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We review some of the basic limit theorems for Markov
branching processes in the framework of multitype branching
diffusions on bounded domains with mixed boundary conditions.
This setting allows to exhibit methods of the limit theory
for general Markov branching processes without having to

impose technical conditions.

1. THE MODEL

Let Q@ be the union of K connected open sets Qv’ Vv o=
1,...,K, in an N-dimensional, orientable manifold of class Cw,
let the closures ﬁv be compact and pairwise disjoint, and let
the boundary BQrconsist of a finite number of simply connected

(N-1)-dimensional hypersurfaces of class C3. Let X be the union

(1)




of K Borel sets Xv such that

Q <X < ﬁv’ v=1,...,K,

in a way to be determined, and suppose to be given a uniformly

elliptic differential operator AID(A), represented in local coordi-

nates on X by

N . o N .
A: = ) 1 —EE alj(x)Va(x) —ET + I bl(x) —EI
i,9=1 va(x) ox oxd  i=1 9x
_ 2 = du _
D(A): = {ufy: ueC™ (@) A (autBg)|yq = 03,

where (a’?) and (b') are the restrictions to X of a symmetric,

second-order, contravariant tensor of class Cz’k(ﬁ) and a first-

order, contravariant tensor of class Cl’x(ﬁ),

a: = det(alj)—l,

m
=
-

0 < a,8 € > (20), atp
2~ X: = {B=0}.
By g% we denote the exterior normal derivative according to

(alj) at 3.

Define B as the Banach algebra of all complex-valued,
bounded, Borel-measurable functions on X with supremum-norm || - ||,

B+ as the cone of all non-negative functions in B, further

ct: = {u]X: wect@y,
Cé: = {u[X: ueck@ a ulﬁ\x = 0}.

As is wellknown, the closure of‘Al{EED(A): AEECg} in B is the
Cg—generator of a contraction semigroup {Tt}t.EIQ in B, which is
non-negative respective B+, stochastically conti;uous in t>0 on B,
and strongly continuous in t>0 on Cg, with TtB c Cg for t>0. This
semigroup determines a conservative, continuous, strong Markov

process {xt,Px} on X U {3}, where 3 is a trap.

(2)




Suppose to be given a k€B_, and define k(x): = k(x) for x€X,
k(3): = 0, and

t
et = exp{—éf(xs)ds}.

Let {xg,Pg} be the &, -subprocess of {xt,Px}, defined as a conserva-

tive process on X U {3} U {A}, where A is a trap corresponding to

the stopping by Gt. For £ € B define Eb(x): = E(x), if x€X, and
£,(3): = £5(8): = 0.
Then

ng(x): = Eggo(xg), x€X, t>0,

defines a non-negative contraction semigroup {Tg}tEZR on B. It is
+

the unique solution of

1.1) T =T _ e xr® s, 50
L T = e

and it is stochastically continuous in t>0 on B and strongly

continuous in t>0 on Cg, with TgB c Cé for t>0.

Let X(n),nzl, be the symmetrization of the direct product
of n disjoint copies of X, x(0): = {6} with some extra point 6.

Define

and let A be the o—-algebra on X induced by the Borel algebra on X.

Define

R[E]:

1
o
~

A
X =0,

€(Xv),2 = <Xl""’xn> EX(n), n>0

Il
I~MB

v=1
for every finite-valued Borel-measurable § on X. Suppose to be
given a stochastic kernel le@X

such that

(3)




mE (x): = szﬁta]n(x,dé), EEB, xEX,

defines a bounded operator m on B and the KxK-matrix with elements

m =fk(x)mlX (x)dx, v,u=1,...,K,

vu*©
§) U

is irreducible.

More explicitly, we assume that either

m¢ (x) = fxm(x,y)E(y)dy, EEB, XE€X,

m(x,y) < m(x,y), (x,y) € X@X,

e cl@en), m(-,x) = m(x,*) = 0, x € O=X,

(1.2) dy: = Ya(y) dyl---dyN,

where yl,...,yN are local coordinates of y, or that the connected
components Xv,v =1,...,K, of X are congruent and
m(x,8) = p, o (x)15(0)+ z P (x)
0..0 A n,..n
nliO,..,nKzO 1 K
nl+..+nK>O
,J\l_'-—\ /Jg_’\ A A
X lﬁ( KpXr e e 1K Xy oo i KpXy oo rkgX ), X€EX, A€A
where 1s is the indicator function of A, {p (x)} a probabi-
A n,..ng
K

lity distribution on Z

+ for every x€X, and Kvx the picture of x

produced in Xv by the given congruence. In the second case

K

mE(x) = X mv(X)E(KvX), EEB, XEX,
-v=l

m : = z n v=1,..,K.

p | 14
vin,..n
nl>0,..,n

>0 VTR

The pair_(xg,ﬂ) determines a conservative, right-continious
strong Markov process {Qt,Px} on (ﬁ,A), constructed according to
the following intuitive rules: All particles at a time move inde-

pendently of each other, each according to {xg,Pg}. A particle

(4)
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hitting 9 disappears, a particle hitting A is replaced by a popula-

tion of new particles according to n(xt _r*), where Xe is the
A A

left limit of the path at the hitting time of A, cf.[9], [17]. .

A simple example for the first kind of branching law we
have admitted is the following: A branching event at x results

with probability p (x) in n,+..+n_ new particles, n_ of them
ny..ny 1 K , Vv
in Xv’ v=1,..,K. The places of birth are distributed indepen-

dently, a location in X, with the distribution density fv(x,°),

v =1,..,K. Then

lX (y)fv(x,y) z np. (x) .

m(x,y) n
1 v nl,..,nKZO 1’°°'"K

I R

Y

The idea behind the second type of branching law is this: There

are K different kinds of particles moving on the same physical
domain. To the kind v we assign Xv as abstract domain of diffusion,
v=1,..,K. In the physical domain new particles are always born

at the termination point (left limit) of their immediate ancestor.

In terms of the generating functional
PR, = ENR(R,)
trr s t’’

6,

D>
Il

’ﬁ(g): =1,
n ey
c = 1 n(x.), X = <Xll--rxn>l

t>0, x€X, ne€S: = {&€B: IEll < 1},
the assumption of independent motion and branching takes the form

(F.1) F_(x,n) =1, X =09,

. Ft(<xv>,n), X = <Xl""xn>' n>0.

Il
||[==la}

\Y)

Defining F_: S-S by Fl-1(x): = Ft(<x>,-), X€X, (F.l) combined

t:

with the Chapman-Kolmogorov equation yields

(F.2) Fo, (-1 = FIF (1], ¢,s>0.

(5)



For every t>0 define §t— on ¥ with ¥Y: = XU{3}, and let Ab

be the set of open spheres intersected with X. Define

T: = inf{t>0: V€A, : x__[1514x[1;]}.

A

It follows from the strong Markov property of {Qt,PX} that for

every n€S the function Ft[n](x), t>0, x€X, solves

_ X~ Xx) Rym 2
(1) w0 = BOFGO1 g + B E TR0 ol res)
= Tg n(x) + pg‘(x%a,rit)
t x, 0 0 A ~
+ ég(PO(xT=A, xT_€dy, TEds)fﬁj%y,dx)Ftrs(x,n)
= Ton(x) + H_(x) + ?To{kf[u 1}H(x)ds
t t o S t-s !
0 t o
Ht(x): =1 - Tt(x) - fTSk(x)ds,
0

Flnl(x): = J_ m(x,d%)n(X).
X
The uniqueness of the solution is easily verified by use of

HElnl - £0E111 < N mlllIn=E 1.
The assumptions guarantee that for every t20
MtE(x): = E<X>§t[£], £EB, XEX,

defines a non-negative, linear-bounded operator M, on B. It follows

from (F.l1l) that

(F.3) E"g(x,) = x[M_E], x€X, £€B, t>0,

and from (F.2) that {Mt}tEZR is a semigroup: Simply set N = C[+\E,
+

differentiate with respect to A at A=0 and let z~»1l, using dominated

convergence. Similarly, (IF) implies that for every E€B the

function Mtg(x), t>0, x€X, solves

(6)




t N
(IM) yt(x) = ng(x) + éTg{kmvt_s}(x)ds,

Again, the solution is unique.

Throughout this paper <, > 0, v € N, will be suitable real

constants.

2. POSITIVITY THEOREM

To obtain a satisfactory limit theory we need a positivity

result which is stronger than the conventional Krein—Rutman theo-

rem. Define

+ 1,= ‘ du_n &
D0:={u[X:u€C () ,u>0 on X,u=0 A <0 on ONX3.
Theorem 1 ([6],[7]). The moment semigroup {Mt}t>0 is stochastical-

ly continuous in t>0 on B, strongly continuous in t>0 on C0 with

MtBECé for t>0. It can be represented in the form

*
(M) M, = ptw® + A t>0,

t t’
% %k
o [E] = Sy (x)E(x)dx, EEB,

+ * + *
where 0<p €IR, ¢€D;, ¢ €D, o [e] = 1,

and At: B-»B such that for all t>0

E 3
O]0] At = Atw® =0,
* *
-0, 00 <A < a0 [B/],
with a.:ZR++{R+ satisfying p_tutVO as tfw.
Remark. Notice that there are no continuity requirements
for k, m(x,y), or mv(x). We do not consider {Mt} as extension of

a semigroup generated on Cg, but as restriction of a semigroup

generated on L2.

(7)




Proof. We modify the procedure of [7]. Define L2:=L2(X)

respective (1.2). Let Tt be the extension of T _ to L? and T: the
Then

adjoint of Tt.

T.£(x) =/ b (x,¥)E(y)dy [B],

T (x) =/ 4p, (v, 0)E(y)dy  [L7],
where pt(x,y) is the fundamental solution of Bpt/at=Apt. That is,
Py (x,y) is given as a continuous = function on {t>0}®08Q2, contingous-
ly differentiable in x and y for t>0, such that for O<t§t0, t0

arbitrary but fixed,

Pt(XIY)>OI (XIY)EX\)®X\)I v=1,..,K,

(2.1)
pt(XIY)=OI (le) GX\SQX]J' \)+1J,

(2.2) pt(x,-)=pt(-,x)50, XEQSX,

IPy _
55;(x,y)<0, (x,y) €(Q X )8X ,
(2.3)
Bpt _
s (x,7) <0, (x,¥)EX B(R X)), v=l,...K,
ap op
. | t t — (N+ .
(2:4)  sup (|—f0x,y) [+] — oy |3 = o(e” /2y,
X, YyEX 09x oy
op dp
t t -1/2 .
(2.5) sup S {|—=(x,y)|+|—F(y,x)]|}dy = O(t ), i=1,..,N
xeX X axl 14 axl 14 r 14 14 14
-N/2 1Y 2
(2.6) p,(x,y) = cyt Ily (x)expl-cyt = I |x>-y>|“} on X8X,
5 73 i=1 7 )

where {Yj} is a finite covering of Q by canonical coordinate
neighbourhoods and x%,..,x? are the coordinates of x in the
coordinate system associated with Yj' cf. [11]1, [16]. As an

immediate consequence,

TLE(x): = Jyp (x,¥)E(y)dy  [B]

(8)




—* .
defines a restriction of Tt to B, whose norm HTtllls bounded on

bounded t-intervals.

Let m, b, and Tg be the extensions to L2 of m,

b: = km + |lk]| -k

and Tg. The closure of A+k(m-1l) in L2 generates a semigroup Mt’

which is the unique solution of

t
= _ =0 =0  — 2
M, =T  + éTs kmM, _ _ds [L°]
and thus is identical with the extension of M, to L2. Similary the
semigroup
w . - Jlkllt=
Nt- - e Mt’

generated by the closure of A+b in L2, is the extension to L2 of

the unique solution Nt of

t

(2.7) N =T + éTSbNt_Sds [B].

Since TtBSCS, t>0, it follows from (1.1), (IM), and (2.7) by use

of HTtIlil, the boundedness of k and m, and dominated convergence

that Tngcg, M BEC0 and N BECO for t>0. Hence also

£B<Cp - £°=0
_ Nkt

Nt = e Mt'
From (2.7)
(2.8) n_ = z 1™, 0, [B]

k=0
(0, — p P+, _ }T br{Mas, n>0 [B]
t t’ t © T 0 S t-s ! — )

From this, in particular,

(2.9) limgn < PIE s,

Given (2.7) with the bounds for Tt' b, and Nt, strong continuity

of Ttlcg implies strong continuity of Ntlcg in t>0, and recalling

(9)




NtBSCO t>0, stochastic continuity of T |B implies stochastic

OI
continuity of NtIB in t>0. Using pt(?,y)ECl, (2.4), (2.5),

1
and dominated convergence, we also get N BcC for t>0.

By continuity of p (x,y) in (x,y) with (2.2), TtlB

and Ttlcg are compact, if t>0. For O<e<t rewrite (2.7) as

t €
Nt = Tt+Te£Ts—ebNt-sds+£stNt—sds

and note that the integrals on the right are bounded opera-
tors, the norm of the second being O(e) if t is fixed. That
is, compactness of Ty implies compactness of N, for t>0. The
cone B+ and its dual B: are closed, have a non-empty interior,
and span B and its dual B*. By (2.1) the spectral radius of

T, and thus the spectral radius Oy of Nt are positive. Hence,

t
the spectrum of Nt is purely discrete, each non-zero eigen-

value has finite multiplicity, and there exist non-trivial

* %
wt€B+, <I>t€B+ such that

*

%
N =0 @tNt = Ot®t'

tPt £l
cf.[15]. The same holds for Ntlcg. Since TsBECg’ s>0, the
spectral radius is the same, and we can take the same

wt€C80B+ in both cases. For €>0, n<Z, t>(2+1) e define

t-ne
(Olg), — (nIE)_ — (n—lle)
Tt s = Tt-e' Tt HIES é Ts-ebTeTt—s ds.
By (2.8)
N, > T % p(Dr€) [B. ]
t — ¢ t +°°

n=0
Fixing t and choosing anyEEB+ which is positive on a set
of positive measure, we can by (2.1) and the irreducibility

assumption on (mvu) find €>0 and %2€ N such that t>(f+1)e

and

(lo)




L

(n,e) vy K '
2Ty £ > ¢y > 0 on Q' = y=1"%y
n=0
where all the Q&cxv, v=1,..,K, have positive measure. By

(2.1), (2.3), (2.4), and 1l'Hospital's rule

sup(Telx\Q,(x)/Tng,(x)) < oo,
x€eX

That is, there exists aGEIgJ §>0, such that Tle,ZGTElX

and hence
th > c36T€lX.
On the other hand Tle€D+’ so that by (2.4), (2,5), (2,7),

(2.9, and 1'Hospital's rule there exist a c4>0 such that
th < c4T€lX.
Consequently, Oy is a simple eigenvalue of Ntlcg, larger in
absolute value that any other eigenvalue, cf.[14, Chapter 2].
Once again referring to Nthcg, t>0, the same is true for
+

NtIB. The (T_ly) - boundedness from below, T_1,€D,, and

1 . + * .
NtBECO imply @tGDO and thus @s[mt]>0 for s,t>0. Using the
semigroup property of Nt’ it follows that or=:0r for all

rational r and, since Or is simple, that wr=:m for all ratio-

nal r. By continuity of Nt therefore 0t=ot and P =0 for all

t>0.

Now consider the problem in 2. Again, ﬁt is compact,

the spectral radius Et of Nt is in the spectrum of ﬁt' and

- %
there exist non—-trivial, non-negative cpt,cptEL2 such that

5% =53 k% = %
tPr T OpPypr NLOp = 0,04,

% —
where N, is the adjoint of N, - However,

Gy, () 0(x)Ax = [N Gy (x)0(x)dx

= fxaz(x)Ntw(x)dx = OthG:(X)w(X)dX>0-

(11)




That is, Etsot, and we can take $t5w. Viewing Tt as the per-
turbed semigroup with ﬁt as the unperturbed semigroup and
adjoining the corresponding perturbation equation, or simply

— % —
considering Nt as generated by the adjoint of A+b, we get

—% _*x € *_* * 2
N, =T +fT N, _.ds [L°].

Since HT Il is bounded on bounded t-intervals and b has a

bounded restriction b to B by assumption, the unique solu-

tion of
+ t o+
N. = Tt+£st N/ _.ds [B]

%
is a restriction of Nt to B. It can be written in the form

t
+(0) +(0) ,_+ +(n) _ .t +(n-1)
Nt—nioTt Tt .—Tt, Tt —ést Nt -s ds

which implies, in particular, that HN I is bounded on bound-
ed t-intervals. We can now repeat for Nt the argument used
for N, and obtain

t
2" [E] = S0  (x)E(x)Ax, E€B,

*
Qt[i]
i % + %
with o GDO. We normalize ¢ [o]=1.
Summing up, we have shown that

t %
Nt = o o +Pt, t>0,

with T _:B~B such that

% *
(610] Ft = Pt®® =0, t>0,

. &N
It 1= 0030, newn,

where JéEZR+, ﬂé<o€, for every e>0. Since {I.} is a semi-
group

Hr_ i < sup NT_II IT [
t 0<s<e s [t/e]e

<( sup lIN_Il+ max{1, }lel@ (r1\nr,,_, I, t>0.
_<0<s<€ s Xl1L,0 > [t/e]le

(12)
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That is,
Tl = 0(J%), t>0,

with someJGIhJﬂko. If 0<2e<t,

r.e(x)| < sup [T n(x)!I UT,._, Il NT_&l
l t I —IInII=l € t-2¢ >

(N_1(x)+05@ ()@ [1DIIT _, Il

| A

x (NN +0% 1l oll @7 [1E1).

. + +
Since N_l€D,, as well as mEDO, we have N_1<C_¢p, where C_

depends only on €. As

|FN_E(x)dx| < Sy le(y) NI, (y)dy, YEA,
all that is left to be shown is
(2.10) N1, < cfo’roax, vea,

€Y — "¢ Y
with C: depending only on €.

. * __+
Using (2.4) and o EDO,

T+(O)l < c e—(N+l)/2w*Ide, YEA.

€ Y — 75
For nil
02 prtg ) gg g1 ptet, FHD) () g
t 0 S t-s~ 7' "t ° t’ "t - 0 S t-s 7"

By (2.6) we have pt(x,y)§c65t(x,y) with
IyPg(x,2)By_g(2z,y)dz < B (x,y), 0<s<t,

and, if the Xv are congruent,
Et(KvXI KvY) = 5t(XIY)I v=1,..,K.

Using these properties, it is verified by induction that

tn—l
(

(2.11) f?nlY(x);iC?-ﬁ;iTT Qﬁy+éthQY)dY)

where dey occurs only with the first kind of branching law.

*
From (2.11) by (2.4), (2.5), and © €Dy

(13)




€
7 n-1
y (¥ = mEyT ((f)fxps(z’X) (e-s) " "dzds/ dy

e/2 € )
+ { J + [ }Yyp_ (z,x)(e-s)
0 er2 XS

n—lf ~

\
Ype_s(z,y)dydzds)

n
C

« — 1 [08€n—1/2+c £

-(N-l)/Z(E)n-l
— (n-1): 9 2

+ C

loe‘(N+l)/2 %(%)n]w*(x)fdz,
Y

which implies (2.10).

3. THREE LEMMATA

By first-order Taylor expansion

(FM)  1-F [£] = M_[1-£]-R (E)[1-E], E€S,
R .(mco(x): = E<X>w(n,c,§t),

o, x[11<1,

w(n:?;,;{)=

1
C(Xv)(l—f I [1-A(1-n(x ))1dn),
1 0 p$v H

I
M

Vv
X = (xl,..,xn>, n>1.

The mapping Rt(-)[-]:§®B+B is sequentially continuous respect-
ive the product topology on bounded regions, non-increasing
in the first and linear-bounded in the second variable, and

it satisfies

where S+:=SnB+.

Lemma 1. ([5],[8]). For every t>0 there existsa mapping
gt:§++B+ such thét

R, (£)[1-€] = g [£1p% [1-£]e, €S,

(R)
lin Il g [E]Il = O,
11-£ 1l +0

(14)




where the convergence is uniform in t on any closed, bounded interval
[a,b] with a>0.

Proof. It follows from (IF), (IM), (FM), and the correspond-
ing expansion for £,

1-f[£] = m[1-g]1-r()[1-¢], EE€S,
that for every €>0 and E€§+ the function Rt(g)[l—g](x), t>e, X€X,
solves

t-¢

(3.1)  w,(x) = A_(x)+Bf (x)+ ! 0 {kmw,__} (x) dx,

t .
0
A (x): = éTs{kr(Ft_s[E])[l-Ft_s[a]]}(X)ds,
€ € 0
Bt(x): = éTt_s{kaS(E)[l—E]}(x)ds.

As is easily verified, Rt(E)[l—E] is the only solution bounded in
[e,e+A] for any A>0, and it thus equals the limit of the (non-

. . . (v) (0) -
decreasing) iteration sequence (wt (X))V€Z+'Wt =0.

Suppose 0<§<e/2 and E€S,. By (FM) and (RM) there exist a
Cll>0 such that for 6isﬁt—6 and t<e+Ai
(3.2)  F__[€] > l-cq I0-Ell
By (IM)

(3.3) T, <M

0 ]
t t +°°
Further
(3.4) O0=r(1l)n < r(g)n < mn, (ﬁln)€S+®B+.
*
Finally, recalling the assumptions on m and the fact that ¢,¢ EDE,
*
there exist constants ¢ and c¢ such that

(3.5) kmo < co,

* * %
(3.6) ¢ [kmn]l < c & [nl, neB_ .

Using (3.2-6) and (M),

(15)




§ t
A, < {f+ f} M_[kmM, _[1-£]lds
— g =g s t-s
t-6

+ g Ms[kr(l—cll Hl—EII)Mt_s[l-EJ]dS

§(ctc’) (140 ._E/zae/z)ptd)*[l—g](l)

| A

+ (1 ) (o 20 )ikl

x 0" [r(1-cy ll1- ) 0 11p% [1-2 0.

Since

lim cb*[r(l-c 1-g|pel =0
| 1-¢]|~0 H |

we can for every e€'>0 first fix &>0 such that
¢ t 1 * —
{f+ S }(---)ds < ite'é [1-2]o, £€s+,
0 t-6

and then choose a §'>0 such that

t-¢

J (++e)ds < %te'é*[l—i]@' [[1-2]] <8
§

That is,

t*
AL < t@elx[g]p o [1-€leo, e<t<e+:r,

(3.7)
1im 0
Il1-g]] »0

e,A[gl =0, €,\>0.

0

Using (RM) and the fact that Tiog th—eMe—s on B,

€

€
(3.8) Bt(x)ﬁMt_e[,(/;Me_S[

kmMS[l—E]](x)dsL=:§i(X), toe.
By (IM), (M), and (3.6)

t-¢
=€

0, =€ * -t+e
(3.9) | éTE{kth—s}ds < Bg < ec (1l4p

at_é)thf[l-E]w.

From (3.7-9)

(16)




* - *
1im w V) < {e%Fro_ [ [£l+ec’ (140" Ca _ &0 [1-El0,
t — €, A t-€
\) 0
for e<t<e+)X. Since €,)>0 were arbitrary, this implies (R) .O

Let P(+,*) be any stochastic kernel on X®A such that
ME (x): = JgxX[E]P(x,dX),
defines a bounded operator M on B. Let F[:](x) be the generating
functional of P(x,-), and as in (FM) expand
1-F[£]=M[1-£]-R(E)[1-E], E€S.
Let W* be a non-negative, linear-bounded functional on B,

sequentially continuous with respect to the product topology on

bounded regions, and let w€§; be positive on X, possibly with
inf y=0.

Lemma 2 ([5],[8]). Suppose 2€(0,1). Then

[oe]

* V)
(3.10) I Y [R(1-2"Y)Y] < =
v=1

if and only if
(3.11) W*[fﬁﬁ[w]log§[w]P(-,d§)] < oo,

Proof. We have

oo}

fw [R(1-) w)w]dt-w [Myl <
v IR(1-AVp) ] < fqr TR(1-A%p)plat.

<
\Y

0 ™8

1

Substituting s=s(§,t):=—§[log(l-ktw)l/§[w], we get

T I R(1-2Fp) ylat
0

*

W [ £ T (exp{xllog(1-2%p) 1 3-1+at%[v1) A Fatp (-, dx)

*

v* S(x'o){s—z(exp{—§[¢]S}‘l+§[w]s)

O—w O3y

MO S

+a(%,s)}b(R,s)dsP(-,d%)1,

(17)



=251 x[llog(l A w>|1
(%[ Log (1-2Fy) 1/x[v]) 2

a(§,s(§,t)):=s_2(kt—s)§[w]

! (x[log(l A w)]>

|Toga| x[ASp1R02%0/ (1-x%0) ]

N ~ __,-t_2/3s
b(x,s(x,t)):==A "s <at)

Since a(ﬁ,s(ﬁ,t)) and b(ﬁ,s(ﬁ,t)) are bounded as functions of

(%,t)G%@IR+, even if infy=0, the substitution u:=%X[¥]s leads to
the equivalence of (3.lo0) and

* N 2 - - - ~
(3.12) ¥ [rgalyl ¥l |109 (1-9) [1,=2 (o781 1y qup (- ,aR) 1< .

For allv>0
A4

0<c <[log(l+v)]_lfu
11— 0

_2(e_u—l+u)du < €10 < @,

Hence (3.12) is equivalent to

T*[f§§[w]log(l+§[|log(l-¢)l])P(°,d§)]< @,
which in turn is equivalent to (3.ll).q

The independence property (F.l) can also be expressed in
the following way. Let Ft be the o-algebra generated on the sample
space by {§S;sit}. For 0<s<t and every non-negative,

A-measurable n
1] .
**[nl a.s. [PT],

X
S

N~

(3.13) §t[n] =

i=1

xSt i—l,..,x [1], are F,_-measurable and independent

where the x ' c
conditioned on FS, and for every A Ac A
A . x> "~
X, AS,1_ 4 _ < i‘fa N X
P7 (x] EA]FS)—P (x,_€A) a.s. [P7]
with §z'l=<x.>. The sample space may not be large enough to allow
(3.13) for all s<t. However, we shall need this representation

only for fixed s, or for t,s restricted to sets of the form {né:

n=0,1,2,..}, 6>0. In both cases there exist processes equivalent

(18)




~

to {§t,PX} which satisfy (3.13). Hence we can use (3.13) for the

process itself without loss of generality.
Lemma 3 ([1]). Let x£2R+4R+ be concave with x(0)=0. Then for

every t>0
(3.14) ¢*[E<'>§tlw]x(§t[co])] < o

if and only if

V(3.15) ®*[kf§§[w]x(§[@])ﬂ(-,d§)] < o,

Remark. While log X does not satisfy the assumptions on x, (3.14)

with

X (x) = l[o’e)(x)g/e+l[e,w)(x)logx

is equivalent to

5R[E<'>xthpllog§thpll < ®»,

and the same applies to (3.15).

Proof. We first assume (3.15). Let 0<TliT2i.. be the

N

branching times of {§t,PX}, i.e. the times of discontinuities in

§t not caused by absorption via 9. Define
Tt(g):=Ex§t[w]X(§t[@]), I, (x):=I_({x)),
~ ey _ §/\ A -=~
It,n(x)’_E xt[w]x(xt[m])l{Tn+l>t},It’n(x). t,n(<x>)'
Then

t
(3.16) It,n+l(x)=gT2{kI§ﬂ(x,dx)It_s,n(x)}(x)ds+It’o(x).

S
N

Let T;, n=1,2,.., be the branching times of {xg’l,Px}, i=l,..,§0[l].

Then §0[1]

5 ?co’l[cp]l{ i
T

(3.17) % [ell <
Bt = T n+l

>t}

If S is the sum of r independent, non-negative random variables

Z., then by use of Jensen's inequality

ll

(19)



r :
(3.18) ES_X(S.) < E {EZ, X( I EZj)+EZiX(Zi)}_

i=1 jFi
r
< ESrX(ESr)+i£lEZiX(Zi)'

Applying this to (3.17), we have for Oitito, t0 arbitrary but fixed,

(3.19) T, (%) < o RIOIK(o RIOD +RIT, 4],
fﬁﬂ(xldﬁ)ft,n(§) < clz+cl31(x)+mIt’n(x)

1(x): = Sem(x,dx)x[elx(x[e]).
Inserting (3.19) into (3.16) and using (3.3), (3.6), we get

* *
50 [k1]+016t sup ¢ [I 1,

O0<s<t

<

*
2 [It,n+l] - Cl4+cl t,n

where HIt,O||= sup, @ (x) X (¢(x)) has been absorbed into c;,. From

this, for Oitito with cht<l,

* *
¢ [I,] = sup sup ¢ [IS il < e
n 0<s<t r

. ~t, 1 \ n
Applying (3.18) to Zi=xt;;[w], 1=l,..,xt[l], t,sito,

(x>

I (x) = BXVE(x, [lTolx(x [lo])|F)

t+s t+s

71052, [01x (0% [0]) +%, [T 1)

| A

*
< cl7+cl8It(x)+clg® [Is]w(X)-

Thus (3.14) holds for all t>0.
Now suppose (3.14) holds for some t. By (1.3) and (M) the

-t A
process {p xt[w],Ft,Px} is a martingale. Since uX(u) is convex,

this implies

(3.20) Is(x) < 020+021It(x), O0<s<t.
We have

(20)



Is(x)gE<X>§s[w]x(§s[w])l{Tl<s}

. |
= éTg{kf%ﬂ(°,d§)fs_u(x)}(x)du, s<t

From (IM) and (3.6)

*_ 0 * g%
(3.21) ¢ [TE] > (l-c s)p 0 [£], s>0,
for every non-negative A-measurable §. Hence, for s<l/c
* *
0) [IS] > C,,s0 [k1]-c23,
which implies (3.15).o

4. THE SUBCRITICAL CASE

¢
Note that P‘X>(xt=9)=Ft[0](x), t>0, x€X. Since Ft[O] is

non-decreasing in t by (F.2),

q(x):=limP<X>(§t=6), xX€X,

t>o

exists and satisfies q=Ft[q], t>0. From (IF)
(4.1) 1-F [5]‘To(l- )+?To{k(l—f[F [£1]1)}d
: gl E1=T (18 o S t-s 't S-

If ¢=1 a.e., then Ft[E]El, t>0. However, if £€§; such that £<1 on
a set of positive measure, it follows from (2.1) and the irreduci-
bility assumption on m by iteration of (4.1) that

Ft[g](x)<l, XEX, t>0.
Theorem 2 ([5],[8]). Suppose p<l. Then g=1, and there exists

a constant yGR+ such that

(4.2) limp” “P¥ (% $8)=yX[e]
t>o0

uniformly in §€X(n) for every n>0. We have y>0 if and only if for
some (and thus all) t>0

(X LOG X) Q*[E<'>§t[w]log§t[m]] < o,

(21)




Moreover, there exists a probability measure P on (ﬁ,K) such that
'i;,\ = svV= s 12 = 2 =N V= i
(4.3) iigp (xt[lAv] n ;v Lyeor 3% $6) P(x[lAv] n ;v=l,..,3)

for each finite, measurable decomposition {Av}l<v<j of X and

uniformly in §EX(n) for every n>0. If y>0, then

I

(4.4) JSgRlEIP(aR) = vy To'[£], geB.

If y=0, then

o

(4.5) JSex[£]P(dX)

for every E£€B,positive on a set of positive measure.
Remark. By Lemma 3 and the remark following it, (X LOG X)

is equivalent to

(x log x) ®*[kf§ﬂ(°,d§)§[w]log§[m]] < o,

and this in turn is equivalent to
SR E(X)k (%) fgm(x,dx)x[E]logx[E]dx,
where £ is any continuous, positive function on X which concides
near Q~X with a function in Dg.
Proof. From (FM), (RM), and (M) with p<1l
(4.6) ||1-F (€| < || 1-F L0]]] + || T |€]1-F, 0]]]

Fa) o  [11]]0 || »0, tow,

<2l 1-F 101 < o (140"
uniformly in £€S. To continue we need
Lemma 4. Given that [[1-F _[0] |[[~0, as t»~, there exists for

every t>0 a mapping ht:§+»B such that

1-F, [£]=(1+h [£]) 0" [1-F [£]]w, t>0, €T,

(4.7)
lim |[[h [€]]| = 0 uniformly in E€S,.

t>oo
Proof. If £=1 a.e., then Ft[glzl, and we may take ht[E]EO.

Now suppose £<1 on a set of positive measure, i.e. Ft[£]<l on X.

From (F.2) and (FM)

(22)




1-F [€]1=M [1-F _ [£1)-R_(F,__[E]) [1-F,_,[E]], £>5>0, E€S.

From this by (M) and (R)
-s s *
(1-p “a - Hgs[Ft_s[E]]II)p o [1-F __[E]]e
- *
< 1-F [E] < (L+p %a)p®¢ [1-F, __[E]lo .
*

Combining these inequalities with those obtained by applying ¢

to them,

2p_sus+ g IF _ [E1T]|  1-F [¢]
- Pp < -
-5 = o [1-F [£]]

=S

20 o+ |lg [P, _ [E1T]]

<

S o
1-p o - |lg [P _ [E1]]]
for tzt*(s) and s>s* with some t*(s)<w,s*<~. Now use p_sas+0, s>,
(R), and ||1-F [e]|| < [| 1-F [0]][>0, t>x.m

Proof of Theorem 2 continued. Using (F.2), (FM), (M),and (RM),

(4.8) 0 < p TS0 [1-F, [£]]

A

I

" 0" 11-F _[£11-p" S0 (R, (F [£]) [1-F [£]]

| A

-t _* -t _*
p d [l—Ft[E]] <p 0 [1-Ft[0]].
"Hence, there exists a non-negative, non-increasing functional y[-]

on §; such that
(4.9) o % [1-F [E114y[E], the  EES,.
Combined with (F.1l), written in the form
) ,
(4.10) Ft(<xl,..,xn),£) =‘v£1(l—(l_Ft[E](xv)))'

this implies (4.2) with Y:=y[0l. From (4.8) and (4.7)
_n* _
p T ® [l-Fn[0]]—

(23)




n-1
- Lo [1-F 1011 1 (1-p7 Y0  [Ry (F, [01) [(1+n, [01) @11}
v=1

That is, y>0 if and only if

[} *
£ 2" IRy (F [0]) [(L+h [0 1] < =
- v v
v=1

If y>0, there exists by (4.6) a positive real e<|hp||-l such that

]ﬁ%[O]zepvw for all sufficiently large v, sO that

(4.11) % @ [Ry (1-€p Vo)l < =,
v=1

in view of (RM). On the other hand, if y=0, there is for every €>0

a v, such that 1- F [0]<ep @ for all v>vg, and (4.11) cannot hold.

That is, >0 if and only if (4.11) is satisfied for some e<|| @|] ~

Now recall Lemma 2.

/\
N

The generating functional of p* (x €-

§t+e) is given by

PR E)-F (R0 Lo F, (X,E)

1 - Ft(§,0) 1 - Ft(§,0)

Gt(xlg): =

Define G: S+S by Gt[-](x):=Gt((x),-). If there exists a functional

G on §+ such that

(4.12) lim|Gy [£1(x)-G[E]] = 0, E€S,, XE€X,

t oo
and for every sequence (gnkﬂﬁN in S+ with En(x)+l, n»©, X€X,

(4.13) lim G[En] =1,

n-ro

then G is the restriction to §+ of the generating functional of a
probability distribution P on (ﬁ,ﬁ), cf. [31,[181, using (4.10)

lim G _(%,£) = G[gl, €E€S,,

t—>o

t

and from this, by setting &= 1, A, |Kvlil, v=1,..,j, and appealing
N :

to the continuity theorem for generating functions, (4.3). Uniformi-

ty of (4.12) in x entails the proposed uniformity of (4.3). We now

prove the existence of a G satisfying (4.12), (4.13), uniformly

infx.
(24)




If y>0, then (4.12) with G[&]=1-y[£]/y and uniformity in x
follows from (4.9) and Lemma 4, and (4.13) is obtained from
-t %
0 < vlg 1 < p "0l1-F _[E 1120, n>e,

using dominated convergence. In the following we admit y=0.

Lemma 5. For every t>0 and £€§+ the function (l—Ft[E])/w
has a continuous extension to {.

Proof. Recall (4.1). Since all quantities in the integrand

are uniformly bounded and Tngcg, s>0, we have l—Ft[E]ECg, t>0.

That is, (l-Ft[E])/w is continuous on X. The continuous extendabi-

lity to Q follows by use of wEDg, TgBSCérS>0' (2.5) and 1 Hospital's

rule.n

Proof of Theorem 2 continued. Fix £€§+. By Lemma 5 the

function ht[E](x) of Lemma 4 has a continuous extension Ht[E](x)
to @ for every t>0. Hence, there exists a tO such that Gt[E](x)
has a continuous extension Et[g](x) o § for every t>t,. Since Q
is compact, there must then for each tzt0 exist an §t€§ such that
Et[a](Et)=HGt[g]jL It follows by the same argument as in [12, p.42]]
that Et[g](it) is decreasing, as t»«. Thus
(4.14) G[g]: = 1lim Et[g](Qt)
t>o0
exists. However, for all tito,
1+ +h x
1-G, [£]= ht[E] 1 ht[O](xt)
t l+ht[0]

(1-G [E] (X)),
1+ [£] (%) EE

so that (4.14) and Lemma 4 imply (4.12) with uniformity in x.

Using Lemma 4, (F.2), (FM), and (4.1),

*
(4.15) 1-G[F_[£]] = lim o [1-F [F [E1T]

g> -

L 3
® [l—Fs[O]]

(25)




l—Fs[E]

t *
p (1-G[E]) - 1limd |R_(F [01)
svw | © % ¢*[1-F_L0]]

ot(1-cl£l), t>0, E€5,.

In particular,

(4.16) GIF, (011 = 1-p".

Now let “%)nEN be any sequence in S+ with En(x)+l,.nfw, x€X. Fix
§>0, s>0, n0>0 such ‘that

p_6a6<l,

= sup | ” gé[E]” <l_p—60('6l

g€s, :||1-¢]| <|| 1-F [0]]]

€24

(p+al)Q*[l—inlﬁps(l—p-6a6-024)®*[l-Fs[0]], n>ng.
By (M), (4.1), and (R) this is clearly possible. In view of (4.1),
the monotony of Ft[O], (F.2), (FM), (MR), (M), and (R), there
exists a sequence of integers (2(n)) . such that %(n)>s if n>n,,

2(n)—>~ as n»>», and

1-F [ _1<(p-ap) @ [1-E 1o
<p8(1-p 00 ey 07 [1-F  [01T0

<1l

< —F6+2(n)[0]’ n>n;.

Hence, by (4.15), (4.16),
13G[gn]=1-p'l(1—G[Fl[£n]])

>1-p"t(1-GIF [011)

§+2(n)

Q' -
p6+ (n) l,

=]1- nino,

which implies (4.13).

To derive (4.4), suppose y>0. Then by (4.2)

lim B

t>o0

(R [11]% 40) = vy lo¥ (114w,
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Hence, G has a bounded first moment functional M. From (4.15)
MM E] = otME.

By (M) therefore M=€¢*,e a positive real number. Using (4.16) and

expanding G similarly as F. in (FM),

1

-t
0 (l-G[Ft[OJ])

MIp~®(1-F_[01) 1-R(F,[0]) [p” T(1-F [01) ],

where R(g)[£] is linear-bounded in & and tends to 0, as IL-z|| »0.

From this, by (4.2), 1=M[yel. That is, e=y_l.

Now suppose y=0, and define
* *
e, = ¢ [1-F_[0]l/¢ [1], n€N.
By (4.1) and the monotony of Fn[O], 0<en+0, as nte, Fix t>0, nl>0,
s>0 such that

p a,. < 1,

S t t S
p Tag<l, (pTmay-prcyg)/(pTHag) 21,

cyg: = sup |lg [1-e ]|
n>n, ‘

Due to (M) with p<1l and (R) this is possible. Then, using (FM), (R),

and (M)

l—Ft[l—en]i(pt-ut-ptcz5)®*[€n]wzl—Fs[Fn[0]], n>n, .
Applying (4.15) and (F.2),
(1-G[1-¢ 1) /e =p” “(1-GIF [1-e 11) /e

>p S (1-GIF_[F_[0111) /e =o°""*"¢" [11/0" [1-F_[01], n>n,.

If y=0, the last expression tends to «, as n»>», by (4.2). That is,

in this case G cannot have a bounded firs£ moment functional.
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5. THE CRITICAL CASE
For t>0 define
1 ok (o) 2 A2 -
pu(t):= -2*E® [E {Xt[(D] Xt[(p 111 < =,

Proposition. If p=1, then

* A~ ~
bt zus=te (kS5 (-, a%) (kle1%-%10°111, t>0.
%
Proof. Extend Tg, m, Mt’ and & set of all non-negative,

not necessarily bounded, A-measurable functions, and define
2 ~ 2~ 2
w2 e1 60 =2z 12125, 1621}, >0, ceB,, xex.
From (F.2)

(2) v (2) (2)
Mt+S[g]—Mt [MSE]+MtMS [E]r s,t>0, £€B+

Applying (M) with p=1,
(5.1) @ m{? [o11=te M) [0]]

for all rational t, further

* *
o P 101120 ! P 1011, e2s.
That is, (5.1) holds for all t>0.
By (IF), the function Méz)[g](x), t>0, x€X, finite or not,

solves
to (2)
zéx)= gTs{kmzt_S+km [Mt_SE]Hx)ds,

m(2) (2] (x) :=fgm (x,a%) {20£1%-R[£%1}, geB,, xex.

Using (M) with p=1, (3.3), (3.6), and (3.21),
t
* * * *
0<% [ng{kmMéE;[w]}ds < tc sup @ [M(z)[w]] = 2c t2u,
0 0<s<t S

t
t(1-c e  km?) [o11<0 10 (ko ?) (o1 }as] st Tin 2) (011, >0
0

Divide by t and let t+0.mo

Theorem 3 ([4],[8]). Suppose p=1l. Then either u=0 and
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Qt[l]=§0[l] a.s. for all t>0, or u>0 and g=1l. If O<u<e then

A

(5.2) lim tP* (R #8) = u 'k[o]

t>oo

uniformly in §€X(n) for each n>0, and for every finite, measurable

decomposition {Av} of X and any x+6

1<v<j

. * "]_/\ N
(5.3)  Llim P*(t "X [1, 1< v=1,..,3|x +6)

troo Vv

v
i 0, minkviO
. * -1 .
l-exp{-min[(pe [1,1) ~A 1}, mini_ >0
v v v v Y

uniformly in (Xl,..,Xj)EIRJ. For E€EB

(5.4) 1lim t‘lE<X>(§t[g]|§t+e)=u@*[g].

t>oo
Remarks. (a) If ﬁt[l]=§0[l] a.s. for all t>0, then it
follows by (FM) and (M) that ¢ is constant and, with ¢=1,

N ¢ I —1y—aF
lim P (xt[lA]—l)—® [lA], X€EX, A€A.

t->o
This case occurs if and only if

S oo (Y)ay+Sk(x) m(x, {X[1]#1})dx = 0,
90

where dy is the differential surface element of 3Q.

(b) As in the case of (x log x) the condition
u<e is equivalent to the condition obtained by substituting for

@ and @ some continuous positive function which near ONX behaves

. . +
as a function in DO'

(c) A more intuitive way of expressing (5.3) is
the following: The conditional d.f. of the vector

t'1(§t[lA1],..,§t[lAj]), given §t+6, converges to the d.f. of a
* *
vector of the form (¢ [lA 1,..,9 [lA 1)w with P(w>X)=exp{-A/u}, A>0.
1 J

Lemma 6. For any finite collection {Y } . of sets in A
- <v<j
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the function P<X>(§t[lY ]=nv;v=l,..,j) is continuous in x€X for
v

every t>0 and continuous in t>0 for every x€X.

Proof. It suffices to prove the lemma for finite decomposi-

tions of X. For any such decomposition

(x? 2 s N _
P (Xt[lY] —n\)'\)—l,--,J)—Ht(X)'FIt(X), \Zjn\)"o
=51 _ Tol (x), In =1

vV TV Yy v
=It(x), va>l

t A
It(x):=ng{kf§ﬂ(-,dx)Px(xt_s[lYV]=nV;v=l,..,j)}(x)ds.

This follows from (IF). The continuity of Ht(x) and Tle (x) in
v

x and t and that of It(x) in x follows immediately from

!|T2 Hﬁl,Tngcg, t>0, and the continuity of Tg in t. As for the

continuity of It in t, note that

0,0 0
[E: 1<l 10201, -0, |l +3] ]| €,

t+6_It € e t=-¢

1y gt Il <l 0o,y -10e@lr, 0 || +axl] el

whenever 0<2§<2e<t.no

Proof of Theorem 3. Since ¢>0 on X, py=0 if and only if

2 zeexMyi=0, o0, i.e. P<X>(§t€X(l))=l, x€X, £>0, by

continuity. Now suppose u>0. Then P<x>(§t€x

" [1-p
(l))+l on an x-set
of positive measure depending on t. Since by (FM) and (M) with
p=1
¢*[P<'>(§t=e)]=®*[Rt(0)1], t>0,
this implies P<X)(§t=6)>0 on a set of positive measure, depending
on t. Define
N(t):={x€X: ;p <X >(x £=0)=0}, t>0.
Since P< >(x —6) is contlnuous, N(t) is compact. If @ [lN(t)]=0

for some t>0, then @ [lg]l= 0 as in [3;111,12,13].
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RSt

*
By q=Ft[q] and Lemma 5, or (FM) and (M) with p=1, ¢ [l-gq] implies

. L 3 ’
g=1l. Suppose @ [lN(t)]>O for all t>0. Fix s so that a <l and

define

N:= N N(ns).
ne W

A routine extension of [3;11,6], using compactness of N(t) and
thus N and continuity of P<x>(§28[lN]>l) in x, shows that

inf P<X>(§2 [1..1>1)>0
s N
XEN

and that due to this {0<§[l]§d},‘0<d<®, is a transient event of

{§2nS,P<X>,n€Z;}. Given p=1, this again implies g=1.

Lemma 7. If p=1 and u<«, then for every §6>0

1

1 } =u

. 1 * -
Lim —{¢1-F_,[£]]

IWNon—»>w

—ot[1-81"

uniformly in £€§+ with £<1 on a set of positive measure.

Proof. Fix & as required in the lemma. Then l—Ft[E]>O on X

for all t>0. Using (F.2)

1, * -1 _* -1
7ﬂ;{¢[1—Fn[£]] -3 [1-£] 7}

n-1
1 1 l}

== 7z

\Y%

1 * - %* -
0" [1-F[F (€117 -0 [1-F ,[£]]

0

n—ll
Z,g
=0

1

* -—
(1-0" [1-F  [E11A[F ([E1]) T A [F ,[E]],

|
Bl

v

A6[¢]:=®*[1—;]'2{¢*[1—c]—®*[1—F6[c]]}.

If p<e, then for z=1-n@€S,_ with n€B_ and EES,
0¥ 11-F, [c11=0" M g 1-20* () [1-211430 " (R (o) [2-c11,
R() () 11-21(x) :=E 0 (P (g, 0,2,

0 (g, 0, %) =0, R[11<2
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1
N S C(x, )o(x, )
(n-2): (irn-0i) V1TT TV,

1 n
x (1-2/(1-2) O [l-—k(l-&(xi )) 1dax),
0 K =3 K

§=(xl,..,xn), n>2.
E 3
By dominated convergence, o [Réz)(-)[-]] is sequentially continuous
on bounded regions in §+®{£=nm:n€B+}, and we have
* : *
0 = o"1rR(? (1 Inel] < o [R(P) (&) [nel]

®*[Mé2)[nw]] < 2tu|]n|y2

| A

for t>0, (E,n)€§;®B Using (M) with p=1 and Lemma 4,
A [F [E]1=50 [M(z)[(l+h [£1)0]]

1.%.(2)
-50 [Rg (Ft[E])[(l+ht[E])w]].

Since let[E]iFt[0]+l, as tteo,

lim A [F [£1]1=6u

t>o0
uniformly in £.0

Proof of Theorem 3 continued. Lemma 7, Lemma 4, and (F.1)

written in the form (4.lo) yield (5.2) with t restricted to sets

A

of the form {né;n€ N}, 6>0. Since Px(§t=6) is monotone in t, this

implies (5.2) with te€ IH,

N A

X X _
The Laplace transform Lt(sl,..,sj) of Qt(kl,..,xj).—

Px(t-lﬁt[lA]<A ;v=1,..,]J) is given by
\)——\)

L§ _ Ft(x,Et)-Ft(x,O) o 1 - Ft(x,Et)
t A - A !
1 - -Ft(x,O) 1 - Ft(x,O)
_omE/E e ]
et= §:= Zl le
Note that

* *
te [1-¢, 1+@ (], toe.

Using this, it follows again from Lemma 7, Lemma 4, and (F.l) that

(32)




= VS (L-F g (R,E ) (e [E1) T  [E1R[0], MIvsm.

From this by (5.2)

~

%* -
lim Lx6=(l+uCI> [e]) l, §>0.

IN3y»
The expression on the right is the Laplace transform of the limit
d.f. proposed in (5.3). Denote this d.f. by Q_. By the continuity
theorem Q§6+Qw, v+w,'and since Q_ is continuous, we have uniform
convergence. Hence, we have convergence respective the metric
d(Ql,Qz):=inf{€:Ql(Al—€,..,Aj-e)—esz(ll,..,kj)
in(Al+e,..,Aj+e)+e,xv€[0,w),v=l,..,j},

defined for all pairs of j-dimensional distribution functions

Ql,Q2 with Ql(O,..,0)=Q2(0,..,0)=0. Writing

. Px(ﬁt[lAv]=nv;v=l, )
OF(Ayyenrhy)= z - :
£ 71 . -
J nvitxv;v=l,..,j Px(xt+e)

n.l+ . .+':nj >0

it follows from Lemma 6 and (F.l) that Qi is continuous in t>0

respective d. By the Croft-Kingman lemma [13] therefore

lim  d(Q},Q,)=0
]R._|_3t+oo

which implies (5.3).

Concerning (5.4), note that

N

x[M E1=E"x, [£]=P™ (x $0)E™ (X [£]]X $0),

and apply (M) and (5.2).

6. THE SUPERCRITICAL CASE

By the martingale convergence theorem there exists a random

~

variable W with Exwiﬁ[w] such that

W=1lim p—t§t[w] a.s. [P*].

troo
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+
Theorem 4 ([1]). Suppose p>l. Then 1-q€D,, and for every

almost everywhere continuous n€B

N

lim p‘t§t[n1=¢*[n1w a.s.[P¥].

t>o0

We have E*w=x[o], §€§, if and only if for some (and thus all)

t>0
* (o) A ~
(X LoG X) ¢ [E"“x [o]llogx, [@]]<>,
otherwise W=0 a.s. [P*].
Remark. There exist a normalization sequence Yt=L(p- )p_t

L(s) slowly varying as s»>0, and a random variable W such that

A ~

pX ([f<w)=1, P*(W=0)=q(X), X€X,
and for every almost everywhere continuous né€B

(6.1) 1imyt§t[n1=¢*[n]w a.s.[P¥].

t>oo
To obtain (6.1) for n=¢, extend [9] by use of (M), (R), and
Sevastyanov's transformation. To get from there to (6.1) with a
general n, proceed as below, but with Bt=§t[w]. A detailed

treatment of this and other problems will be given in a separate

paper jointly with Fred Hoppe.

Proof. This proof differs in parts from the proof given
in [1]. For the moment fix t>0. By (FM), (M) with p>1, and (R)
we can find an €>0 such that Q*[l-Ft[l—E]]>®*[£] whenever
|| €|| <e. Suppose ®*[l-q]=0. Then Q*[l-FS[O]]+O, as s+ . By
(F.2), (FM), (RM), and (M) there must then exist an s>0 such
that || 1-F_[01]| <e and consequently 6ﬁl—Ft+s[0]]>®*[l—Fs[0]]-
But this contradicts the fact that FS[Ol-is non-decreasing.

Hence, g<l on a set of positive measure. From (IF) and q=Ft[q],

0 t o
l—q=Tt(l-q)+fTS{k(l—f[q])}ds.
0

(34)
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By (2.1) and the irreducibility assumption on m, iteration of this

equation yields g<l on X, and using Tngcg,

s>0, and (2.3-5) we
get l—qGDE.
Next we turn to the degeneracy question for W. Define
wt(x)(x):=ﬁ&>exp {-p'tﬁt[m]A}=Ft[eXp{—p—twk}](X),
w(A)(x):=E<X>e-“h, A>0, x€X.

Then

(6.2) by, (M=F [V (0 TN 1, t,5>0, A0,

PO=F_[W(p” 501, 250, £>0.
The last equation implies
E<X>W=Mt[p_tE<'>W](x), X€X, t>0.
By (M) we therefore have either E<X>W=w(x), X€X, or E<X>W=0, X€X.

Given this alternative, the first occurs if and only if

(6.3) lim ©*[l—wn(l)]>0.

n-—->-oo

We show that (6.3) is equivalent to (X LOG X). By (FM) and (6.2)

* X -1
0" [1-y_ (1) 1=0"[1-F [y _; (o™ ) 1]
-1
1 l'wn_l(p )

) _
0" [1-y, 1 (o )]

% ' -1 * -
=p® [1-y__,(p D=0 IR (¥, _,(p

; - n-1 _ -y _ (p~ ")
=" e 1y (TTH I T {1—¢*[Rl<w 8 S }}
T n—v Vv
v=1 o [1-v _ (o ) ]

Using (FM), (M), and (R),

-n+1

1im o™ o (1-y (0 121,

n-—>oo
and there exist €>0, €'>0, and n'>0 such that

1-cp Vosy, _ (o ") <l-e'p Vo, n>n', vin.

Hence, (6.3) is equivalent to
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E 8" (R (1-9p ™ V0) @] <o

v=1

with some ¥ >0. Now recall Lemma 2.

§ 6 . A
Lemma 8. For 0<§€ R _ let Yn,i n, l,B 1—1,..,xn6[l].
n=0,1,2,.., be random variables such that

8 ) 8. X
0y ;<Zp yr By 20 a.e.[P7].

Suppose the Yg ; are independent conditioned on FﬁG' the same is
’ ) :

true of the

“6 8 . ~
=y .1,,68 8 i=1,..,x_.[11,
n i n,i {Zn l<8n_l}, nd
. . . S 8 AnG i
and the distribution G<X>of Zn,i depends only on <x X 1
® [fMM%%A)]<m
Suppose further B is F a—measurable, {B >0}3{B +l>0}r
6.4) 1im (8%)71g% .>1 a.e. on I,: {8550}
: oo n n+l te §° neiw n !
and (8%)71% . [el1,,8 is bounded a.e [Pﬁ] Defi
n nes {Bn>0} .e. . Define
sb.=1. (8¢ )’1xng[l']y6 §%.-1 (g8 7t Xng[l]?a
n’ I‘(S n-1 i=1 n,i’" "n° F& n-1 i=1 n,i
Then
lim {SG—E§(§6|F ) }=0 a.s [P§]
oo n n' "né T °

Proof. Omitting the superscripts %X and §, setting 6=1

elsewhere, and using (1.3), (M), and (6.4),

o)

~ ~ 2
r E{[S -E(S_|F )] [F 17

n=1
- x_[1]
inilE{(Bn—l)—2 lZiE(Y '|Fn)|Fn-l}l{Bn_l>0}
® ~24 Pr-1
=n£1(8n_l) xn_l[Ml[ é A dG<.>(A)]]1{Bn_l>O}

(36)



© _an—l
Cy Z B 4/ A

— =1 0

236% 16, (M) 11
(-2 {8,_1>0}

® *
iczékdé [G(.>(A)]+C3,

z P{sn+sn;Fn_l}

n=1
w X, [1]
=n£1E{ iil P(Y, ;>B I Fy )| F - {B 03
inilxn-l[Ml[B f dG( ) (x) ]]l{s 0}
z a ’
§C4n=18n—1 Bi . " [G( >(k)]1{B 0}

*
iCSéAdQ [G<.>(A)]+C6.

The C .,C

1" 6

are finite, but in general random. Chebychev's

inequality and the conditional Borel-Cantelli lemma complete

the proof.no

Proof of Theorem 4 continued. For n€B+, O<6€2R+,

n,re N set

s ._,8 . And i §._ (n+l)¢
Yn,177%0,1 ™ (ntr) s (M7 Bpi=p .
In the notation of Lemma 8,
R T e O L "et (s
8. X, o8 =8
e t=E" (S sn|Fn6).
By (1.3) and (M)
ré -né» -rs_x

(1-p~ ura)é*[n]p x slel<p "E (S | Fas)

-ndé~

ré
xna[w],

- *
<(1+p “Ta )@ [nlp

That is, if eg+0 a.s., n*», for every r, then by Lemma 8

(37)
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~

- A *
lim p nGan[n]=® [nlw a.s.[P"].

n—+o

We now prove eg+0. First, note that

ST SN AR SN B

s né

' * -ndA~
<(p T +a )@ [nlp x slel,

so that in any case

. -nd;
llmnsup 0 XnG[l]< a.s.

Secondly

6 —nsr\ X) ~
Sl nll o708 11sup 1 rap™*? (R s(11<0)
X pn6

From (IF), for y>1,

(e} t"
f)\dP<x> (2, [(L1<\)=/S TO{kNy }(x)ds, -
v t — 0 s t-s

y e[ ~ }/E/\ _
Nt_s(x).—fX Y nm(x,dx)P (Xt—s[l]‘n)'

n>y
We have Ng(x)im[MS[l]]illml!ellkmllS and NZ(x)+0, y+», for all
x and s. Using ||T2]]i 1, s>0, boundedness of p, (x,y) on

[e,t]18X8X for every €>0, and dominated convergence, this implies

sup fxdp<x>(§r6[llix)+0, y>e. .
Xy

Hence, sg+0, n»>«, for every r.
Lemma 9. If {Bt,tEZR+} is a rightcontinuous process such
that the Bg:=8n6’ n€ N, 6>0, satisfy the assumptions of the

preceding lemma, with

lim B;le =g° a.s. on I'= N {Bt>0}, s>0,

t>o0 t+s t>0
and W a random variable such that

o=1a LK
(6.5) :Nézgmsnﬁxnd[gl—Q [E]W a.s. on T

for every 6>0 and £€B+, then

(38)




-1~ * ~
lim Btlxt[n]=© [nlw a.s. on T

t—>oo

for any almost everywhere continuous né€B.
Proof. For every U€EA define
S () . =p<¥7 (2 -3
gU(x).—P (xt[lU]—xt[l]VtG[O,G]).

Clearly, ES(X)+1U(X), as 840, for every x€X. Set

§ : § _
Y~ .:=1 . . Z- .=1.
frd {ﬁﬁa'ltl =328 i1 veens, (n+) 61 Prt
Ut
Then
~ 8
xt[lU]ZSn, t€[nd, (n+l) 81,

and by Lemma 8 and (6.5)
L -1x -8, . S
(6.6) lim inf Bt xt[lU]iB lim inf Sn
t n
ST S X =08 =8 %, .5
=B llmnlnf E” (S, | Fs)=B llmnlnf E (Sannd)

T I -1 §q_ =8 *p Sqmv, Koo e
=B ~1lim inf Bnéan[EU]_B o) [EU]W+® [lU]W,6+0 a.e.onl.
Next, set

§ _,8 _zné,i .ond, i ~né, i
Yn’i-zn’i-x(n+l)6[1]+#{t.xt_ [11>%.°"7[1],né<t<(n+1)§}.

Then

<e®®,a=|| k||- (|| m|| +1),

{x),6
EVYO <

and again by Lemma 8 and (6.5)

, -1~ -8, §
(6.7) lim sup B, xt[l]iB lim sup S
t n
=5, % x5 -8, . X, .5
=B llmnsup E (Sn|Fn6)iB llmnsup E (Sann6)

-1 A * ~ * ~
<®%1im sup Bnéxn§l]=ea6® [11Wve [1IW a.e.T, 6&6+O0.

From (6.6) and (6.7) with U=X

-1A * ~
lim Btlxt[l]=¢ [11w a.e. on T,

t >0

(39)



and from this and (6.6) for any U with a boundary of measure zero

. -1, ke -14
llmtsup Bt xt[lU]—Q [1IW llmtlnf Bt xt[lU]

%k ~
<9 [lU]W a.e. on I'.

Now take an appropriate denumerable class of such U's and apply

Theorem 2.2 of [2].0O
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