 

significance test is a subexperiment with two outcomes, 

o (or "reject") and 1 (or "accept"). The likelihood 

function corresponding to the outcome "reject" is called 

the power function, and the likelihood function correspond

ing to the outcome "accept" is then one minus the power 

function. As in any other experiment, the outcome of a 

significance test should be judged on its likelihood 

function only. The advantage of a significance test 

-as compared to the total experirnent- is that the likelihood 

function alloll'Js for a more objective sort of conclusions 

(in case of test of a simple hypothesis, it is subsumed 

that the two possible likelihood functions should be of 

1 1 "1 '1 ~ f" 4- d 1::) slape _ lee 1J_'l0 se OI 19. an _ ./ • 

It should be emphasized, that from this point of view 

a significance test is not a way of making inference from 

the total experiment. A significance test is an experiment. 

This solves the "stopping rule paradox": 

if~gr~R1~::::;l~. IJet X 1 '][2'... denote the decrease of blood 

pressure obtained by a certain treatment for patients 

/) , 2 , •• • A doctor l.'\Tants to prove that the treatment 

has an effect -positive or negative. To this end, he 

continues sampling until significance is obtained by an 

ordinary t-test on the one per cent level. It is well 

known that this is going to happen sooner or later, even 

if the treatment has no effect at all. But the doctor 

argues as follov.JS: "According to the likelihood principle, 

the final experiment is equivalent to an experiment with a 



fixed stopping time. In that experiment, we would reject 

the null hypothesis by at-test" • 

This "paradox" has very often been considered an im

portant argui:nent against the likelihood principle. But 

from our point of view, the doctor's argument is not a 

correct application of the likelihood principle. It is 

correct that the total experiment is equivalent to an 

imagined experiment of fixed sample size c '1'his means 

that our situation, when we try to make inference from 

the sequential e:x:periment, is exactly as it would be if 

we tried to make inference from the tot~1. imagined ex

periment. But this does not include a t-test, since a 

t-test makes inference from a subexueriment of the imagined -----'------
experiment. 

Thus, as long as we intend to base our inference on the 

likelihood f-cll'lction of the total experiment, the stopping 

rule plays no role. We can sample freely, until we decide 

to stop for one or another reason. But as soon as we \tvant 

to consider a subexperiment -like a t-test or a sequential 

test- we must specify the stopping rule in advance, because 

the likelihood function of the sube:imeriment does depend 

on the stopping rule. 

~~st of com12osite hu.2..!E-ese§.. In test of a simple 

hypothesis , it is very often a matter of taste lilhether 

one should make inference directly from the total eXl)eriment, 

or from a significance test. lile may have an idea about 

the order of magnitude of 8- , and that imposes a bound 

on the flatness of the alternative prior. In that case, 

statements of the type "for any reasonable al ternati ve 

prior .•• " may be acceptable. 

When testing a composite hypothesis (against a composite 

alternative) the situation is much more complicated, and 

this i,8, perhaps, where significance testing really comes 

into its own right. IJet e c e denote a subset of the o 
parameter space, and suppose that we want to test the 

hypothesis -&- E e Typicall~y, G will be a subset 
o 

of a Euclidean space, and e will be a manifold of lower 
o 



dimension e In order to reduce to the case of simple 

hypothesis against simple alternative, we have to specify 

the al tern8.ti ve as we.~l as the hypothesis itself in terms of 

"prior" distributions$ The test statistic becomes 

= ) 

where 0( specifies the alternative and (3 specifies the 

hypothesis to be tested. The conclusion of such a test 

depends in a very complicated manner on 0( and f3 It 

is not true -as it was in case of a simple hypotbesis-

that the event Q ~ c has probability ~ 1/c under 

the null hypothesis. This is only true if our specification 

of the null hypothesis is correct (Whatever that means in 

practice) • 

Obviously, the first thing one should look for in this 

situation is a nice subexperiment, parametrized by a functinn 

cp = cp ( ), such that our composite hypothesis is reduced 

to a simple hypothesis = (where e o = 
{ if I .:p( ) := fo } ). But even if such 8. reduction is 

not possible, we may still be able to make a significance 

test: 

IJet -c: X ~ {O, 1} be a transformation such that 

(1 ) 7T17 { t(x) = 0 } is small (for example ~ .01 ) 

for any ,g.. E eo . 

(2) = 0 } is close to 1 for e o 
except for 6L very close to e o 

Inference from this subexperiment is easy: In case I<Je 

observe t(x) = 1 , we obviously have to accept the null 

hypothesis, since all values of the likelihood function 

L( .9- ) "'--,1+ { t(x) := 1} for E e are very close o 
to sup L. For t(x) = 0 , we can argue as foll0\;1Is: Ji'or 

mq specifying the null hypothesis and for any al terna-

tive prior ex with only little of its mass close to eo 
Q is very large (for example ~ 1(0). Thus~ we reject 
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the null hypothesis 

Again, the ~'approximate objectivity" of the conclusion 

is obtained by reduction to a sube::qJeriment. 'The point 

is that the binary subexperiment y:= t(x) contains very 

Ii ttle "nuisance" information. From the point of view 

of hypothesis testing, a likelihood function completely 

free of nuisance information would be of the form 

{ a for ff E & 
0 

\. b for ¥ 0 

Usually, a likelihood function of this form can not be 

obtained (most likelihood functions are continuous), but 

the likelihood functions of a significance test are 

approximately of this form. 

In the choice of significance test, all sorts of classical 

considerations may be of relevance. Pmiler considerations 

e.re very important, because the power function determines 

the two possible likelihood functions. Obviously, a 

uniformely most powerful test should be preferred when it 

exists. If not so, the notion of an unbiased and locally 

most powerful test may serve as a guideline in the choice 

of test. Also invariance properties of tests should be 

taken into account. 

A final remark: It has been assumed in this section 

that a significance test has to be a ~g.i~ binary 

experiment. But obviously, by the same arguments we may 

Drefer to base inference on a binary statistic in a condi

tional experiment. C[1hus, also conditional significance 

testing comes out as a special sort of likelihood inference. 

In practice, the statistical analysis of a set of data 

(given the model) involves consideration of many different 

sUbe:x:periments. liIany different conclusions are made about 

the parameters, and each of these conclusions is based on 

the subexperiment which is considered the most relevant for 
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this specific purpose. rrhe thing 1 that makes the likelihood 

principle seem so very naive from a practical point of 

view, is the idea that this whole process of inference 

can be replaced by some considerations based on a single 

function, the likelihood function of the total experiment. 

But,as we have seen, this idea is not a necessary consequence 

of the likelihood principle. The likelihood principle 

does not reduce statistical inference to a triviality. 

Inference from a likelihood function is not easy, and to 

this comes the problem of choosing the best subexperiment 

for each of the many kinds of inference we vvant to make. 

It seems that very little can be said in general about the 

last problem. All "\PTe can say is that a subexperiment 

should be judged on the likelihood functions it can produce 

(or more precisely: on the distribution of its likelihood 

function). Recluction to a subexperiment is a way of 

avoiding nuisance information, for example nuisance para

meters for which 1;1e have no prior distribution. 

ThUS, the conclusion of this paper is that the "like

lihood paradox" (i.e. the inconsistency of classical in

ference methods with the likelihood principle) disappears 

when we introduce a careful distinction between an experiment 

and any of its subexperimentse We have to give up the 

idea that an experiment (in our technical use of this 

1;wrd) contains the information of any of its subexperiments" 
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