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Short title: Estimation of the offspring mean 

Abstract. 

Assume that for a family of probability distributions 

{P e, e = (~,n) E 8} on a sample space X the maximum likelihood 
A 

estimate ~ of ~ is a function of some statistic t (X). It is 

then not true in general that the maximum likelihood estimate of 
A 

~, based on observing only t(X), also is ~. This note provides 

simple sufficient conditions so that the above fact is true. As 

a corollary, it is deduced that in a large number of cases, the 

maximum likelihood estimate of the offspring mean in a Galton -

Watson branching process is equal to the total number of children 

divided by the total number of parents. 

Key words: cut, exponential family, Galton - Watson process, 

L - independence, maximum likelihood estimation. 
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1. Introduction. 

If Zo = ZQ'Zl' ... 'Zn are the n + 1 first generation sizes of a 

Galton - Watson branching process, then the maximum likelihood 

estimate of the offspring mean m = E (Zl) is in most cases given by 

i.e. the total number of children divided by the total number of 

parents. In fact, Harris (1948) showed this in the case where 

all individual offspring sizes are observed and the statistical 

model is that of a completely general family of distributions on 
A 

the nonnegative integers. Since m only depends on the generation 

sizes ZO, ... ,Zn' it is interesting to know whether it is also the 

maximum likelihood estimate of m in the general model but only 

based on the observation of ZO, ... ,Zn. This is in fact so, but no 

complete proof existed until Feigirt (1976) gave a Lagrange multi-

plier argument. 

The purpose of this note is to point out that the result may be 

obtained as an elementary corollary to exponential family theory. 

Following up the preliminary report by Keiding (1975), we also 

'mentiOh some other families of offspring distributions for 

which ~ is the maximum likelihood estimate of m based on observa-

tion of ZO, ... ,Zn. Use of this fact has in particular been made 

by Becker (1974, 1977 a, 1977 b).. Our approach also shows more 
A 

clearly why m is just the simple average alluded to above. In a 

final section, we make some brief comments on the relation to work 

by Barndorff-Nielsen on ancillarity and by Sundberg on incomplete-

ly observed exponential families. 
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2. Maximum likelihood estimates in marginal distributions 

Consider a sample space (X,A) with a family of probability 

measures P = {Pe' e E 8} dominated by a a-finite measure ~. 

Assume that there is given two parameter. functions l/!: 8 -7- r2 = l/! (8) 

-1 = {Pe , eEl/! (w)}. 

Let t: X -7- A be a statistic. 

Lemma 2.1 If for all w, t(xl is the maximum likelihood estimate 

of T(e) in the family P ,then this also holds in the family P. 
w 

Proof. Denote the likelihood function by L(e). By assumption 

we haye 

but then 

sup L(e} = 
eEl/!-l(w} 

sup L (e) 
-1 -1 

eEl/! (W)nT (t(x}) 

sup 

eE8 

L(e) = sup sup L(e) 
-1 

wEr2 eEl/! (w) 

= sup sup L(e) = sup L(e), 
-1 -1 1 

wEr2 eEl/! (W)nT (t(x)) eET- (t(x)) 

which was to be proved. If also t is a sufficient statistic for 

each fixed w, this can be strengthened to: 

Lemma 2.2 If the assumptions of Lemma 2.1 are fulfilled, and if 

further for all w, t (x) is sufficient iirthe model P then t (x) w' 

is the maximum likelihood estimate of T(e) based on observing t(x) 

only, as well in the model P as in P. 
w 



Proof. By the Neyman factorisation theorem we have that the 

density of P8 factorises as 

But then the marginal density of t becomes 

dP t- l 
8 

d].lt- l 
(t) = g*(1);(8),t)h(8,t), 

and for fixed value of 1);(8) we see that the likelihood functions 

based on x and on t are proportional ane_ therefore yield the same 

maximum likelihood estimates. Thus t is also the "marginal" 

maximum likelihood estimate of T(8) in P and Lemma 2.1 shows 
w 

that this also holds in P. 

A typical situation in which Lemmas 2.1 and 2.2 apply is the fol-

lowing: let 8 k 
c R x r2, 8= (~,w)E8 and the density be of the 

form 

::8 (x) = ¢(8)-lg(x,w) e~·t(x), ( 2.1) 

k where t: X + R , and g > 0 a.s.].l. Assume further that for each 

fixed w the sections ={~ E Rk, (~,w) E 8} are given as 
w 

k and that for all w E r2, ~ are open subsets of R (such a family 
w 

has been called p,artlyexponential by Barndorff-Nielsen (1971, 

Sec.5.2). Let C denote the closed convex hull of the support of 

P t- l and assume this to be independent of 8. 
8 

Lemma 2.3 :Wtth th~assumptionsabove, if t(x) E ipt C, we let 
-_ .••• ''<lI7 _.,--, - .•• - _'_" . ~'---

1);(8.} = w §.l)d T(8) = E:8[t(~)], lemmas 2.1 and 2.2 apply and 
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"'-

T(S) = t(x), whether X or t(X) only has been observed. 

Proof. The assumptions imply that P are regular canonical expo
w 

nential families with t(X) as canonical statistic, cf. Barndorff-

Nielsen (1970). Thus t(X) is sufficient in P~ and by Theorem 7.1 
"'-

of the same reference, T(S) = t(x) in P~. Thus the lemmas apply 

and the proof is complete. 

Remark. Note that to derive the results we have not assumed the 

basic parameter S to be even identifiable, which it might often 

not be from the observation of t(X) alone. 

Corollary Let Xl 'X2 ' ... be independent identically distributed 

according to (2.1) and let N be a stopping time not depending on 

S, that is, there exist statistics f : Xn ~ {O,l} such that 
n 

I{N= n} = f (Xl""'X ), n = 1,2,·~·. n n Then the maximum likelihood 
n 

estimate of Ee[t(Xl )] based on Xl"",XN is Llt(xi)/n. 

Proof. The likelihood function is the density of (N,Xl,···,XN) 

which at the point (n,xl,···,xn ) is given by 

n t;'(L~t(xi)) 
c/d S ) -n IT g (x. , w) e f (xl"'" x ). 

i=l l n n 

This is proportional to the likelihood corresponding to the stopping 

rule N = n (this general phenomenon is conventionally termed "the 

likelihood is independent of the stopping rule"). The latter is, 

however, itself of the form (2.1) so that Lemma 2.3 applies to 
n 

show that Llt(xi ) is the maximum likelihood estimate of 
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Example 2.1 The negative binomial distribution. 

Let Xi E N = {O,1,2,···},~ be counting measure and 

If we observe Xl'···'Xn independent replications of a random 

variable from this distribution, where both n and ~ are unknown, 

it follows from the corollary that x is maximum likelihood estimate 

of EefX~ = n e~/(l-e~) also if only i was observed. 

Example 2.2 The completely general family on {O,···,k}. Let Y be 

a random variable on {O, ... ,k}. Observing Y is equivalent to 

observing (I{Y = O},···, I{Y = k})EXk 

= {(xO,··· ,xk ) , xi = ° or 1, L xi = I}. The family of distributions 

with density 

with t(x) = L i xi and (Cn)E R x{ (no'··· ,nk ) , ° ..:: n i ..:: 1,L n i = I} 

is (an overparameterized version of) the completely general family 

on Xk . Notice that 

k "i:" 
L n. ell" < 00 

i=O l 

for all ~ E R, so that H = R. The closed convex support of t(X) 
n 

is [O,k]. It now follows from Lemma 2.3 and the Corollary that if 

Yl'···'Yn are independent identically distributed on {O,···,k} 

according to the general model, then the maximum likelihood 

estimate T of T = E(Y) based on Y is y, provided ° < y < k. However, 
1\ 

it is readily seen that if y = ° (resp.k) then nO = 1 (resp. nk = 1) 
A , 1\ 

and hence T = ° (resp. k) so that in all cases T = y. 



Example 2.3 Thecompletelygeneralfarttily on N. Let Yl""'Yn be 

independent identically distributed on N = {0,1,2,"'} in the 

statistical model given by all distributions on N and consider the 

problem of deriving the maximum likelihood estimate of T = E(Y) 

based on observing Y only. With similar notation as in Example 2.2 

above, the likelihood function when nY= y iB 

o ~ ni ~ 1, L ni = 1. Since L does not depend on ny+l ,ny+2"" an9 

is clearly increasing in each of they + 1 first coordinates separate-

ly,it is obvioUs that the maximization problem is identical to th~t 

of the general distribution on {O,···,y}. And for that problem we 

showed in Example 2.2 above that ~ = y. Notice that the estimated 

mean is always finite even though the statistical model allows the 

theoretical mean to be infinite. 

3. Maximum likelihood estimation of the offspring mean in a· 

br anchingproce s s. 

To define a Galton-Watson process, it is convenient to use the 

following representation. Let Yl ,Y2 ,··· be independent identically 

distributed random variables on N. 

Let Zo = zo' Zl = Y + ... + Y , Z = Y + ... + Y , 
1 Zo 2 zO+l zO+Zl 

Z = Y + ... + Y Then Z . .. Z form 
n zO+Zl+" '+Zn_2+1 zO+Zl+-' '+Zn_l 0" n 

the first generation sizes of a Galton-Watson process with the 

common distribution of the Y's as offspring distribution. Obser .... 

vation of all individual offspring sizes of the n first generation 

sizes amounts to observing Yl ,·· .,Yz +Z + ... +Z . We notice that ob-
o 1 n-l 

servation of the sequence Yl ,Y2 ,'" is stopped at the stopping time 

zO+Zl+' "+Zn-l which does not depend on any parameter. Therefore 
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the likelihood function is obtained from the likelihood of k 

independent replications of Yi by replacing k by zO+Zl+···+Zn_l. 

If the maximum likelihood estimate of E(Y) based on observing 

certain partial sums Yl+···+Yk 'Yk +l+···+Yk ' ... 'Yk +l+···+Yk 
1 12m 

only is given by y, then the maximum likelihood estimate of the 

offspring mean in the Galton-Watson process based on observing 

only Z ... Z is given by l' , n 

By a reasoning analogous to that of the proof of the Corollary, 

it is immediate that the same maximum likelihood estimate is 

valid if Zl'···ZN is observed, where N is a stopping time not 

depending on the parameters, cf~ Becker (1974) and Keiding (1975). 

Sufficient conditions for statistical models to satisfy these 

demands are easily obtained from Section 2. It follows that off-

spring distributions such as the completely general distributions· 

(Harris 1948, Jagers 1973, 1975, rion 1974), the power series 

distributions (Becker 1974, Eschenbach & Winkler 1975, Heyde 1975, 

Heyde & Feigin 1975) ,~inary splitting (Jagers 1975), the modified 

geometric distribution (Keiding 1975) and the negative binomial 

distributions will all lead to m as maximum likelihood estimate 

of m. A nontrivial counterexample is the zeta-distributions with 

probabilities p = (x+l)-e/~(e), x = 0,1,2,···, 1 < e < 00, with x 

~ the Riemann zeta function, for which m is not the maximum 

likelihood estimate (Keiding 1975). 

For the multitype Galton-Watson process, Asmussen and Keiding (1977) 

derived for the statistical model containing all offspring distri-

butions the maximum likelihood estimate of the offspring mean 
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matrix M = (mijl based on observation of all parent-offspring 

combinations Uk v .: the vector of offspring of the kIth individual 
,1 

of type i alive at time v, v = O,·.·,n - 1. This is given by the 

obvious average 

m .. = 
1J 

n-l n-l 
L Z~+l(j)/ L 

v=O v=O 
Z (i) 

v 

where Z~+l(j) = L~~l u~,i(j) is the number of individuals of type 

j in the (v+l) 1st generation whose parents were of type i and 

zv(j) = L Z~(j). It is now seen that mij is also the maximum likeli

hood estimate of m .. if only based on observation of the z~(j), 
1J v 

provided the class of offspring distributions is of the type dis-

cussed. 

Similar results concerning estimation of the offspring mean for 

Markov branching processes can also be derived, cf. Keiding (1975). 

4. Remarks. 

a. L-independence 

If in the factorisation used to prove Lemma 2.2, h depends on e 

via T ( e) only, 1. e. 

f(x,el = g(~(el,xlh(T(el,t(xll 

-1 -1 . 
and if 8 = ~ (g) X T (A), then the parameter functions 0 and T 

were termedL-independent by Barndorff-Nielsen (1971), who went 

on to give conditions ensuring that g is in fact the conditional 

density of X given t(X). In this case t(X} is called a cut and is 

termed S-ancillary with respect to ~. It is a special case of 

Lemma 2.3 that if t(X) is a canonical cut_in an exponential family, 

(cf.loc.cit.Section 3.3), then t(x) is the maximum likelihood 
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estimate of E[t(X) J. It is, however, easily seen that already in 

the trinomial family on {O, 1,2}, the statistic Xl +2~2 is not a cut, 

(this fact seems to be implicitly stated by Barndorff-Nielsen 

(1976)), so that this approach will probably not be able to yield 

the result of Section 3 (cf. Examples 2.2 and 2.3). 

b. Maximum likelihood estimators based on the observation of a 

statistic only. 

Let P = {p(~,n) I (~,n) E ~ x H} be a dominated family of distribu

tions on some sample space X. If the maximum likelihood estimate 

~ of ~ based on observing X E X depends on some statistic t(X) 

only, it need not be true that the maximum likelihood estimate of 

~ based on observing t(X) only is also given by ~. The following 

example was in the present context given by T.P. Speed (cf.'Feigin 

(1976)) as a counterexample to such a claim by Jagers (1975, Lemma 

(2.13.2)) . 

Example 4.1 The normal distribu.tion 

2 2 
Let Xl""Xn be iid normal (11,0' ),11 E R, 0' > O. The maximum 

likelihood estimate of 11 is x whether (Xl,···,Xn ) or only X is 

observed, but the maximum likelihood estimate of 0'2 is SSD/n if 

based on (Xl'" .,Xn ), but SSD/(n-l) if based on observing SSD = 
Ce_ ~'2 e 

x;<{~itt¥r ,~Cfrt:~Ye' :,::~ accordance with these facts, we notice that x is 

maximum likelihood estimate of 11 whether 0'2 is fixed or varying, 

but if 11 is fixed, then the maximum likelihood estimate of 0'2 is 

L(Xi -11)2/n which depends on 11 so that Lemma 2.1 does not apply_ 

Further, SSD is not sufficient so the extra conditions of Lemma 

2.2 are violated also. 
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c. Incoropletelyobservedexponentialfamilies 

Alarge class of families of distributions with densities of the 

form (2.1) are generated by incomplete observation of an exponen-

tial family in the following way: Suppose 

dP 
_s (x) = 
dll 

e ~. ~ (:xl +n.· u(x) 

cjJ(~,n} 

and we do not observe X but only t(X). We have 

thus being of the form (2.1) It follows from Lemma 2.3 that the 

maximum likelihood estimate of ES[t(X)}based on t(X) alone is t(x). 

Most of this also follows from the basic paper by Sundberg (1974), 

who stated that the likelihood equation fore based on observing 

t (X) is 

;Ee[~~~; I t(X) = t(X)] = E8[~~~;] (4.1) 
from which it follows that t(x) = E~)]. But Sundberg did not 

provide regularity conditions to gurarantee that there is a 

solution to (4.1) and that a solution maximises the likelihood. 

That will not be true in general. 
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