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Abstract: It is proved that the product limit estimator 

of the transition probabilities of a Markov chain 

can be considered a maximum likelihood estimator 

in a suitably extended model, that al1<Dwlii fixed 

potnts of discontioutt~. 
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1. Introduction and summary 

Kiefer and Wolfowitz (1956) suggested that for a non-dominated 

family of probability measures P one can define a maximum likeli-

hood estimator as follows: 
d JP l 

For JPlEP and JP 2 EP let f~x, JP l , JP 2 ) = d( JP l + JP 2 ) (x). 

Then W is the maximum likelihood estimator if 

( 1.1) 
A A 

f(x, JP, JP)":::'f(x, JP, JP) ;lPEP 

It is easily seen that in case the family P is dominated by the 

a-finite measure ~, then (1.1) is equivalent to the usual 

definition of the maximum likelihood estimator. 

It is also easily seen, that if F gives positive probability to 

the observation x, then in order to check (1.1) it is enough to 

check it for those JPEP for which also JP(x»O. In this case (1.1) 

reduces to 

(1.2) :ri? (x)..:::. JP (x) ; JPEP. 

Kiefer and Wolfowitz point out that in case we have n observations 

from a completely unknown distribution, then the empirical distribu­

tion function can be considered the maximum likelihood estimator. 

In this note it is shown how one can extend the family of continuous 

time Markov chains in such a way, that the product limit estimator 

for the transition probabilities can be considered the maximum 

likelihood estimator. 

It is also shown that the product limit estimator considered by 

Kaplan and Meier (1958) can be considered a maximum likelihood 

estimator in the sense of (1.1) or (1.2). 

2. Estimation in the Markov chain model 

We shall first define what is meant by the Markov chain model. 

The construction we shall use was suggested by Dobrushin (1953), 
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a similar idea was used by Jacobsen (1972) and an account from 

the pOint of view of product integrals is found in Johansen (1977). 

Let B=(B .. ,iEE,jEE) be a finite matrix of finite measures on the 
lJ 

Borel sets of [0,1]. We assume further for i*j 

(2.1) 

( 2 • 2) 

B .. > 0, B .. < 0,2: . B .. =0 
lJ- ll- J lJ 

B .. [t]>-l,tE[O,l]. 
II 

These measures will be called the integrated intensity measures, 

since the way to think of them in terms of the usual time 

continuous Markov chains is by the connection 

t 
B .. [O,t]=Jq . . (u)du, 

lJ 0 lJ 

where q .. (U)=~dtP.' (u,t) It is the intensity at u. 
lJ 0 lJ =u 

We thus allow a larger class of measures than usually, the point 

being that we want a family of processes defined that include the 

. continuous time proces~es c bPiat:~'allow:}!fj;iExeQ::po~hts of dis.continui ty, 

corresponding to atoms of B. 

The transition probabilities are now constructed by the product 

integrals 

P(s,t)= IT (I+dB) 
] s, t] 

the process (Xt,tE[O,l]) via the consistency theorem. The process 

we get is then called a Markov chain with integrated intensity 

measure B and initial distribution p. 

Notice that conditions (2.1) and 12.2) are needed in order that 

the matrix P(s,t) becomes a stochastic matrix. 

The family of all such measures JP B where B satisfies (2.1) and 
IP 

(2.2) is called P in the following. 



In the paper by Aalen and Johansen (1978) only the subfamily was 

considered where B satisfies the c0nditions 

( 2.3) 

( 2 .4) 

(2 .5) 

B .. (A)=Jq .. (t)dt 
1J A 1J 

q .. (t) >O,q .. (t) <O,I .q .. (t)=O 
1J 11 J 1J 

q .. (0) right continuous and has left limits. 
1J 

The family of probability measures generated this way is called 

Po. Note that condition (2.3), (2.4) and (2.5) imply that Po is 

domina ted by some finite measure. One may take the II? corresponding 

to B(A)=QA(A) where Q is an intensity matrix with cr , .>0 and A is 
.1). J 

Lebesgue measure, and take p(i»O. The maximum likelihood estimator 

in the family Po does not exist, only by enlarging the family to 

P do we get the existence. The price paid for this is that the 

measures in P are not dominated by some measure ~. 

1 n Let now X , ... ,X be independent observations of the process 

X=(Xt,tE[O,l]) with a distribution in the family P. We shall 

summarize the statistic as follows. Let tl < ••• < t denote the ,= = m 

points where a jump occurs to=O, tm+l=l, m is then the number of 

jumps. Let ~n .. (k) denote the number of observations that jumped 
1J 

from i to j at time tk and ni(k) is the number of observations in 

i just before t k , and n i equal the number of observations starting 

in i. 

The following estimator was considered in Aalen and Johansen (1977) 

where references to some of its earlier history can be found. 

(2 .6) 1 B .. [O,t]= L: n. (k) tm .. O~),B .. ==- b B .. ,tdj. 
1J t <t 1 1) }',/c;L1 . ~. ·'l].:.l i 

k- ,,' . '., ~J;t' ' 
"-

That is, B is a discrete measure with finite support at the points 

tk,k=l, ... ,m. The corresponding Markov chain generated by 

P(s,t)= IT (I+dB) 
]s,t] i 

~ ! 
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allows only jumps at the points tk,k=l, ... ,m and with probabilities 

equal to the frequencies observed. The measure.~ is just ~(i)=n./n. 
1· 

The object of this section is to prove, that F= lPA A is the 
B,p 

maximum likelihood estimator of lP in the family P in the sense 

A A n 
of (1.1) or rather (1.2) since evidently lP or rather (JP) gives 

positive probability to the observed x. 

n Let therefore lP be any such measure giving positive probability 

1 n to the occured value x=(x , ... ,x ). lP thus allows jumps to occur 

at the points tk,k=l, ... ,m but possibly also between. 

Let p .. (k) be the lP probability that a particle jumps from i to 
IJ 

j at time t k . Let p(i) denote the initial distribution and let 

gk,i be the probability that no jump occurs in Jtk_l,tk [, 

k=1,2, ... ,m+l, given that Xt =i. 
k-l 

We want to derive the probability of the observed XiS. Let us 

start with xl. Define ik=x~ ,k=l,2, ... ,m+l. Then 
k-l 

xl is completely described by being constant on [tk-l,tk [ and 

equal to i k on this interval. We first find 

W{Xt=ik , t k _12t<tk , Xt =ik+llxt =ik } 
k k-l 

= gk . p. . (k) 
,lk lk,lk+l 

and then 
m 

lP{x=xl}=P(il ) TI gk,' p. . (k) g l' 
k=l lk lk,lk+l m+ ilm+l 

Finally the probability of all observations is given by 

In terms of the vqriables introduced above this equals 
n .m+l n. (k) 

M= TI p(i) 1 TI ~k J 1 
i ' I 

k=l 

t.n .. (k) 
TIp .. (k) IJ. 
.' IJ IJ 
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Although this resembles a proof that {ni,n.(k),~n .. 'k.)} is a 
1 1J 

sufficient statistic, it should be emphasized that firstly we are 

working with a non-dominated family of measures P and secondly 

that the reduction is only demonstrated for the special measures 

in P that give positive probability to the observations 

1 n x , ... ,x . 

This can be compared with Anderson and Goodman (1957) who studied 

estimation in discrete time Markov chains, and therefore did not 

need the factor ITgk .ni(k). 
k ,1 

It is not hard to verify that M is only maximized if 

n. 
( 2 .7) p(i)=p(i)=~ 

n 

( 2.8) gk .=1 
,1 
~n .. (k) 

p .. (k) n~~k) 
1J 1 

( 2 .9) 

Notice that if n. (k)=O, that is, no observations were available 
1 

in i at time t k , then the parameters p .. (k) are non identifiable, 
1J 

since they do not occur in M. Since no jumps out of i is actually 

observed we put p" . (k)=l in this case. 
1..l 

It is seen that theW corresponding to the choice of (p,B) that 

maximizes M has the property, that between the points t k , no jumps 

can occur. It is thus a discrete time process and it is not 

difficult to see that it coincides withWBA A. ,p 

ThusW=WBA A is the maximum likelihood estimator in the extended ,p 

model. 

If Po is the model it would therefore seem reasonable to smoothe 

the estimator B in such a way that it becomes absolutely 

continuous and satisfy (2.3), (2.4) and (2.5). In this way the 
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estimated transition probability would give rise to an estimated 

probabili ty measure which is in fact in PO. 

This smoothing can be done as follows: for the measures in PO' we 

have that the probability that two processes jump at the same 

time is zero. Hence the variables ~n .. (k) are either ° or 1. 
1J 

Now let C .. denote the matrix with element (i,j)equal to 1 and 
1J 

element (i,i) equal -1 and the rest zero. Then C .. becomes an 
1J 

extremal intensity matrix in the convex set of intensity matrices 

Q=(q .. ) such that q .. >0, q .. <0, L: .q .. =0. 
1J 1J- ll,- J 1J 

With this notation we can write 

where the jump at time tk goes from i k to jk. 

2 -t 
Now notice that c .. =-c .. and hence that exp(tC .. )=I+(l-e )C .. , 

1J 1J 1J 1J 

which means that the factors of P(s,t) all have the form 

-1 
exp (akCikjk) with ak=-tn:(l-n\(k) ). If a k < 00 we 

~ 
now define B by 

~ ~ 
and P(s,t)= IT (I+dB), then 

]s,t] 

, i 

=~(s,tk_l) (I+(l-eXp(-ak{ft-tk~l)/(tk-tk_l)))Cikj ) ,s<tk~l~t<tk 
. k 

This estimator is seen to be continuous and piecewise continuously 

differentiable, and at the jump points it coincides with the 

estimator P. In this sense the estimator P has been smoothed. 
~ 

Some asymptotic properties of P has been given by Aalen and 
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Johansen (1978). 

Notice that ifn. (k) = 1 then a k = (X) and the estimator P no longer is 
lk 

continuous. Hence the smoothing is not possible in this case· 

As an application of the above estimator B we shall also consider 

the problem of estimating the waiting time distribution in state i. 

Let T denote the waiting time. For any probability measure in Po 

it is well known that t 
fq . . (u) du 

II 

(2.10) F{T>tlx =i}=P{X"=i,s<u<tIX =i}=e s 
= s u = s 

A natural estimator of this distribution function is therefore 

given by 

(2.11) B.'. I .J S,t: ] " " ell =exp- '-' '-' 
s<tk-::.t jii 

~n .. (k) 
lJ 

n. (k) 
l 

The formula (2.10) does not hold for anyFEP however and has to 

be replaced by 

(2.12) W{T>ttX =i}= IT (l+dB .. ). 
- s ]s,.t] II 

It is thus seen that the maximum likelihood estimator for the 

waiting time distribution is then given by 

~n .. (k) . 
A lJ 

IT ( 1 +dB. . ) = IT (1- L: ( k ) ). 
]s,t] II s<tk~t jii ni 

(2.13) 

This estimator is easily seen to be different from (2.11). It 

bears a formal resemblance to the Kaplan-Meier estimator considered 

in the next section but the set up is different. 

The Kaplan-Meier estimator is used in a situation where observa-

tions can be withdrawn from the system under observation. Thereby 

the number of observations available is decreased. 

In Markov chains, however, more observations can be inserted into 

the system, i.e. state i, when the other particles jump to state 

i. Thereby the number of available observations is increased. 

r 

L 
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3. The Kaplan-Meier estimator 

Let Xl' ... 'Xn be independent identically distributed variables 

and let tl,D .. ,tn be censoring times, such that only 

M.=X.At. and Y.=l{X.~t.} 
1 1 1 1 1- 1 

are observed. Thus the i'th x value is only observed if it is 

<t., otherwise we just know that X.>t .. 
- 1 1- 1 

In the model were the distribution of Xl' .. "Xn is completely 

unspecified we would like to prove that 

(3.1 ) F{X>t}= II (1-
u .<t 

J 

n .-s. 
J J ) 

L: n -so 
. m J 

m~J 

is the maximum likelihood estimator. Here u l "<iU2< ... <uk are the 

different values observed and 

n n 
n.= L: l{M.=u.}, s.= L: l{M.=u.,Y.=l}. Thus n. denotes the number 

J i=l 1 J J i=l 1 J 1 J 

of observations taking on the value u. and s. denotes how many 
J J 

of these are censored observations. 

In case we consider the model specified by the unknown distribu-

tion being continuous and that the t. 's are different, then the 
1 

maximum likelihood estimator does not exist. The estimator 

F becomes simpler,since for a continuous distribution we know 

that the probability of finding two observations at the same 

pOint is zero. Hence n.=l and s.=y. which is zero or one. 
J J J 

In this case we get 

( 3 .2) 

i -.- .'-'~ .-.' 

where it;heproduct is taken olve'r those u. <,t wh~ch were observed 
~J 

to be x values. 
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Clearly the measure W determined by (3.1) has a finite support 

contained in the observed values of M. and therefore gives 
1 

positive probability to the observed outcome of (M.,Y.)i=l, ... ,n. 
1 1 

For any measure F which gives positive probability to the 

observation we can prove that 

l-y. y. 
( 3 .3) F{M. =m. , Y. =y. }= F{xl=m. } 1 F{xl>m.} 1 

1111 1 -1 

Hence the probability of the observation becomes 

n l-Y. Y. 
M= II F{Xl =m.} 1 F{Xl>m.} 1. 

i=l 1 - 1 

Let now the different values of ml, ... ,mn be denoted by u l <· .. <uk 

and let us introduce the notation n. and s. as above. Further we 
J J 

let Pi= F{Xl=ui } and introduce ridP{ui<Xl<ui+l}i=l, ... ,k-l,rO= 
k k 

= F{Xl<ul},rk = F{uk<xl } then ~ r.+ ~ p.=l and 
i=O 1 i=l 1 

k n.-s. k s. 
M= II p. 1 1( ~ (p.+r.)) 1 

i=l 1 j=i J J 

In order to maximize (3.4) we first note that. without cbanging Pj + rj 

we can increase Pj and thereby M by putting rj = o. We. then introduce 

the failure rates -1 
a. = Pi[.l:.cPj] 1 

J~l 

from which we get i-l 
p. = a. II (l-a.) 

1 1. j=l J 

and i-l 
l: p. = II (l-a.) 

j~i J j=l J 

In terms of these parameters we have that the probability of 

the observations is equal to 

k 
M= II a. 

. 1 1 1= 

n.-s. 
1 1 

i=l n. 
( II (l-a.) 1 

j=l· J 
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k n.-s. E n. 
= IT a. 1 l(l-a.)j>i· J 
i=l 1 1 

With this parametrization we see that M is maximized only if 

(3 .5) 
n.-s. 

1 1 a.= 
1 E n.-si 

j2.i J 

It is seen that the choice (3.5) is exactly the measure determined 

by (3.1). 

This argument is essentially that given in the paper by 

Kaplan and Meier (1958), but it is given here to indicate that 

it fits in with the general definition (1.1) or (1.2). 

With the formalism of the product integral 

where 

i(x>t)= IT (I-dB) 
- [O,t[ 

A A -1 A 

B[O,u]= f JP(x>t) d JP(x>t)= 
[O,u] - -

n.-s. 
J J 

E n -so 
u .<u >' v J J- v_J 

which is the empirical cumulative hazard process. Thus it has 

also been established that B is the maximum likelihood estimator 

in the unrestricted model, where the underlying distribution is 

completely unspecified. See the comment by Breslow in the 

discussion of the paper by Cox (1972). 
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