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INTRODUCTION 

The basic result which asserts the coincidence, under a positivity assumption, 

of probabilities possessing a spatial Markov property with Gibbs states having the 

corresponding nearest-neighbour property is now very well known and has been proved 

many times, see references [2,3,6,7,10,16,19,20,21,23,25,26,27 and 28J. 

In this note we also give a proof of the result, and although it is not 

essentially different from those already published, we do give more emphasis to the 

underlying linear algebra. Our aim is to give the essential details of the proof, 

and then to comment upon various generalisationS of the main result or aspects of the 

proof. It is not hard to pick out the proof itself: simply take the first main 

result of every section (together with the preceding discussion) and string these 

all together (i.e. 1.1, 2.1, 3.1 and 4.1). 

Sincere thanks are offered to the many people who have discussed these matters 

with me, and particularly to Steffen Lauritzen. 

1. FACTORISATIONS AND SUBSPACES 

Let us take a system {I : ysC} of finite sets indexed by another finite set C. 
y 

~or any subset a£C write I = rr{I : ysa}, I = I C' and denote the surjection a y 

(i : ysC)~(i : ysa) from I onto I by TI • 
Y Y a a 
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We will be discussing the Euclidean vector space E = FI with inner product 

(p,q)= I p(i)q(i) , (p,qsE), and certain of its subspaces. 
isI 

For a~C the surjection 

I I I 
n : I~I induces an injection n*: ~ ~ by writing (n*p)(i) = p(n (i», (pSR a,isI) a a a a - a- -

I 
and the image n*(R a) is a linear subspace of E which we will denote by E. The a a 

a-marginal p sE of an element psE is defined on isI by 
a a 

p (i) 
a- 1. -a 

'IT (i), 
a-

n ,(j), a' a _ C\a. 

(We use the notation a~b, ab, a\b, a~b for the set un1.on, intersection, difference, 

and symmetric difference respectively of a and b.) The first lemma is well known 

but for completeness a proof will be given. 

1.1 Lemma Let a and b be subsets of C with aub = C, and suppose that psE 1.S 

strictly positive, i.e. p(i»O, isI. Then the following are equivalent: 

(i) log p s Ea+Eb (vector sum of subspaces); 

(ii) 

Proof. Suppose that p = qr where qsEa and rsEb , and further suppose that 

- - I - Ib r = 1T*r for qsR a, rsR Then 
b 

and the implication (i) =>(ii) will be proved if we can show that qbra (qr) ab' 

But this is an easy computation, for if isI we have 

I I -(" . )-(" k ) 
" k q 1. bJ \b r 1. b b\ J\ -a-a -a- a -a b -b\a 

= 
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The converse 1S seen by simply taking logarithms of both sides of (ii). a 
1.2 Generalisations. Let us first consider a class {a,b,c} consisting of three 

sets of union a vb vc C. A computation similar to that just given shows that if 

(i)' log p E: E +Eb+E , 
a c 

then 

(ii)' 

The converse will fail in general, because the identity (ii)' may be vacuous (simply 

take a = {l,2},b = {2,S}, c = {l,3}, and observe that abubc\Jca = avbuc = {l,2,3}). 

However if certain inclusion relationships between ab, bc and ca hold, we can get a 

non-trivial result. For example, if ac <;. bc, we find that (i)' holds if and only if 

Turning now to classes of four subsets {a,b,c,d} with au buc (",id C, we are able 

to prove that 

implies 

(ii) " 

but again the problems raised by the union of the pairwise intersections being "too large" 

arise. As before we can make further progress by imposing conditions on these 

intersections, and many possibilities arise with four subsets. To illustrate, we 

remark that if ac ~ bc, ad ~ cd, and bd c::: cd, then (i)" holds if and only if 

p PaPbPcPd/PabPbcPcd' whilst if acC;::ab, ad~ab, and cds:.ab, (i)" holds if and only if 

p PaPbPcPd/P~b' 

A general discussion of this type of result involves the combinatorial structure 

of classes C of pairwise incomparable subsets of C whose union is C, see [14J and 

references therein, and Haberman [8, Chapter 5J. We will also mention this topic in 

4.4 below. 
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1.3 Remark. An examination of the proof shows that 1.1 continues to hold even if 

the sets I ,YEC are countably infinite (all terms are positive), but we certainly need 
Y 

to assume that C is finite to make sense of the operation of forming marginals. 

2. INTERACTION SUBSPACES 

Our next lemma involves certain subspaces of E which we term interaction 

subspaces because of their origins in the theory of factorial experiments. For a 

subset b ~ C we write 

.= 

The lemma ~s well known when C denotes a finite set of factors and I the finite set 
Y 

of levels of the factor YEC, see Asmussen [lJ, Davidson [5J, and Haberman [9J. A 

related result can be found in Kellerer [11, §U, and we refer to this below. 

2.1 Lemma E 
c b~cFb (direct sum of subspaces), c £: C. 

Proof We begin by showing that if a and b are distinct subs'ets of C, then F aJ. Fb . 

This is most easily proved by making use of the orthogonal projections onto E and 
a 

Eb , denoted by Pa and Pb respectively. 

given by 

The projection P is readily seen to be 
a 

P r 
a 

1 a' C\a, rEE, 

where 1·1 denotes cardinality, and the identity PaPb = PbPa = Pab is quickly checked . 

.L 
Under these circumstances, if ab~a say, then qEFa~EanEab and for any rEFb£.Ep we 

have 

<q,r) O. 

Now we prove the lemma by induction on lei. It is clearly true for lei = 0, 

for in this case E~ = F~ = R, 

subsets a of c Where Icl~l. 

and so we may suppose the lemma true for all proper 

This inductive hypothesis implies that Ea( I Fb 
b,c 

whenever aic, and so we may sum over all such a to obtain 
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Using this relationship and general facts concerning the calculus of subspaces of 

Euclidean spaces, we have 

E 
c I E + a 

a,c 

I E + a 
a¥c 

I F 
be b -c 

Er'lcIE) 
c c a 

F 
c 

F 
c 

a"c 

proving the inductive step and thus the lemma. II 

2.2 Alternative proofs of 2.1 The foregoing proof was suggested to the author by 

Michael Meyer, and there are a number of other ways of obtaining the result. One 

makes use of certain simple facts concerning tensor products of finite-dimensional 

vector spaces (see, for example, Maclane and Birkhoff [lSJ), and runs as follows: 

E '" RIc '" ~ ltIy = .~ .. (J~Jini~) '" ~ (~F ) '" b!cFb' c yec yec I blC yeb 'I III 

I 
where Fr = ~ YeR, and'" denotes (canonical) isomorphism of vector spaces. 

A second method involves an explicit expression for the orthogonal projection 

Qb of E onto Fb , namely 

Q = 
b 

This is easy to derive from the definition of Fb (since all the Pa commute, a~ C), and 

one goes on to show that P 
c = I Qb' with Q Qb = 0 if a f b. 

b£c a 

Finally we mention Davidson's proof [SJ, which involves forming explicit bases 

for the subspaces Fb . This is perhaps the most elementary proof. 

2.3 Corollary E = 
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2.4 Corollary 

2.5 Variant on 1.1 A reformulation of 1.1 making use of 2.4 above might read 

(under the same assumptions): the following are equivalent (i) log p E Ea+Eb; 

(ii) p = PaPb/Pab; (iii) log p..J... Fd for all d£ C with d" (a\b) ~ 0 and df\(b\a) '" 0. 

The intuitive notion which (iii) makes precise is the idea that "a\b and b\a do not 

interact", equivalently, that "a and b interact only through ab". In a probabilistic 

setting (§4 below) this gives an equivalence between a precise condition of "no 

interaction" and the familiar (conditional) independence notion. 

If we drop the assumption that each of the sets I is 
Y 

2.6 Generalisations of 2.1 

finite and suppose instead that for each YEC we have a measure space (I ,I,m ), then 
Y Y Y 

there are at least two generalisations of 2.1 (which reduce to it when I is finite, 
Y 

I consists of all subsets of I and m is the uniform probability 
Y Y Y 

measure over Il,YEC). 

Let us write m =@ tn.. for the product of the measures m (when it 
YEC Y Y 

exists), I = @ I 
YEC Y 

for the product cr-algebra, and I II I as usual. 
YEC Y 

In the first generalisation we suppose all the measures m to be probability 
Y 

measures, and take for the space E the real Hilbert space L2(m) consisting of all 

(equivalence classes of) m-square-integrable I-measurable real-valued functions 

defined on I. The definition of tensor product of Hilbert spaces and Fubini's Theorem 

gives the following equivalence 

Thus we may define F = {fEL2(m): 
Y Y 

2.2 above to find as there that 

:= 3bF, b£C. 
yE Y 

R@F , and argue as in 
Y 

This direct sum decomposition underlies some of the discussion of interaction in 

Lancaster [l3J, who (in our notation) expands the density dM/dm of a probability 
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measure M on (1,1) having marginals m and being absolutely continuous with respect 
y 

to their product m, at least in the (~2-bounded) case in which this density is 

m-square-integrable. Further discussion of this and its relation to other ideas 1n 

this note can be found in Darroch and Speed [4J. 

The second generalisation of 2.1 is given in Kellerer [11, §lJ where, under 

certain assumptions regarding the measures m , the space E (all 1n our notation) is 
y 

taken to be the bounded I-measurable real-valued functions defined on I. We refer 

to that paper for further details. 

3. SUBSPACES DEFINED BY GRAPHS 

We turn now to an examination of the preceding notions when C is the vertex set 

of a graph. More precisely, we consider a simple graph (i.e. an undirected graph 

having no loops or multiple edges) g = (V(f), E(f» having vertices V(f) = C and 

edges (unordered pairs of vertices) EC,Q. If {a,S}EE(f) we say that a and S are 

adjacent or neighbours, and write dCY (or just dY when no confusion can result) for the 

set {OEC: {y,o}EE(g)} of all neighbours of YEC. Similarly we write dCa = 3a = U 3a aEa ' 

and also put a = aU da. Two disjoint subsets a and b of C are said to be separated 

by the third subset d~C if every chain a = Yo'Yl' ... 'Yn 

connecting some pair aEa and SEb necessarily intersects d. A subset b£C is called 

complete if every pair of distinct elements of b is an adjacent pair, and complete 

subsets which are maximal (under set inclusion) are known (by most authors) as cliques. 

The class of all cliques of the graph C is denoted by Cc or just C. 

The following lemma is the key to the proof that nearest-neighbour Gibbs states 

and Markov states coincide, a result which we shall describe as the NNG = M 

proposition. Although the subspaces Fb are not mentioned in the statement of the lemma, 

vital use is made of them in the proof; see also §5 below. Recall that Y- = {y}LJ dY, 

and write Y' = {y}' = C\{y}. 
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"C(E +E,). 
YE Y- Y 

Proof We begin with the easy observation that a subset b£ C is complete if and 

only if for all YEC either Y ~ b or y-"2b. Then by making repeated use of Lennna 2 we 

obtain 

3.2 Variants 

I E = W{Fb: b~ c for some CEC} 
CEC c 

= 

= 

for all YEC,y~b or y.;..:2 b} 

JI'\ (E I +E ). n Yet y y-

There are a number of variants on 3.1 above useful later when we 

consider different Markov properties. Two are the following: 

and 

I E = (If(E +E f : e\f, f\e are separated by ef, eUf = C). 
CEC C e, e 

Both are proved in exactly the same way as 3.1, and we leave this to the reader. 

3.3 Orthogonal projections In certain problems, particularly those associated 

with multidimensional contingency tables [8J , explicit expressions for the 

orthogonal projections Pc onto the subspaces EC = I E are needed. Because the 
CEC c 

projections {P: CEC} all connnute, the following is one form: 
c 

I P - I Pd+ I P + ••. ±P c t u CEC dEV tET 
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where V denotes the class of all intersections of distinct pa1rs of elements of C, T 

of triples, "', and u = "C. It follows from 3.1 that we also have the formula 

II (P +P ,-Pa ) 
ysC y- y y 

and of course there are similar expressions based on 3.2 above. 

The special case in which the graph C is decomposable (see [14J for the 
~ -

definition and further details) is particularly interesting, because there is an 

index v: V+{O,1,2, ... } defined on the intersections of pairs of distinct cliques 

of any decomposable graph C such that 

This formula was derived by Haberman [8, Chapter 5J. 

4. NNG = M 

It is now possible to give a simple explanation of the coincidence of nearest-

neighbour Gibbs with Markov states (or NNG = M, as we abbreviate it). The set C will 

be regarded as a finite set of sites y, each having a finite local state space I , 
Y 

and 9 defines a graph over C (describing the spatial relationships between the sites) 

with maximal cliques C. We are interested in (discrete) probabilities (states) p over 

I = III, and only consider the strictly positive ones, i.e. those for which the 
y 

probability p(i) of every configuration isI is strictly positive. 

Definition 1 

Corollary 

The probability p 1S called a nearest-neighbour Gibbs (NNG)state 

relative to C if log psI E . 
csC c 

p is an NNG state if and only if log p s ~(Fb: b complete). 
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This corollary gives a precise meaning to the notion that NNG states p are those 

whose "potential" log p has interaction only between (elements of) complete subsets, 

but this interpretation is not necessary for the main result. 

For the next definition we remind the reader that p denotes the a-marginal 
a 

of an element pEE. 

Definition 2 The probability p is said to be locally Markov relative to C if for 

every YEC, P 

The purpose of this definition is best seen by considering an I-valued random variable 

X: ~~I defined on a probability space (~,F,P) and having distribution 

pel) P(~ = i), lEI. For if we then write the a-marginal random variable 

X (X: O'.E,a) , a ~C, we see that for every YEC , X and X , are conditionally P-independent 
~ a 0'. Y ~Y 

given ~3y if and only if p is locally Markov. These conditional independence requirements 

(or their distributional equivalents) constitute a spatial Markov property - not by any 

means the most natural - which generalises the usual (discrete-time) Markov property. 

Other forms are mentioned below. 

4.1 Proposition (NNG =M) A strictly positive probability p is a NNG state if and 

only if it is locally Markov. 

Proof This is an immediate consequence of the two definitions, Lemma 3, and Lemma 1 

(with a = y-, b = y', ab =3y). 

4.2 Other Markov properties Two other properties which deserve the name Markov 

are now considered. 

Defini tion 2 ' The probability p 1S said to be regionally Markov if for every a£: C, 
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Definition 2" The probability p is said to be globally Markov if for every pair 

a and b of disjoint subsets of C separated ~n C by d ~C, we have 

In terms of the random variable ~ with distribution p this last definition, for 

example, requires that ~a and ~ be conditionally P-independent given ~d whenever d 

separates a and b in C. Every such pa~r a and b may be included in a pair of subsets 

e and f in such a way that a£e\f, b£f\e, d = ef, and elJf = C (see Vorob'ev [30J; 

it is a simple maximality argument). Thus we can use the variants given in 3.2 to 

prove variants of 4.1 with locally replaced by regionally (resp. globally) in the 

Markov property. 

The result of these remarks is the following: in the strictly positive case 

all three Markov properties and the NNG property are equivalent. We note that the 

equivalence of (say) the local and global Markov properties can be proved without the 

reference to NNG states, but that this is rather more tricky, and finally we mention 

that all of these equivalences fail if the probabilities in question are not strictly 

positive (see Moussouris [16J and Suomela [27]). 

4.3 Generalisations and variants of 4.1 (i) It would be quite straightforward to 

generalise the NNG M result to cases in which the local state spaces I are 
y 

countably infinite equipped with a reference measure m. The argument would be exactly 
y 

the same as that already given but use one of the direct sum decompositions described 

in 2.2 above to establish an analogue of 3.1. 

(ii) There is a version of NNG == M valid for Gaus.sian distributions which we 

state here without proof. It ~s the starting point for some work which will be 

reported elsewhere. 

Proposition' Let K == (K(a,S)) be a positive definite matrix defined on C x C where 

C is the vertex set of a graph g. The Gaussian density p having zero mean and 

covariance matrix K satisfies the local, regional and global Markov properties 
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(Definitions 2,2' and 2") if and only if we have K-l(a,S) o whenever {a,S} ~ E(~). 

(iii) We now mention a result concerning conditional independence which, at the 

same time as allowing us to view NNG = M in a new light, also unifies the discrete 

version with the Gaussian one just noted. Suppose that Al ,A2 and B are sub-a-fields 

in a probability space (~,F,~) and that A1VBVA2 = F. Further suppose that Al and A2 

are conditionally ~-independent given B, and that p is a ~-a.s. positive measurable 

function with JPd~ = 1. If we denote by p.~ the measure F+JFPd~(FEF)lthen it is not 

hard to prove that Al and A2 are conditionally p.~-independent given B if and only if 

we can write p = P1P2 a.s. ~ with Pi AiVB-measurable, i = 1,2. (For a proof of this and 

further di scus sion, see [24J). 

Now let us consider an I-valued random variable X defined on the probability space 

IT I and C is the vertex set of a graph g. Then X is locally 
YEC y-

~-Markov relative to C if and only if for every YEC the a-fields By_ and B , generated 
y . 

by !y_ and ~y' are conditionally ~-independent given Bay' the a-field generated by 

~ay' For an a.s. positive function p with JPd~ = 1 the preceding result tells us that 

~ is (locally) p.~-Markov relative to C if and only if for every YEC we can write 

p = P1P2 a.s. ~ with P1 By_-measurab1e and P2 

~ to be the uniform probability measure on I = 

B ,-measurable; Nelson [17J. 
Y 

Taking 

TIl (obviously Markov) this gives an 
y 

alternative viewpoint on the NNG = M result, whilst we can also see that the Gaussian 

result above is covered, for there the density is p(~) = exp[-~ K-l(a,S)xaxS] 
arS 

relative to the product of the marginal measures on Iy=~' YEC. 

(iv) There is an analogue of the NNG = M result valid for finite local state 

spacesb~ta countably infinite set C of sites. In this context the graph is usually 

locally finite, i.e. each site has only finitely many neighbours. The result in 

question has a number of forms, each depending in its proof on the one for finitely 

many sites, and further details can be found in Preston [20J or Suomela [28J. 
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(v) Finally we mention Markov properties for uncountable sets C such as R, 

Rn , n>l, or more general index sets. Gaussian processes indexed by Rn are considered 

by Pitt [18J (following earlier work by other authors) and the result analogous to 

that noted in (ii) above is the equivalence of a locality condition on the 

reproducing kernel Hilbert space generated by the covariance function of the process 

to a (topological) local Markov property. Similarly Markov point processes have been 

discussed by Ripley and Kelly [22J, where the Markov property is defined in terms of 

a symmetric reflexive relation (denoting identity or the neighbour relation). 

4.4 Explicit formulae for Gibbs states The class of graphs termed decomposable in 

[14J have the interesting property that Markov measures relative to such graphs 

factorise into products of marginals in a very simple way. In terms of the index v 

defined on the class V of all intersections of pairs of distinct cliques and the class 

C of all cliques of such a graph C, we can prove: 

for a strictly positive probability p on I TIl , p is Markov relative to C if and 
y 

only if 

This result (in a different form) is due to Vorob' ev [30J and Kellerer [12], and is 

intimately connected with the work of Haberman [8J mentioned in 1.2. 

4.5 Relation of the foregoing to existing proofs of NNG = M It is not hard to see 

that any proof of NNG = M within the finite discrete framework will need to use, 

implicitly or explicitly, some form of 1.1. On the other hand it is less obvious, but 

appears to be the case, that all proofs need to use some sort of unique representation 

I (cf. 2.1, 2.2) of elements of ~ as sums of functions involving subsets of the variables. 

The most frequently used form involves what we might term substitution operators 

defined relative to some fixed configuration ksI by 

(S p) (i) = p(i k ,), a£C, isI. a - -a-a 
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The subspace I E can be defined in terms of these operators, and Ln discussing 
csC c 

this use LS made of the inclusion-exclusion principle (also called Fourier analysis 

(mod 2), or MBbius inversion on the partially ordered set of subsets of C). Relations 

between these approaches and others to be found in the literature, as well as some 

general results, will be discussed in [4J. Finally we note that the 

property of complete subsets (b is complete if and only if for all ysC. y~b or 

y- 2b) is also used implicitly in most of the existing proofs, generally in the form 

of an include/exclude trick in an inclusion-exclusion expansion of the "potential" 

log p in terms of "interaction potentials". 
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