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Short title: Markov fields and log-linear models. 

Abstract: 

We use a close connection between the theory of Markov fields and 

that of log-linear interaction models for contingency tables to 

define and investigate a new class of models for such tables, 

graphical models. These models are hierarchical models that can 

be represented by a simple, undirected graph on as many vertices 

as the dimension of the corresponding table. Further all these 

models can be given an interpretation in terms of conditional 

independence and the interpretation can be read directly off the 

graph in the form of a Markov property. The class of graphical 

models contain that of decomposable models and we give a simple 

criterion for decomposability of a given graphical model. To 

some extent we discuss estimation problems and give suggestions 

for further work. 

Key words: contingency tables, decomposability, Gibbs states, 
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0. Introduction and summary 

In the present paper we shall utilise some close connections be

tween the theory of Markov fields and that of log-linear inter

action models to define a new class of models for multidimensional 

contingency tables: graphical models. 

The graphical models have two important properties: 

i) they can be represented by an undirected, finite graph with 

as many vertices as the table has dimensions; 

ii) they can be interpreted in terms of conditional independence 

(in fact, a Markov property) and the interpretation can be read 

directly off the graph. 

This class of models is a proper subclass of the so-called hier

archical models, but it strictly contains the decomposable models 

(Goodman (1970,1971), Haberman (1970,1974), Andersen (1974)). 

This implies that we can give a simple, visual representation of 

any decomposable model, thus making the interpretation easy. 

We also characterise those graphs that correspond to decomposable 

models, thus giving an alternative to Goodmans algorithm for 

checking decomposability of a given hierarchical model: first, 

check whether it is graphical and then, if it is, check whether 

the graph is decomposable, i.e.whether there are any cyclic 

subgraphs of length> 4. 

In section 1 we introduce some notation and define the various 

classes of models for contingency tables. In section 2 we review 

some basic elements of the theory of Markov fields and Gibbs 
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states. In section 3 we draw together the results in these two 

sections, define the graphical models and discuss their interpre

tation. 

Section 4 contains the arguments needed to realise that all de

composable models are graphical and we also give the characteri

sation of decomposable graphs. 

Section 5 is devoted to maximum likelihood estimation in decompo

sable models. Although this is completely solved by Haberman 

(1974) we define an index directly interpretable from the graph 

and show how these indices are the powers of the marginal counts 

in the estimation formula. A combinatorial property of this 

index can also be used as a characterisation of decomposable 

graphs. 

Section 6 contains a list of all graphical models of dimension 

less than or equal to five together with their interpretation and 

these are divided into decomposables and non-decomposables. This 

is both meant to illustrate our theory and is also an analogue 

of the tables in Goodman (1974) with all hierarchical models of 

dimension less than or equal to four together with an interpre

tation of the decomposables among them. 

Finally we give some suggestions regarding the use of the models 

and some directions for possible further work. 

The present paper is almost without proofs. Most of our results 

are just "translations" of results from other areas. 

It is somewhat technical to establish the connection between 

graphical models and decomposable models. In fact, in our opinion 
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these results are of a purely graph theoretic nature and the 

proofs and necessary formalism to derive the results can be 

found in Lauritzen, Speed and Vijayan (1978). 

1. Preliminaries 

We shall discuss log-linear interaction models for contingency 

tables. Since we want to use the analogies between the theory of 

Markov fields and that of such models, it will be convenient to 

introduce a notation that makes such analogies more apparent. 

We shall consider a finite set C of classifidati6n criteria or 

factors. For each y E C we let I be the set of levels of the 
y 

criterion or factor y. 

The set of cells in our table is the set I = IIYECIy and a parti

cular cell will be denoted i = (i ,yEC). 
'" y 

A set of n objects is classified according to the criteria and 

we let the counts n(i) be the number of objects in cell i. 
'" 

For a being a subset of C we consider the marginal counts n(i ). 
"'a 

n (i ) is the number of objects in the marginal cell i = (i ,yEa) ",a "'a y 

and is obtained as the sum of the n(i) for all such i that agree 
'" '" 

with i on the coordinates corresponding to a. In other words, 
"'a 

n(i ) are the counts in the marginal table, where objects only rva -

are classified according to the criteria in a. 

Similarly we let P(i) [P(i )] denote the probability that any rv rva 

given object belongs to the [marginal] cell i[i ]. rv rva 
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We consider the classifications of the n objects as n independent 

observations of the distribution P such that the distribution of 

the counts becomes a multinomial distribution: 

P{N(~) =n(,V,iEI} = ( (I7-) 'EI) II p(i)n(i). 
n ~,~ iEI ~ 

The general log-linear interaction model involves specification 

of the above unknown distribution P as follows: 

Firstly we expand the logarithm of P as 

log P(~) = L C (' ) ,_ sa ~a ' 
acC 

where ~a are functions of i that only depend on i via the coordi

nates in a, i.e. through i . If a=07 ~~ is the constant vector. 
~a YJ 

Such an expansion can be made for any P with P (i) > 0 for all i E I. 
~ ~ 

If we are interested in having a one-to-one correspondence be-

tween the system of functions {~a' a ~ C} and P, we have to intro

duce standardising constraints as e.g. 

V b CaL ~ (i') == 0 for all i b . 
{ , , • ' '_' } a ~a 1 .lb-1b 
~a I"'>o.J ,....." 

i.e. that summation over any factor gives a zero. 

This is all well known and standard although the notation is 

slightly unusual. 

The functions ~a are called the interactions among the factors 

in a. If I a I = 1 we call ~a the main effect, if I a! = 2 a first

order interaction and, in general, if I a I = m, ~ . is an interaction a 

of order m - 1. 
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A general log-linear interaction model involves specifying 

certain of these interactions to vanish and letting the remaining 

interactions be arbitrary and unknown. 

It is usually convenient to work with a smaller class of models, 

the hierarchical models. 

A hierarchical model is an interaction model where the specifi-

cations of vanishing interactions satisfy the following property: 

If ~a is specified to vanish and b::) a then ~b is specified to 

vanish. 

In words, if there is no interaction among factors in a then 

there is no interaction of higher order involving all the factors 

in a. 

As is easily seen and well known, a hierarchical model can be 

specified via a so-called generating class being a set C of pair-

wise incomparable (w.r.t. inclusion) subsets of C to be inter-

preted as the maximal sets of permissible interactions, i.e. 

~ - iff there is no c E C with a c c. a 

A probability P belonging to a hierarchical model with generating 

class C is uniquely determined by the marginal probabilities given 

by the elements of C. The maximum likelihood estimate of P is ob-

tained by equating these marginal probabilities to the marginal 

sample proportions. 

A certain subclass of hierarchical models is of special interest: 

the decomposable models, introduced by Goodman (1970,1971) and 

later defined formally by Haberman (1970,1974). 
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Following Haberman, a generating class is decomposable if either 

it has only one element or if it can be partioned into generating 

classes A and B with A n B = 0, C = Au B and such that 

( u a) n (U b\ = 
aEA bEB) 

a* n b* 

for some a* E A, b* E B. 

A slightly different definition was given by Lauritzen, Speed and 

Vijayan (1978) [henceforth referred to as LSV] but it is shown in 

the same paper that the definitions are equivalent. 

As shown by Haberman (1970) these models have two fundamental 

properties 

i) the problem of maximum likelihood estimation has an explicit 

solution; 

ii) the models can be interpreted in terms of conditional inde-

pendence, independence and equiprobability. 

The basic idea in our work is that such an interpretation is most 

directly formulated as a Markov property. Goodman (1970) in fact 

uses the terminology "models of Markov type" for decomposahle 

models. 

This leads us to consider Markov Fields on finite graphs and from 

these considerations it turns out that it is natural to define a 

class of models, graphical models whose interpretation most 

elegantly is given as a Markov property of a certain random field 

associated with the model. 
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2. Markov fields and Gibbs states 

In the theory of Markov fields, see e.g. Kemeny,Snell and Knapp 

(1976), we operate with a set r of sites and here we assume r 

to be ,finite . r will correspond to the set of factors c. 

At each site y E r there is a finite set I of elementary states. 
y 

The set I = ITy E rly is the set of configurations. A given configu-

ration is denoted by i = (i ,y E r) . 
rv rvy 

Further there is an undirected graph [ on r, i.e. a pair 

[= (V ([) ,E ([)) consisting of the vertex set V (r) = rand edge set 

E(L), where E(l) is a set of unordered pairs of distinct elements 

of r. 

We say that a and S are adjacent or neighbours and write a rv S iff 

{a,S}EE(r). 
rv 

If a ~ r, the boundary of a, oa, is the set of vertices in r'a 

that are adjacent to some vertex in a. The closure of a is a U oa, 

and is denoted by a. When no confusion is possible we write oa, 

a instead of o{a} ,TaT. 

A complete subset is a subset a c r where all elements are mutual 

neighbours. A clique is a maximal (w.r.t. inclusion) complete 

subset. 

We now consider a probability P on I with P(i) >0 for all iEI 
rv rv 

and the random variables defined by coordinate projections: 

x (i) = i ,y E rand y rv y 

X (i) = i for a c r, a:j: 0 
a rv rva 
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The random field (Xy ' y E r) is said to be Markov w.r.t. P and £ 

(or P is Markov w.r.t £) if one of the following four equivalent 

properties hold: 

i) for all y E r, Xy and Xr,y are conditionally independent given 

Xa; 
y 

ii) for all a, S E r with a f S, Xa and Xs are conditionally inde

pendent given X 
r'{a,S}; 

iii) for all a ~ r, X and Xr - are conditionally independent 
a 'a 

given Xa a; 

iv) if two disjoint subsets a ~ rand b ~ r separated by a subset 

de r in the sense that all paths from a to b in r go via d, then 

Xa and Xb are conditionally independent given Xd · 

That these four conditions in fact are equivalent for a probabili-

ty with P(i) >0 is more or less well known, see e.g. Pitman (1976) 
'" 

or Kemeny, Snell and Knapp (1976). It can be proved with quite 

elementary methods. 

A potential is a real-valued function ~ on I of the form 

~ (i) = L: t" (. ) '" sa .2::.a acr 

where the functions ~ depend on i through i only and are called 
a "'a 

the interaction potentials. 

In fact, any real-valued function is a potential, see the re-

marks in the previous section, so this notion gets first inte-

resting when we make restrictions on the ~ -functions. a 
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A probability P on I is called a Gibbs state with potential W if 

_ W (i) P(i) -e rv 
rv 

Similarly, any probability on I with P(i) >0 for all i is a Gibbs 
rv rv 

state (with potential W (i) = log P (i) ) . 
rv rv 

W is called a nearest-neighbour potential if it is built up from 

interactions only among mutual neighbours, i. e. if ~ == 0 if not 
a 

all vertices in a are mutual neighbours i.e. if a is not a 

complete subset of r. 

P is called a nearest-neighbour Gibbs state iff P is a Gibbs state 

with potential W, where W is a nearest-neighbour potential. 

One of the most basic results about Markov fields and nearest-

neighbour Gibbs states asserts that, in fact, the two notions are 

identical: 

P is a nearest-neighbour Gibbs state if and only if the correspon-

ding random field is Markov. 

A proof of this result can be found many places. In the case 

Iy = 10 there is e.g. a proof in Kemeny, Snell and Knapp (1976), 

and the method of proof there easily extends to the case with Iy 

depending on y, see e.g. Pitman (1976) or Speed (1976). 

This theorem is in fact the key to our results: it establishes a 

connection between certain linear restrictions on the logarithm 

of a probability (being n.-n.-Gibbs) and a Markov property (an 

interpretation in terms of conditional independence). What remains 

to be done is to introduce the graphs in the contingency table 

framework. 
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3. Graphical models 

Let us return to the contingency table set-up. Assume that we have 

given a graph C on our set of factors C, specified by the vertex 

set V (£) := C and edge set E (.£) . 

Let C be the cliques of,C, i.e. the maximal complete subsets. 
'" 

The graphical model given by C is the hierarchical model wi'th 

generating class C. 

Note that C alsourri:quely defines the graph .£ by a IV B iff 3 c E C 

such that {a, B} ~ c. In that sense our graph C is just another 

representation of the generating class C. 

Let us examine the restrictions on our interactions given by 

this generating class. By the definition of a hierarchical model 

we have 

~ ;: 0 unles s a is contained in a maximal complete subset, i. e. a 

unless a is a complete subset. 

In other words, the set of probabilities P in our model is 

exactly the set of nearest-neighbour Gibbs states corresponding 

to C. 
'" 

Consequently, by the fundamental theorem in the previous section, 

we have that the probabilities P, contained in our model are 

exactly those making (X ,y E C) a Markov field. It is now clear 
y '" 

that our model is given by conditional independence constraints 

involved in the four equivalent formulations of the Markov pro-

perty. It is thus clear that if two sets of factors are in diffe-

rent connected components of the graph, they are independent. If 



12 

two factors are not neighbours, they are conditionally indepen-

dent given the other factors. If two sets of factors a and bare 

separated by a set of factors d, they are conditionally indepen-

dent given those in d etc. etc. 

We should like to point out, that not all h1erarchical models 

are of the graphical type. It is, however, still possible to 

associate a graph with any generating class. The graph defines 

the interaction structure in part. 

Let C be a generating class and assume that C = U c (this assump
cEC 

tion is merely of technical nature). Define a graph C = 

(V(C),E (C)) by letting V(C) = C and {a,S} E E (C) if and only if 
~ ,....., ,....., roJ \ 

{a, S} ~ c for some c E C. We could call this graph the first-order 

interaction graph for C since it has all main effects as vertices 

and first-order interactions as edges. It is clear, that C corre-

sponds to a graphical model if and only if C exactly is the set 

of cliques of this graph. If this is the case, we shall say that 

C is a graphical generating class. If there are cliques in the 

graph that are not in C, which very well can be the case, then 

C is not graphical and the interaction structure in the model is 

not adequately described by the graph alone. Note that these re-

marks imply that the interaction structure in a graphical model is 

determined by the first-order interactions, since these inter-

actions define the graph, which in turn gives us its cliques and 

thus its interactions of higher order. 

The simplest example of a hierarchical model which is not graphi-

cal is that with C= {1,2,3} and C={U,2}, {2,3}, {1,3}}. Its first-
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order interaction graph is 

i.e. the complete 3-graph. If C had been graphical, C should 

have been lil,2,3}} which is not the case. The model in question, 

that of vanishing second-order interaction in a three-way table, 

is also known as the simplest non-decomposable hierarchical model, 

and it is well known that it cannot be interpreted in terms of 

conditional independence. 

In the next section we shall see that all decomposable models 

are graphical and characterise graphs corresponding to decompo-

sable models. 

4. Decomposable models and graphical models 

Lauritzen, Speed and Vijayan (1978) [LSV] study properties of 

generating classes and their first-order interaction graphs, 

especially w.r.t. the notion of a decomposition. This is done in 

a purely graph-theoretic framework and they therefore use a 

slightly different terminology to be able to relate their results 

to other areas of mathematics. 

A generating class is in LSV called a generating class hyper-

graph (g.c. hypergraph). 

The first-order interaction graph of a generating class is called 

the 2-section of the ~.c. hypergraph. 

Here we shall quote some of the results from LSV of importance 

to us. For proofs and details, the reader is referred to that 
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paper using the "translation key" just given. 

Corollary 4 in LSV asserts that any decomposable model is graphi-

cal. 

This fact was noted by Andersen (1974) in a somewhat disguised 

form (his Theorem 5) . 

We are now lead to the following considerations: decomposability 

is a property of a generating class, a property which is not too 

easy to get hold of and verify directly. We have just seen that 

any decomposable model is graphical, i.e. is very well reP:t:"esented 

by its first-order interaction graph. Then decomposability must 

be a property of such a graph. Theorem 2 of LSV asserts (among 

other things) that 

The cliques of a graph form a decomposable generating class if 

and only if the graph is triangulated (i.e. contains no cycles 

of length> 4 without a chord) . 

For the notion of a triangulated graph, see Berge (1973). 

This result is definitely the main result of LSV and gives us a 

possibility of making an immediate visual check on the decomposa-

bility of a given graphical model, see our'tables in sec. 6. 

Thus the smallest non-decomposable graphical generating class is 

given by the 4-cycle: 

10 2 

4 . 3 

i. e. with C = U, 2 13f4} I C = { {I, 2} , {2, 3} , {3 ,4} I {I, 4} } . 
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In fact, Andersen (1974) gives this example of a non-decomposable 

model that can be interpreted in terms of conditional independ-

ence (1 and 3 are c.i. given 2 and 4, 2 and 4 are c.i. given 1 

and 3) • 

The Harkov interpretation originally made by Goodman, Haberman etc. 

is along the following lines: 

A generating class C ={al, ... ,ak } is decomposable iff its elements 

can be ordered so that 

atn (al U ••• U at-I) =atnart,rt E {I, ... ,t-l}, t=2, ... ,k. 

(4.1 ) 

It follows that 

It is easy to see that, if P is hierarchical with generating class 

C, that is 

k 
P (;!:) = exp 2: 2: ~ a (!a) , 

t=l a~at 

then the conditional probability 

Ii.. . ) . 
"'al U ••• U a k-l 

where 

simplifies to P(!b 
k 
Ii) 

"'c k 

and that the marginal probability P U U a satisfies the hier-. 
. a l ... k-l 

archical model with generating class C = {ak }. It follows by in-

duction that 

P(!) = 
k 
II 

t=2 
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and that the distribution of an X with probability P may be charac-
rv 

terised by the sequence of Markov properties 

conditional distribution of ~b 
t 

= conditional distribution of ~b 
t 

Further, 

P (i) ....... 

(2) may be re-arranged as 

= 

k 
II P(i ) 

t=l ""at 
k 
II P('!b ) 

t=2 t 

given X 
....... a l u .•• U a t - l 

given X , t=2, ... ,k . ....... c t 

which is the explicit formula for P and includes as a special 

case the formula for the maximum likelihood estimate of P. 

In order to arrive at this formula by the above method it is 

necessary to search for an ordering of the elements of C which 

satisfies (4.1).This search is helped by reference to the graph 

and also by the awareness that each element at must contain at 

least one element which is not in a l U ... U a t - l . There are, gene

rally, many orderings satisfying (4.1). Haberman proved that there 

are at least k by proving that any element of C may be chosen as 

the initial member of some sequence. That there may be many more 

is illustrated by the example with Ir I = 6 and 

C = {{1,2}, {2,3}, {4,5}, {1,5,6}} 

for which the graph is 

123 

E 
6 5 4 
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It turns out that 14 of the 4 = 24 possible orderings satisfy 

(4.l). 

The description of the Markov property given by the graph seems 

more natural since it is immediate that the property does not 

involve an ordering of the elements of C. 

Theorem 2 in LSV also characterises decomposable graphs by a 

combinatorial property involving a certain counting index. Since 

this index is involved fundamentally in the estimation formula, 

we shall discuss this in the coming section. 

5. The index and the estimation formula 

Haberman (1974) introduces the adjusted replication number for 

subsets of sets in a generating class. In the decomposable case 

he shows that this number enters in the explicit formula for the 

maximum likelihood estimate P{i) of P{i). 
'" '" 

In LSV a related quantity is defined. Whereas the adjusted repli-

cation number is defined recursively, this index is defined di-

rectly. 

Let C be a connected graph (C, E (C)) and deC be a complete sub-
'" -

set. The pieces of C relative to d are defined as follows: 

Remove d from C and form the supgraph C'd with vertices C'd and 
'" 

and edges which are those in E(£) that do not involve vertices in 

d. £'d has now one or more connected components ~t' t E T, say. Let 

£t be the subgraphs of £ obtained by readjoining d to the sub

graphs ~t' i. e. £t has vertex set At U d and edges which are those 
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in E (£) that only involve vertice s in At U d. £t' t E T are the 

pieces of C, relative to d. 

Probably the procedure is best illustrated by an example: 

2 

l~ 
4 

Consider this graph and let d = { 3}. By removing d we get the 

following connected components: 

and • 
5 

4 

Readjoining d to these components we get the pieces: 

2 

1~3 and 

3 5 

4 

For d = {J, 3} we get components of C" d: 

2 

.5 

• 
4 

and thus pieces 
2 

1-6 3 IV 3 

4 

1 3 5 

Clearly, since d was complete in C, d is complete in all the 
'" 

pieces £t' but not necessarily a clique in £t (i.e. maximal). 
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Let v(d) be defined as 

v (d) = 1 the number of pieces of C relative to d in which 
'" 

d is not a clique. 

In the example given above we have v ( {3}) = - 1 I since· {4} is not 

a clique in any of the two pieces and v ({1/3}) = -1 since' {1/3} 

is a clique in.. but not in the two remaining pieces. 
135 

Corollary 7 of LSV asserts that for any connected graph C 

we have 

L: v (d) ~ 1 
d complete 

and theorem 2 of LSV that C is decomposable if and only if equa-

lity holds. 

Thus we have a combinatorial identity characterising decomposable 

graphs. 

If S is not connected itself but has connected components St ' 

t E T we define an index v~d) for each of the components and have 

that C is decomposable iff 

L: 
tET 

which is an easy consequence of the inequality. 

The index is primarily a tool for revealing combinatorial proper

ties of decomposable graphs. However, it is worth noting that 

this index occurs in the estimation formula. 
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In a decomposable f and thus graphical model·· the maximum likeli-

hood estimate P(i) of P(i) based upon n independent observations, 
rv rv 

is given by 

Provided that all n(!d} are positive. 

[In this formula vt(d) is interpreted as zero if d::l:£t.] 

To show this result we first realise that it is enough to consider 

connected graphs. For the various connected components correspond 

to independent sets of factors and their probabilities as well as 

their estimates multiply. Next we see that the formula is correct 

for a graph. This is clear because such a graph corresponds to an 

unrestricted probability and in that case we have 

Noting that for such a graph we have v (d) = 0 unless d = C in which 

case v (d) = 1, we see that our formula is correct in this case. 

The final step in the proof is an induction argument using two 

basic facts: 

i) if a generating class C is decomposed into A and B such that 

Au B = C, An B = (2) and p~ n B = a* n b* for some a* E A, b* E B, where 

A = U a, B = U b, then 
aEA bEB 

which e.g. follows directly from Theorem 2 of P~dersen (1974); 
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ii) if a generating class C, where C is the maximal cliques of 

a connected graph C is decomposed as above, then both A and Bare 
'" 

the cliques of the subgraphs A and B, these are both connected 
'" '" 

and the indices vA,vB and Vc satisfy 

vC(d) =vA(d) +vB(d) for d:J:a* nb* 

This is Lemma 8 of LSV. 

If we use these two facts and assume the result to be true for 

all graphical models with fewer than ICI cliques, we get 

vA(d) vB(d) 
IIn(i J ) IIn(id ) 
d "'Q d '" I -=---__ ----==---___ . n 

n (1a *nb*) 

A A 

= 

Vc (d) 
= IIn(id ) In 

d '" 

where we again have let vA(d) =0 [VB(d) =0] if d:!:A[d:!:B]. 

The estimation formula makes it possible for us to derive some 

further properties of our index. Let ny = I Iy I and suppose that 

we have n = I I I = II n 
y EC Y 

observations with exactly one observation 

in each cell, i.e. n(i) =1 for all i. Then, clearly 
'" '" 

Using our formula for a connected graph C we also get 

A -1 (' )V(d) P (i) =n II n ~d '" d 

-1 
II ( II n \v(d) =n 
d yEtd y) 

-1 II n v(d) -1 L: v(d) 
=n II =n II 11 d~C'{y} 

yEC dly Y yEC Y 
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Since this expression is valid for all possible values of ny, we 

must have for a connected, decomposable graph £ 

E v (d) = 0 for all yEC. 
d~C'{Y} 

Since 

E v (d) = 1 = E v (d) +E v (d) , 
d d~y d3y 

we thus have for all yEC 

E v(d) =1 
d:yEd 

'" 

for any connected, decomposable graph C. 

A. further identity is obtained by summation of the above identity 

for yEC: 

I ci = E E 
yEC d3y 

v(d) = E Idlv(d). 
d 

6. Graphical models of dimension less than or equal to five 

Here, we shall give the graphical representation and the inter-

pretation of all graphical models corresponding to an m-dimensio-

nal contingency tabel with m,; 5. Apart from the interpretation 

column this is just a question of listing all graphs with less 

than five vertices. 

We do this both to illustrate the material in the previous sec-

tions and as a counterpart to the tables in Goodman (1970) of all 

hierarchical models of dimension < 4. 
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We only list connected graphs since other models can be construc-

ted by using these as connected components of other graphs. As 

remarked earlier, the various connected components in a graph of 

a graphical model correspond to independent sets of factors. 

Giving the various interpretations in terms of conditional inde-

pendence we shall use the notation of Goodman (1970), e.g. 

[161213] 

meaning that, given 3, the factors land 2 are conditionally in-

dependent. 

In Table 1 we list the decomposable graphical models and in Table 

2 the non-decomposable models where we also indicate the critical 

> 4-cycle. 

Table 1 

Decomposable models of dimension less than or equal to five 

graph interpretation 

• 
1 unrestricted 

1 2 
unrestricted 

2 

D unrestricted 
1 3 

[1®312] 
1 2 3 

• • [1 ®3,412]n[1,2@413] 
1 2 3 4 

~: 



1 

----./13 
i ~4 

2 3 

LSJ 
1 4 

2 3 

[gJ 
1 4 

2 3 

2 3 

);( 
1 4 

4 

4 

l~ 
5 

4 

1..-·-....... 2-N 
5 

2 3 

)s(] 
1 4 

5 

24 

[11193,412] 

[1119312,4] 

unrestricted 

[1 ® 3 .. 4,512] etc. 

[1 ® 3,4,512]n[1,2 ® 4 ® 513] 

[1®5®312,4]n[1®3,4,512] 

n[5 ® 1,2,314] 

[1,2 ®4,5i3]n[1 ® 3,4,512] 

[1®2®3,415] 



2 3 

I>s<J 
1 4 

2 

1~4 
5 

2 

~3_~ 
1~·4 

5 
1 2 

sZV 3 

lW 
2 3 

2 3 

l\!\ 
1 5 4 

2 3 

I2Q> 5 

1 4 

2 

l$) 3 

5 4 

3 

2 @4 
1 5 

25 

[1,2 ® 3,415] 

[2 ® 5 ® 411,3]n[1,2,5 ® 4i3] 

[1,2,5 ® 413]n[1 ® 3,412,5] 

[1®3®512,4] 

[1,2,3 ® 5!4] 

[1 ® 3,412,5]n[1,2 ® 413,5] 

[1,2 ® 513,4] 

[4®511,2,3] 

unrestricted 
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Table 2 

Non-decomposable models that are graphical of dimension less than 

or equal to five. 

graph 

20. -3 

1 4 

2 

10 .. 3 
\, / 

5 4 

3 

~5 
4' 

2 3 

D> 4 

1 5 

22& 4 

1 5 

2 3 

ty 4 

1 5 
2 

1~3 
4 

> 4-cyc1e 

{1,2,3,4} 

{1,2,3,4,5} 

{2,3,4,5} 

{1,2,3,5} 

{1,3,4,5} 

{2,3,4,5} and 

{l,2,3,5} 

{1,3,4,5} and 

{2,3,4,5} 

{1,2,3,4} 

interpretation 

[1 ®312,4]n[2 ®411,3] 

[ 1 , 2 ® 4 1 3 , 5] etc. 

[1,2 ® 513,4]n[1 ® 3,4,512] 

n[3®1®4i2,5] 

[1,2 ® 413,5]n[1 ® 3,412,5] 

n[2®4,511,3] 

[1®2®413,5] 

n[3 ® 511,2,4] 

[1,2 ® 4 i 3,5] 

n[3 ® 511,2,4] 

_ [1 ®312,4,5] 

n[2®411,3,5] 
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Note that the last graph in table 2 is not triangulated although 

it is made up by triangles. {1,2,3,4} is a cyclic subgraph with

out a chord. Thus the term "triangulated" is a bit misleading. 

The interpretation column is made to give an interpretation in 

usual terms. Of course other conditional independence properties 

can be derived from those listed using rules of conditional inde

pendence. The most accurate interpretation will always be that 

the model consists of all Markov fields on the given graph. 

7. Some final remarks. 

Finally we shall give some suggestion as how to use the models 

and some possible directions for further work. 

The graphical models are primarily relevant for the analysis of 

contingency tables of rather high dimension w~ere it is difficult 

a priori to have very precise ideas about the relevant models and 

where one initially is looking for possible conditional indepen

dence among factors. 

We suggest that in such cases the graphs and their associated 

models are used directly in the search for possible models rather 

than the generating classes. It assures interpretability of any 

final model and it is in fact a very handy aid in visualising the 

features of the models. So, instead of trying gradually to remove 

interactions of high order, try to remove edges or throw in edges. 

At present, the graphs do not seem to be of great help in the 

numerical procedures of estimation and testing. There is some

thing to be gained in discovering decomposability, thereby reducing 

the estimation problems. 
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It might be the case that the graphs could be used in the esti-

mation and testing problems. Consider for example the following 

model: 

The model is not decomposable because of the 4-cycle to the right. 

On the other hand, the non-decomposability is isolated to that 

region. So, in fact, numerical iteration is only needed to find 

the marginal estimates in the table corresponding to these four 

factors. The estimate for the entire table can then be combined 

easily from this and an explicit formula for the marginal proba

bility of the remaining factors using fact i) in the proof of the 

basic estimation formula. 

Similarly, we can get a simplification in a testing problem. 

Suppose that we want to find the likelihood ratio statistic for 

the hypothesis that the model 

~. V 
can be reduced to 

Even though neither of the two models are decomposable, the diffe

rence between them is isolated to a decomposable region. There

fore, the likelihood ratio test statistic is nothing but that of 

testing independence in the two-way table involving the two factors 

at the left. 

There is some work to be done in giving a good formulation of 

"local decomposability" and using such a notion in an efficient 
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way in estimation and testing problems. 

Another possible use of the graphs is in an exposition of a theory 

of graphical models for contingency tables that uses the graphs 

directly instead of first relating these to generating classes 

and hierarchical models. This could have important pedagogical 

advantages. 

We hope in the future to be able to give some more content to the 

vague remarks above. 
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