


S¢ren Johansen 

PRODUCT INTEGRALS AND MARKOV PROCESSES 

Preprint 1977 No. 3 

INSTITUTE OF MATHEMATICAL STATISTICS 

UNIVERSITY OF COPENHAGEN 

April 1977 



Product Integrals and Markov Processes 

by 

Spren Johansen 

1. Introduction. A finite state Markov Process is usually 

described by the Kolmogorov differential equations 

( 1.1) cp; P (s , t) = P (s , t) Q (t) , 
at 

where p{s,t) denotes the transition probabilities and Q{t) 

the intensity matrix. The solution to (1.1) with initial con-

dition p{s,s) = I is given by the product integral 
t 

p{s,t) = IT (I + Q{u)8u) 
s 

For references to this, see Schlesingem (193l) and Dobrushin 

(1953). The product integral was used to study the imbedding 

problem by Johansen (1973). 

In the study of the estimation problem for a nonhomogeneous 

Markov Process (Aalen and Johansen, 1977) it turned out that 

we needed the product-integral representation of a transition 

probability which is only piecewise constant. This note contains 

the definition of the product integral, where the measure 

J Q{u)du is replaced by an arbitrary matrix valued measure 

A 

]) on [0,1 J • 

Section 2 contains the product integral and some of its 

properties and section 3 then applies this integral to the 

representation of the transi tion probabilities in terms of its 
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integrated intensities. We thus obtain a different approach 

to some of the results of Jacobsen (1972). 

2. The Product Integral 

Let ~ denote the Borel sets of [0,1J and let v be a 

a-additive finite signed measure with values in the set of 

nxn matrices,i.e.amatrix of n 2 real measure. We let v (n) 

denote product measure on [0,1J n defined by 

We shall use the notation II • II to denote matrix norm 

II v (B) II = sup L Iv . . (B)I, and introduce the real positive measure . lJ . 
i J 

v = L L I v . . 1 (B) 
o i j lJ 

where Iv .. 1 = v.t + v.~ . 
lJ lJ lJ 

One easily checks, thatllv (B) II ::s Vo (B) and that 

( )' n 
IIv n (B 1x ••• XB ) II ::s II VO(B.). 

n . 1 l l= 

We now give the basic definition: 

2.1. Definition. For B E ~ we define the product integral 

co (n) 
II(I+dv) = I + L v (Bx ••. xB n {u1< ••• <u }). 
B n=1 .n 

Notice that from the inequality 

(n) 
II v (B x ••• x B n {u1 < ••• <Un}) II ~ 

(n) 
Vo (B x ••• x B n {u1< ••• <un }) ::s 1 

-, Vo (B) n. 

follows - the convergence of the series. 

The following evaluations follow easily from the definition. 
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2.2. Proposition. For B E S we have 

II I + v (B) II ~ e 
v (B) 

o 

v (B) 
II II (I +d v) II ~ e 0 

B 

~ v (B) e 
o 

v (B) 
o 

II II(I+dv) .,..111 
B 

1 2 vo(B) 
II II (I +d v) - I - v (B) II ~ "2 v 0 (B) e 

B 

Now we can immediately prove the basic property of mUltiplicativity: 

2.3. Theorem. For any t E [0,1 J we have 

II(I+dv) = 
B 

II ( I +d v ) II ( I +d v ) 
Bn[o,tJ BnJt,1J 

Thus II(I+dv) is mUltiplicative over disjoint int:ervalg,which is 
B 

the reason for its name. 

Proof. For i = 1, ... ,n-1 let 

with the obvious modification for i = 0 and n. We let 

n 
A (B , n) U A (B, i ,n) 

i=o 
Now 

n 
v (A (B , n)) = L v (A (B , i ,n) ) 

i=o 

= ~ v (i) (A(Bn[o,tJ ,i)) v (n-i) (A(BnJt,1J) ,n-i) 
i=o 

Summing over n gives the result. 

2.4. Examples. If dv = Qdt, where Q is a fixed matrix then 

(n) tDQn 
v (0 ~ u 1<·· .<un ~ t) = D! 

and hence 

II (I +dv ) 

[0, t J 
= e tQ 

~ - -
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If d1) = Q1dt for o :St:S t1 and d1) = Q2dt for t1 < t:S 1 

then using Theorem 2.3, and the above example, we get 

{ Q1t O:St:S t1 

~ eQ1t1 Q2(t-t1) 

, 
II (I +d 1)) 

[o,t] 
e e , t1 < t :S 1 

As a final example we let 1) = Q~ where Q is fixed and 
t1 

is a one point measure at t1 ' then 

II ( I +d 1) ) = {I , 0 :S t < t 1 ' 

[o,t] . I+Q , t1:St :S1 

Thus we get a piecewise constant function of t . 

The following results give a different and perhaps more in-

tuitive definition of the product integral. The definition we have 

chosen seems to give the basic results in a very efficient manner, 

since we can use existing integration and measure theory. 

2.5. Theorem. Let 0 = to <t1 < ..• < tn = 1 , then 

n-1 
II II (I +d 1)) - II (I +1) ] t. ,t. +1]) II :S c sup 1) ] t. ,t. +1 [ 
]] . ~ 1 . 0 ~ 1 
o,t ~=o 1 

Proof. We split the product integral into the corresponding factors 

and define 

M. = 
~ 

II (I+d1)) 
]ti ,t i +1 ] 

, N. 
~ 

then by Proposition 2.2, we get 

1) ] t. ,t. +1 ] 
11M. II :S e 0 ~ 1 , 

~ 

We also get 

1) ] t. ,t. +1 ] o ~ ~ 
IIN.II:Se . 

~ 
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v ] t, , t, +1[ 011 
~ e (sup V ] t, ,t, +1 [ ) V ] t, , t , +1 J . 01101 1 

i 

Using these evaluations we get 

n-1 n-1 n-1 
II IT M, - IT N, II ~ r II M ... M , 1 (M, - N , ) N , + 1 •.• N :i i II , 1, 1 , 0 1- 1 1 1 n-
1=0 1=0 1=0 

V [0,1J 
~ e 0 (r V J t, ,t, +1 J) sup V J t, ,t, +1 [ 

i 0 1 1 i 011 

as was the result we wanted to prove. 

2.6. Corrollary. Let t, satisfy the conditions 
1n 

a) o = t < t1 < •.• < t = 1 
on n nn 

and 
b) lim sup V J t , , t ( '+1) [ = 0 , 

i 
o 1n 1 n 

n~ 

then the product integral can be computed as 

n-1 
IT (r+dv) = lim IT (r+vJt, ,t('+1) J) , 1n 1 n 

Jo,1J n~ 1=0 

Notice that condition b) can always be satisfied, since we 

can make sure that the atoms of V (i.e. of vo) eventually are 

among the division points. 

The next results are about differentiability of the product 

integral. 
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2.7. Theorem. For B E ~ we have 

II ( I +d v ) - I = S B II[ [ (I +d v) v (du) 
B B n o,u 

Proof. Using Fubinis theorem on the (n+1) 'st term we get 

(n+1) 
v (Bx .•• xB, o~u1< .•. <un+1~1) 

Iv (n) 
= (Bx •.• xB, 0 ~U1<" . <Un <u) v (du) 

B 

Summing over n gives the result. 

2.8. Theorem. For B E ~ we have 

II(I+dv) - I = S v (d:cl) II (I+dv) 
B B ]u,1]nB 

Proof. Similar to that of Theorem 2.7. If we define the function 

F by 
t ~ II (I+dv) 

[o,t] 

then F is right continuous by Theorem 2.7 and it is of bounded 

variation. It thus determines a matrix valued measure, which by 

Theorem 2.7 is absolutely continuous with respect to v • The 
o 

integral relation can thus be reformulated as 

If H 

dv 
dv 

o 
, a. s. [v ] • 

o 

t ~ II (I+dv) , then Theorem 2.8 can be reformulated as 
]t,1] 

dH 
dv 

o 
(t) dv 

dv 
o 

(t)H(t) , a.s. [v ] • 
o 
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3. Markov Processes 

In constructing a Markov Process one can start with the 

transition probabilites, satisfying the Chapman-Kolmogorov 

equations, then construct the process, i.e. the measure on a 

sui table function space, by the Kolmogorov consistency theorem, 

see Doob (1953), or via a general theor em of extens ion of continuous 

linear functionals, see Nelson (1959), or Goodman and Johansen (1973). 

In this case the discussion of the differential equations for the 

transition probabilities becomes a discussion of when a process is 

determined by its infinitesimal properties. 

One can also start out with the waiting time distributions 

and the jump intensities. and then construct the measure very directly , 

and then prove that certain variables form a Markov Process and 

define the transition probabilities in terms of these. The dif-

ferential equations can now be viewed as a convinient and different 

way of obtaining the transition probabilities,see Jacobsen (1972). 

We shall here start with the intensities or rather the inte-

grated intensities v , i.e. we assume that 

v .. ~ 0 , v.. ~ 0 , i f j and LV.. = 0 • 
~~ ~J ~J j 

From this measure we construct the transition probabilities by 

a product integral and this also gives us the differential equations 

for P. Thus the approach is highly non-probabilistic as opposed 

to that of Jacobsen (1972). The solution, however, is the same, as 

we shall show. 

Thus, we let v be finite signed measure on [o,1J with 
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values in the set of intensity matrices, then the following holds: 

3.1. Theorem. If v[t] + I is a stochastic matrix, i.e. if 

v . . [t] ~ -1 , then 11 
P (B) = II (I +d v) 

B 

is a stochastic matrix. 

Proof. Assume first that v .. [t] > -1 , i = 1, •.• ,n , i.e. no atoms 
11 

of v are as large as -1 . Then let us choose the partition t. 
1n 

of [0,1] so fine that I + v]tin ,t(i+1)n] is a stochastic matrix. 

By Corrollary 2.6 P(B) is the limit of stochastic matrices, hence 

stochastic. 

In general there can only be a finite number of points 

t 1 , •.. t k ' such that some v . . [t ] = -1 . By writing 11 r 

k-1 
P (B) = (1+ v (0) ). II II (I+dv) (I+v [t i +1 ]) 

i=1 Bn]ti ,t i +1 [ 

we see that PCB) is stochastic. 

For a given v we now define 

p(s,t) = p(]s,t]) = II (I+dv) , 0< s< t~ 1 , 
]s,t] 

P (0 , t) = P ( [ 0 , t ]) = II ( I +d v) , 0 ~ t ~ 1 , 
[o,t] 

then it is seen that P(s,t) is right continuous in sand t 

(except for s = 0, tio) , and that 

P (t - ,t) = I + v [t] 

P(t,t+) = I 

+ p(o,o) = I + v[o] 

0<t~1 

0<t<1 
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The mUltiplicativity of the product integral now immediately 

gives that p(s,t) satisfies the Chapman-Kolmogorov equations 

p(s,t) = p(s,u)p(u,t) o ~ s < u < t ~ 1, 

and in this formulation, Theorem 2.7 gives the forward diffe-

rential equation 

oP (s, t) 
av. (t) 

o 

dv 
= P (s,t) dv (t) 

(j 

a.s. [v] 
o 

whereas Theorem 2.8 gives the backward equation 

ap (s, t) 
av (s) 

o 
= 

dv 
dv 

o 
(s) p(s,t) a.s.[v ] 

o 

which show that p(s,t) do infact have v as integrated 

intensity measure. 

Using a result similar to Theorem 2.5 one can prove that 

for s < t < ..• <t = t such that sup v ] t . , t ( . +1) ] -+ 0 on nn . 0 1n 1 ,n 
1 

we have 

n-1 

IT (1+d Vkk) = lim IT (1+Pkk ]t. ,teo 1)' ]) 
]s,t] n->eo i=O 1n .1+ ,n 

which is nothing but the waitingtime distribution in state i, 

i.e. 

p{x = i, s < u ~ tIX=l} = 
u s 

IT (1+dv .. ) 
1 .] 11 s,"C 

With the notation 

and 

G. [0, t] = 1 - IT ( 1 +d v . . ) 
1 [o,t] 11 

Jr •. (t) 
1J 

dv .. __ lJ 

dv .. 
11 

(t) , i 1= j, Jr .. (t) = 0 
1J 

we can now prove that the solution provided by Jacobse.n··, 
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starting with G and % is in fact the same as the solution 

provided here starting from v. 

Notice that v can be recovered from G and 1(, by the 

relations 

and 

v . . (A) 
11 

A 

v . . (A) 
1J 

1( •. (u) v . . (du). 
1J 11 

A 

We shall now assume, that v satisfies the following extra 

conditions 

1) v [0] = 0 

2) v .. [tJ >- 1. 
11 

i.e. P(s,t) becomes rigth continuous, also at 0, and no atom 

is as large as -1. 

It is then seen that G. is continuous at zero, and that 
1 

G.[o,t] = 0 if v . . [o,t] = 0 and that G.[o,t] ~ 1, since 
1 11 1 

V •• [0,1] is finite. In order to see the last result, where 
11 

condition 2) is needed, we argue as follows: The largest atom 

of Iv .. 1 is 1-s say.Now choose 0 = t < ••• < t = 1 such that 
11 . 0 n 

I v .. ] t . ,t. +1 [ I 
11 J J 

s <-
2 

1+v .. ]t. ,to 1] > 2S 
11 J J+ 

then 

and log ( 1 +v .. ] t . ,t. +1 J) ~ 
11 J J 

s 
log -

2 
v .. J t . ,t . +1 ] . 

-1+.£ II J J 
2 
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Summing over j gives 

II (1 +v .. ] t. ,t. 1])?; c > 0 
. 11 J J + 
J 

which again implies that II(1+dv .. ) ? c > 0 . 
B 11 

Thus the functions G and K satisfy the conditions of 

"" Jacobsen and his solution p(s,t) is constructed to satisfy the 

integral equation: 

i . . (s,t) 
1J 

G. ]t,1] 
= 6 1 + 

ij G. ]s,1] 
1 

L 
kfi 

J G. (du) 
'" 1 

K ik (U)Pkj(u,t)G.]s,1] . 
. 1 

] S , t] 

Using the definition of (G,K) in terms of v this is 

(3.1) F .. (s,t) 
1J 

which is known to have a unique solution, see Feller (1940). 

The function p]s,t] = II (I+dv) is known to satisfy the 
] s , t] 

equation 

(3.2) p .. (s,t) 
1J 

6 .. 
1J 

= L S vik(du)Pkj (u,t) 

k ]s,t] 

In this equation we mUltiply by II(1+dv .. ) and integrate with 
] [ ' 11 a,s: 

respect to v . . (ds) 
11 

• If we then use the results: 

J II ( 1 +d v . . ) v . . (d s ) = 
] [ 11 11 

]a,t] a,s 

II (1+dv .. ) - 1 
]a,t] 11 

and 

S· II ( 1 +d v . . ) v . . (d s) = 
] [ 11 11 

]a,u[ a,s 

II, (1+dv .. ) - 1 
]a,u[ 11 

then we get after some reduction that P also satisfies equation 

(3.1), hence P = P . 
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In fact the equations (3.1) and (3.2) are equivalent. If 

(3.1) is integrated with respect to 

arrive at (3.2). 

]) .. (ds) 
1.1. 

on J a, t} , we 

It should of course be pointed out that we are only 

dealing with a finite number of states, whereas Jacobsen treats 

the more general situation of a countable number of states. 
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