Steen A.Andersson

Canonical Correlations with

Respect to a Complex Structure

1. Introduction

Let E be a vector space of dimension $2 p$ over the field of real numbers \mathbb{R}. Let $x_{1}, \ldots, x_{N}(N \geq 2 p)$ be identically distributed independent observations from a normal distribution with mean value 0 and unknown covariance Σ. That is, Σ is a positive definite form on the dual space E^{*} to E. The maximum likelihood estimator $\hat{\Sigma}$ for Σ is well-known to be given by

$$
\hat{\Sigma}\left(x_{1}, \ldots, x_{n}\right)=\left((x *, y *) \rightarrow \frac{1}{N} \sum_{i=1}^{N} x *\left(x_{i}\right) y *\left(x_{i}\right) ; x^{*}, y * \in E^{*}\right)
$$

The distribution of $\hat{\Sigma}$ is the Wishart distribution on the set $p\left(E^{*}\right)_{r}$ of positive definite forms on E^{*} with N degrees of freedom and parameter $\frac{1}{N} \Sigma$. Suppose now that E is also a vector space over the field \mathbb{C} of complex numbers such that the restriction to the subfield of real numbers in \mathbb{C} is the original vector space structure on E 。 The dimension of E as a vector space over \mathbb{C} is then p. The vector space E^{*} is then also a vector space over the complex numbers under the definition $z x^{*}=x^{*} \circ \bar{z}=(x \rightarrow x *(\bar{z} x) ; x \in E), x^{*} \in E^{*}, z \in \mathbb{C}$. The set $\mathbb{P}_{\mathbb{C}}\left(E^{*}\right)_{r}=\left\{\Sigma \in P\left(E^{*}\right)_{r} \mid \Sigma\left(z x^{*}, y^{*}\right)=\Sigma\left(x^{*}, \bar{z} y^{*}\right), \forall x^{*}, y^{*} \in E^{*}, \forall z \in \mathbb{C}\right\}$ defines a nulhypothesis in the statistical model described above. The condition $\sum\left(z x^{*}, y^{*}\right)=\sum\left(x^{*}, \bar{z} y^{*}\right), \forall x^{*}, y^{*} \in E^{*}, \forall z \in \mathbb{C}$ is in Andersson [2] called the \mathbb{C}-property and in terms of matrices it has the formulation: For every basis $e_{1}^{*}, \ldots, e_{p}^{*}$ for the complex vector space E* the matrix for a Σ with the \mathbb{C}-property with respect to the basis $e_{1}^{*}, \ldots, e_{p}^{*}, i e_{1}^{*}, \ldots, i e_{p}^{*}$ for the real vector space E^{*} has the form

2. Representation of the maximal invariant

2.1. Lemma. Let Π be a positive definite form on the \mathbb{R}-space E. Then there exists a basis e_{1}, \ldots, e_{p} for the \mathbb{C}-space F such that the $2 p \times 2 p$ real matrix for Π with respect to e_{1}, \ldots, e_{p}, $i e_{1}, \ldots$, ie e_{p} has the form

$$
\left\{\begin{array}{ll}
I & D_{\lambda} \tag{2.1}\\
D_{\lambda} & I
\end{array}\right\}
$$

where I is the $p \times p$ identity matrix and
(2.2) $D_{\lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ with $1>\lambda_{1} \geq \ldots \geq \lambda_{p} \geq 0$.

Furthermore, the matrix D_{λ} is uniquely determined by $I I ;$ and if $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{p}>0$, then Π also determines the basis e_{1}, \ldots, e_{p} uniquely up to the sign of each basis vector.

Proof: Let $e_{1}^{\prime}, \ldots, e_{p}^{\prime}$ be a basis for the \mathbb{C}-space E and let

$$
\left\{\begin{array}{ll}
\Pi_{11} & \pi_{12} \\
\Pi_{12}^{\prime} & \Pi_{22}
\end{array}\right\}
$$

be the $2 p \times 2 p$ real matrix for Π with respect to $e_{1}^{\prime}, \ldots, e_{p}^{\prime}$, $i e_{1}^{\prime}, \ldots, i e_{p}^{\prime}$. The assertion is then that there exists a nonsingular complex $p \times p$ matrix $Z_{1}=A+i B$ such that

$$
\left\{\begin{array}{cc}
A^{\prime} & B^{\prime} \tag{2.3}\\
-B^{\prime} & A^{\prime}
\end{array}\right\}\left\{\begin{array}{cc}
\Pi_{11} & \Pi_{12} \\
\Pi_{12}^{\prime} & \Pi_{22}
\end{array}\right\}\left\{\begin{array}{cc}
A & -B \\
B & A
\end{array}\right\}=\left\{\begin{array}{cc}
I & D_{\lambda} \\
D_{\lambda} & I
\end{array}\right\}
$$

the v^{\prime} th row of Y with $\exp \left[-i \theta_{v} / 2\right]$, where $d_{v}=\left|d_{v}\right| \exp \left[i \theta_{v}\right]$, $\nu=1, \ldots, p$, and call this new matrix for Z, we obtain (2.6) with $\lambda_{\nu}=\left|d_{V}\right|, \nu=1, \ldots, p$. Since Π is positive definite, we have $1>\lambda_{1}>\ldots \geq \lambda_{p} \geq 0$. The uniqueness follows from a rather elementary examination of the proof in [3] or from direct matrix calculation. Since every matrix of the form (2.1) with $1>\lambda_{1} \geq \ldots$ $\geq \lambda_{p} \geq 0$ is positive definite it follows from Lemma (2.1) that the mapping from $p\left(E^{*}\right)_{r}$ onto $\Omega=\left\{\left(\lambda_{1} \ldots, \lambda_{p}\right) \in \mathbb{R}_{+}^{p} \mid 1>\lambda_{1} \geq \ldots \geq \lambda_{p} \geq 0\right\}$ determined from Lemma 2.1 is a maximal invariant function.

3. Canonical correlations with respect to a complex structure.

Interpretation.

It follows from Lemma 2.1 that there exists a basis e_{1}, \ldots, e_{p} for the \mathbb{C}-space E such that the $2 p \times 2 p$ matrix for \sum with respect to $e_{1}^{*}, \ldots, e_{p}^{*}, ~ i e_{1}^{*}, \ldots, i e_{p}^{*}$ has the form (2.1). In (2.1) D_{λ} is unique; and if $\lambda_{1}>\ldots>\lambda_{p}>0$, the basis $e_{1}^{*}, \ldots, e_{p}^{*}$ for the \mathbb{C}-space E^{*} is unique up to a sign for each element. λ_{j} is called the j-th theoretical canonical correlation of \sum with respect to the complex structure, and e* is called the j-th theoretical canonical linear form of \sum with respect to the complex structure $j=1, \ldots, p$. Let $x \in E *$ have coordinates ($\alpha_{1}, \ldots, \alpha_{p}$, $\beta_{1}, \ldots, \beta_{p}$) with respect to $e_{1}^{*}, \ldots, e_{p}^{*}, i{ }_{1}^{*}, \ldots, i \underset{p}{*} . \quad$ Then

$$
\begin{align*}
& \sum\left(x^{*}, x^{*}\right)= \tag{3.1}\\
& \sum_{i} \alpha_{i}^{2}+\sum_{i} \beta_{i}^{2}+2 \sum_{i} \lambda_{i} \alpha_{i} \beta_{i} \tag{3.2}\\
& \sum\left(i x^{*}, i x *\right)= \\
& \sum_{i} \alpha_{i}^{2}+\sum_{i} \beta_{i}^{2}-2 \sum_{i} \lambda_{i} \alpha_{i} \beta_{i}
\end{align*}
$$

4. The distribution of the empirical canonical correlations with respect to a complex structure.

The estimator $\hat{\Sigma}\left(x_{1}, \ldots, x_{N}\right)$ for Σ in the observations point $\left(x_{1}, \ldots, x_{N}\right)$ is given in the introduction. Suppose that $\sum \in P_{\mathbb{C}}(E *)_{r}$ and let $e_{1}^{*} \ldots e_{p}^{*}$ be a basis for E^{*} such that the $2 p \times 2 p$ matrix for Σ with respect to the basis $e_{1}^{*}, \ldots, e_{p}^{*}, i e_{1}^{*} \ldots, e_{p}^{*}$ is the $2 p \times 2 p$ identity matrix. The distribution of Σ in terms of matrices is a Wishart distribution with a representation as a density with respect to the restriction of the Lebesgue measure to all positive definite $2 p \times 2 p$ matrices $p\left(\Omega^{2 p}\right)_{r}$ as follows
(4.1) $\quad c \cdot|\operatorname{det} \Theta|^{(N-2 p-1) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}(\theta)\right\} d \theta, \theta \in P\left(\mathbb{R}^{2 p}\right)$.

The canonical correlations and linear forms (with respect to the complex structure) of $\hat{\Sigma}\left(x_{1}, \ldots, x_{N}\right)$ is called the empirical canonical correlations and linear forms with respect to the complex structure. The classical theory of canonical correlations is due to Hotelling [4]. We shall find the distribution of these. If we define Φ and Ψ from the $2 p \times 2 p$ real matrix θ, as in formula (2.5), we have a one-to-one and onto mapping between $P\left(\mathbb{R}^{2 p}\right)_{r}$ and $P\left(\mathbb{C}^{\mathrm{p}}\right)_{r} \times \mathscr{S}\left(\mathbb{C}^{\mathrm{p}}\right)$, where $P\left(C^{P}\right)_{r}$ respectively $\mathscr{S}\left(\mathbb{C}^{P}\right)$ denotes the set of positive definite hermitian respectively symmetric $p \times p$ complex matrices, with Jacobian 1. Furthermore, (2.6) defines a one-to-one mapping from $G L_{+}\left(\mathbb{C}^{\mathrm{P}}\right) \times \Omega$ into $P\left(\mathbb{C}^{\mathrm{p}}\right)_{r} \times \mathscr{S}\left(\mathbb{C}^{\mathrm{p}}\right)$, where $\mathrm{GL}_{+}\left(\mathbb{C}^{\mathrm{p}}\right)$ is the subset of all nonsingular $p \times p$ complex matrices with a positive real part in the first row and $\Omega=\left\{\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in \mathbb{R}^{p} \mid 1>\lambda_{1}>\ldots>\lambda_{p}>0\right\}$.
on $\mathrm{GL}_{+}\left(\mathrm{C}^{\mathrm{P}}\right) \times \Omega$. Integrating over $\mathrm{z} \in \mathrm{GL}_{+}\left(\mathrm{C}^{\mathrm{p}}\right)$, we get the distribution of $f_{1}=\lambda_{1}^{2}, \ldots, f_{p}=\lambda_{p}^{2}$:

$$
\begin{equation*}
\left.c_{3} \prod_{i=1}^{p}\left(1-f_{i}\right)(N-2 p-1) / 2 \prod_{i<j}^{\left(f_{i}\right.}-f_{j}\right) d f_{1}, \ldots, d f_{p} \tag{4.4}
\end{equation*}
$$

on $\Omega=\left\{\left(f_{1}, \ldots, f_{p}\right) \in \mathbb{R}^{p} \mid 1>f_{1}>\ldots>f_{p}>0\right\}$. Formula (13) in
[l], p. 324, for $p_{1}=p, p_{2}=p+1$ and N replaced by $N+2$ gives the normings constant c_{3}, namely,
(4.5)

$$
c_{3}=\Pi^{\frac{p}{2}}{\underset{i=1}{\Pi}}_{\Gamma\left(\frac{1}{2}(N-p+l-i)\right) \Gamma\left(\frac{1}{2}(p+1-i)\right) \Gamma\left(\frac{1}{2}(p-i)+1\right)}^{\Gamma} .
$$

REFERENCES

[1] Anderson, T.W. (1958) . An Introduction to Multivariate Statistical Analysis, Wiley, New York.
[2] Andersson, S.A. (1975). Invariant normal models. Ann. Statist. 3, 132-154.
[3] Bourbaki, N. (1959). Elements de Mathematique, Algebra, Chapitre 9, Hermann, Paris.
[4] Hotelling, H. (1936). Relations between two sets of variables. Biometrika $\underset{\sim}{28}, 321-377$.
[5] Hsu, P. L. (1939). On the distribution of the roots of certain determinantal equations. Ann. Eugen., 9, 250-258.

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF MATHEMATICAL STATISTICS，UNIVERSITETSPARKEN 5，

2100 COPENḢAGEN Ф，DENMARK．

No． 1 Asmussen，S申ren \＆Keiding，Niels：Martingale Central Limit Theorems and Asymptotic Estimation Theory for Multitype Branching Processes．

No． 2 Jacobsen，Martin：Stochastic Processes with Stationary Increments in Time and Space．

No． 3 Johansen，S申ren：Product Integrals and Markov Processes．
No． 4 Keiding，Niels \＆Lauritzen，Steffen L．：Maximum likelihood estimation of the offspring mean in a simple branching process．

No． 5 Hering，Heinrich：Multitype Branching Diffusions．

No． 6 Aalen，Odd \＆Johansen，S申ren：An Empirical Transition Matrix for Non－ Homogeneous Markov Chains Based on Censored Observations．

No． 7 Johansen，S申ren：The Próduct Limit Estímator as Maximum Likelihood Estimator．

No． 8 Aalen，Odd \＆Keiding，Niels \＆Thormann，Jens：Interaction Between Life History Events．

No． 9 Asmussen，Sфren \＆Kurtz，Thomas G．：Necessary and Sufficient Conditions for Complete Convergence in the Law of Large Numbers．

No． 10 Dion，Jean－Pierre \＆Keiding，Niels：Statistical Inference in Branching Processes．

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN \emptyset, DENMARK.

No. 1 Tjur, Tue: Statistical Inference under the Likelihood Principle.
No. 2 Hering, Heinrich: The Non-Degenerate Limít for Supercritical Branching Diffusions.

No. 3 Henningsen, Inge: Estimation.in $M / G / 1$-Queues.

No. 4 Braun, Henry: Stochastic Stable Population Theory in Continuous Time.
No. 5 Asmussen, S ϕ ren: On some two-sex population models.
No. 6 Andersen, Per Kragh: Filtered Renewal Processes with a Two-Sided Impact Function.

No. 7 Johansen, S申ren \& Ramsey, Fred L.: A Bang-Bang Representation for 3x3 Embeddable Stochastic Matrix.

No. 8 Braun, Henry: A Simple Method for Testing Goodness of Fit in the Presence of Nuisance Parameters.

No. 9 Lauritzen, S.L. \& Speed, T.P. \& Vijayan, K. : Decomposable Graphs and Hypergraphs.

No. 10 Hald, Anders: On the Statistical Theory of Sampling Inspection by Attributes.

No. 11 Darroch, J.N. \& Lauritzen, S.L. \& Speed, T.P.: Markov Fields and Log-1inear Interaction Models for Contingency Tables.

No. 12 'Speed, T.P.: A Note on Nearest-Neighbour Gribbs and Markov Probabilities.

No. 13 Andersson, Steen A.: Canonical Correlations with Respect to a Complex Structure.

