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INTRODUCTION 

This paper surveys the theoretical literature on statistical 

inference for branching processes, almost exclusively from the 

last five years. The emphasis is on estimation of the offspring mean 

(time-discrete case) and the Malthusian growth parameter (time­

continuous case) based on a complete record of the process in a 

time period. 

Essentially two different repetitive structures are important: 

increasing number of ancestors, leading to standard iid theory, 

and increasing number of generations with which we shall mostly be 

concerned. Very little thought has been given to small-sample 

theory, including suitable conditionality arguments for defining 

reasonable reference sampling distributions. 

For the large sample theory for supercritica1 branching 

processes in discrete time it seems useful to view a series of 

generations as successive sections (of random length) of iid 

replications of a random variable with the offspring distribution. 

The continuous-time analogue is the random time transformation to 

a Poisson process (with has iid increments) v~a the inverse of the' 

natural increasing process corresponding to the split time process, 

this being a trivial submartinga1e. The latter approach has beefi 

used by Aa1en for statistical analysis of more general point 

processes. 

The use of the natural increasing process as a measure of 

efficiency has been studied for both discrete and continuous time 

by a series of Australian authors, who have also provided 
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the offspring distribution (Pk)' Let Zo be some fixed number and 

define the stochastic process ZO'Zl"" by 

Z 
n 

Y1+·· .+Y 
Zo 

YZ +l+"'+YZ +Z ' 
o 0 1 

Then (Z ) lS a Galton-Watson process with offspring distribution 
n 

(Pk) and ZO=zO' 

Proposition 1.1 Consider the completely general statistical model 

specified by all offspring distributions {(Pk):~Pk=l} and assume 

that all individual offspring sizes of individuals in the n first 

generations have been observed. Then the maximum likelihood 

estimator of the (Pk) lS the obvious set of relative frequencies 

where Nk is the number of times k offspring are produced, that lS 

Nk =*{iE{l, ... ,ZO+" ,+Zn-l} /Yi = k}. 

Proof. If Y1, ... ,Yp had been observed, obviously 

Pk =* {iE{l, ... ,p}/Yi = k}/p' 

In the present context, p has been replaced by the stopping time 

ZO+",+Zn-l which does not depend on the parameters. At the point 

(Yl""'y ) the likelihood of (Y1 ,···,YZ Z) is 
20+" .+2n- l 0+"'+ n-l 

proportional to that of (Y , ... ,Y ) with p = 20+" .+z 1 (this 
1 p n-

property is conventionally termed "the likelihood is independent ot 

the stopping rule"). This concludes the proof. The result was first 

pointed out by Harris [31]. 
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Corollary. The maX1mum likelihood estimator of the offspring mean 

m = IkPk in th~ general model based on the observation of all 

offspring sizes 1n the n first generations is given by 

"-
m 

that is, the total number of children divided by the total number of 

parents. 

Proof. "- "A m = L, kp 
k 

Based on the result of the Corollary, it 18 an obvious conjec­

ture that ~ is also the maximum likelihood estimator in the ~eneral 

model if only the generation sizes ZO, ... ,Zn are observed. 

Theorem 1.2 The maximum likelihood estimator of the offspring mean 

m in the general model based on the observation of the generation 

sizes ZO, ... ,Zn only is given by 

~ = (Zl+",+Zn)/(ZO+"'+Zn_l)' 

Proof. Dion [21, Theoreme 1.2] and Feigin [28] gave Lagrange 

multiplier arguments. Keiding and Lauritzen [54] used an exponential 

family approach which also delineates a class of statistical models 
A 

in which m is the maximum likelihood estimator of the offspring 

mean, as shown below. 

Remark. Notice that ill 1S always finite even though the model 

allows for m = 00 

Theorem 1.3 (Keiding and Lauritzen [54]). Let the parameter set 

8 ;;: Rx0" 8 = (~.,w) E 8 and the offspring probabilities be of the 

form 
. . ~x 
p (8) = a(8)g(x,w)e x 

where the support S = {x I g(x,w) > O} is independent of 8 and for 

each fixed w the sections ~w = {~ E Rk I (Cw) E 8} are open and 

given as 

{~E Rk I I g(x,w)e~x < oo}. 
xES 



- 5 -

Then if the observed ~ belongs to the interior of the closed convex 

hull of S. it is the max~mum likelihood estimate of m. 

Corollary. If N ~s a stopping time not depending on the parameters, 

and if ZO"",ZN is observed, then the maximum likelihood estimator 

of m ~n the models described ~n the previous theorems is given by 

Examples of offspring distributions fulfilling the conditions 

of Theorem 1.3 are the power series distributions (Dion [21], 

Becker [11]. Eschenbach and Winkler [26], Heyde [35], Heyde and 

Feigin [36], binary splitting (Jagers [46], the modified geometric 

distribution (Keiding [50]) and the negative binomial distribution. 

A nontrivial counterexample is the zeta-distributions with 
-8-

probabilities p = (x + 1) IC(8), x = 0,1,2, ... , 1 < 8 < 00, with 
x 

C the Riemann zeta function, for which ill is not the maximum likeli-

hood estimator (Keiding [50]). 

Observation of a random number N of generation s~zes has ~n 

particular been studied by Becker [11]. 

We conclude this section by noticing that there exist 

practically no small-sample distribution theory for ~, and the 

interesting question of possible conditional inference has hardly 

been touched upon. 

1.2 Asymptotic theory for ill. 

Essentially two different repetitive structures are important: 

increasing number of ancestors and increasing number of generations. 

By the branching property, the distribution of (ZO,·· "ZN) 

given Zo = z-:LS1:ne-same as that of a sum 6fZ--iridependenE-identi­

cally distributed replications of (ZO,· .. ,ZI1) given Zo = 1. It 

follows that standard large sample theory applies for large z, the 

most complete and careful treatment being that of Yanev [72]. 

Theorem 2.1 For fixed nand z+oo , 



- 6 -

(a) if m-+ oo , then ill-+m a.s. and E(ill) -+m, 

(b) 
2 if the offspring variance (J < 00, then the asymptotic distribu-

tion of 

{ z n-l }! A -2 (1 +m+ ... +m ) (m-m) 
(J 

~s standard normal. 

Remark. An iterated logarithm result is routine. 

We next consider the second asymptotic structure, that of 

increasing number of generations, first with fixed number z of 

ancestors, conveniently assumed equal to one. Since a branching 

process has all states j > 0 transient, there is no way of appealing 

to the standard theory of statistical inference for Markov chains 

such as given by Billingsley [lsJ. Obviously, nontrivial results 

exist only for the supercritica'l case m> 1 ;we let A denote the set 

{Z -+oo} of nonextinction. 
n 

Theorem 2.2 If 1 < m < 00, then for fixed z and n -+ 00 

ill -+ rna. s. on A. 

Proof. This result was noted by Heyde [33J as a corollary to 

his definitive theorem on normalizing constants for the asymptotic 

growth of supercritical branching processes. We take here the 

opportunity to point out that the result is in fact an easy 

consequence of the strong law of large numbers in its simplest 

form. 

Let Yl ,Y2 , ... be the iid offspring s~zes defined in Section 1. 

Then as p-+oo, (Yl + ... +Yp)/p-+m a.s. On th!=- set {ZO+" ,+Zn-l -+oo}, 

which is a.s. the same as A, it follows that 

A 

Y + ... +Y 
1 ZO+,.,+Zn-l 

m 
Z + ... +Z 1 o n-

-+m 

a. s. 

Asymptotic normality ~s obtained ~n a similar manner. 



- 7 -

2 
Theorem 2.3 (Dion [21,22], Jagers [44]). Assume m> 1, 0 < 0- < 00 

and let P A {.} = p{. I A} and S (w) = P A {W -2 w} where as usual 

W = lim a.s. Z m-n . Then for fixed z and n + 00 

n+ oo 
n 

(a) 
-00 

-1 n-l 4 A ~ r-
(b) PA{O- z(l + m+ ... +m ) (m-m) < x} + J <I>(xyw)dS(w) 

o 

and (c), the results (a) and (b) continue to hold if PA 1S 

replaced by p{elz > O}. 
n 

Proof. We outline the ma1n steps and refer to the quoted 

papers for details. By the central limit theorem the asymptotic 

distribution as p + 00 of 

-1 _1 P 
0- P 2 L: (Y.-m) 

i=l 1 

1S standard normal. Now 
Zo+·· .+Zn-l 

L: 
i=l 

(Y. - m) 
1 

and at least if PO = P{Zl = O} = 0, the result (a) follows fairly 

directly from a central limit theorem for a sum of a random number of 

independent random variables such as quoted by Billingsley [16, 

Theorem 17.2]. Also, (b) is a consequence of that result and (c) 

is elementary since the sequence of sets {Z >O} decreases to A. 
n 

The generalization to PO>O was carried through by Dion and Jagers 

1n the above mentioned papers. 

Notice that result (b) states that ill is not asymptotically 

normal when deterministic normalizing constants are used. If the 

offspring distribution is geometric, then the limiting distribution 

of (b) is a Student-distribution with 2z degrees of freedom. 

Remark. An iterated logarithm result for ill was recently 

provided by Asmussen and Keiding [6]. 
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Conditioning on the non-extinction set makes sense only ~n the 

supercritical case. However it would be interesting to study the 

asymptotic distribution of rn (properly normalized) in the 

subcritical and critical cases, given Z >0. Results of this type 
n 

were given by Pakes [63] for the estimators Pk discussed in 

Proposition 1.1 above. 

We finally note that Yanev [72] provided asymptotic distri­

bution theory under the assumption that both z and n become large. 

These results would presumably be quite important in practice. The 

character of the r~sults turns out to depend on the usual critical~ 

ty trichotomy. 

2 
Theorem 2.4 (Yanev [72]). Let 0<0' < co. Then as n +co and z + co 

(a) rn ~ m and E(rn) + m. 

(b) If m < 1, then the asymptotic distribution of 

( 
I 

Z ) 2 (rn-m) 
2 o (l-m) 

~s standard normal. 

(c) If m=l, then if n/z+O, the asymptotic distribution of 

1 
(zn)2 (A ) m-m a 

~s standard normal, while if n/z 2+co, the asymptotic distribution of 

2z2(1-m) 

~s a stable distribution with exponent !. 

(d) If m > 1 and the offspring distribution has finite fourth moment, 

then the asymptotic distribution of 

-1 n-l 1 o {z(l+ ... +m )}2(rn-m) 

~s standard normal. 

Notice that the results in Theorems 2.1 (b) and 2.3 (b) 

correspond to (d) in the present theorem (since W will degenerate 

as z -+- co.) 
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1.3 Alternative estimators of the offspring mean. 

A different estimator of the offspring mean was proposed by 

Lotka [58] and studied by Nagaev [62], see also Crump and Howe [19] 

and Dion [22]. This estimator is defined by 

Z Iz n n-l 
if Z > 0 

n-l 
m 

1 otherwise 

Then as noted by Nagaev, ECru I Zn-l > 0) = m. Asymptotic properties 

as Zo = z+oo are standard as before. If l<m<oo, it follows directly 

from Heyde's [33] results that as n-+ oo , m-+m a.s. on A. Crump and 

Howe [19] showed that if 0 < (i < 00, ECru I A) -+m as n+OO. 
-

Asymptotic distribution results as n + 00 ·were derived by 

Nagaev [62] and Dion [22]. In the supercritical case m> 1 these 

state that 

-1 1 -
PA{O Z~_l(m-m) <x} + W(x), 

{ -1 n/2 -
P A 0 m (m-m) ~ x} + f CQ (xIW)dS (w) 

o 

00 

and that these limiting distribution results continue to hold if 

~oriditioning on A is replaced by conditioning on {Z 1 > oJ. n-

Nagaev also provided results for the critical and subcritical 

cases; iterated logarithm laws may be obtained as before. 

Finally Heyde [35] mentioned the possibility of using m*=Z lin 
tJl -n 

as an estimator for m. If E(Zl log Zl) < co, Zn1l1 -+W a.8. as n-+ oo , 

and therefore m* -+m a s. on A. The rate of convergence is illustrated 

by the fact that by an application of Heyde and Leslie [37, 

Theorem 2], one has nCm*-m)+m log W a. s. on A. This "linear" rate 

of convergence compares badly to the "geometric" rate of ill and ;, 

as pointed out by Heyde. 

1.4 Estimation of the offspring var~ance. 

In order to use results from Sections 2 and 3 to deduce 

confidence intervals for the mean of the offspring distribution, 
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2 one has to give a consistent estimator for the var~ance a . Such 

an estimator is given by 

(4.1) 
*2 1 n-l 2 
a = 11- k:O Zk ( (Zk+ 1 IZk -m*) ) 

where m* is either Harris I estimator ~ (Dion [23]) or the Lotka­

Nagaev estimator ill (Heyde [34]). Denote ~2 by 82 if m*=m and by 
-2 - *2 a if m*=m. The properties of a are best studied by taking first 

m*=m and then replacing m by either m or m. 

*2 The asymptotic behaviour of a has been studied in the case 

when PO= 0, but one expects the same asymptotic results to hold on 

the set of non-extinction in the general situation where PO> 0 ~s 

allowed. 

Theorem 4.1 (Dion [23]) Assume Po = 0, m>l, 0<0'2<00 and E( Z1 4) <cq 

",2 -1 n-l 2 
Put a =n L Zk((Zk+l/Zk-m) ). Then 

_ _____ _ ___ k_=O. . 

Proof. For all £>0, 
. n-l 

(a2_82)nl - S = n-s k:OZk [(m-m){ 2 (Zk+/Zk)-(rn+m)}] 

A 2 ~s 
= (ZO+" ,+Zn-l) (m-m) .n> 0 a.s., 

from which (b) follows. By Theorem 2.3(a) the asymptotic 
-2 A 2 2 

distribution of a (Zo+"'+Zn_l)(m-m) ~s X with 1 d.f., and 

therefore 

",2 2 
Note 1. It is easy to show that E(O' )= a . The property (b) 

then states that E(82) < 0'2. 
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Note 2. By straightforward but long computations with 

conditional expectations and variances one can show that 

var(cP)R:; 2(]4;n. From property (a), 62 is then a consistent estimator 
2 

of (] . 

Note 3. Using a central limit theorem for martingales due to 

Billingsley [15, p.52], the asyn1ptotic normality of 02 (and hence 
~2 . 

of u ) can be easily established under the further assumption 

E(ZlQ)< 00. But as is, seen in the next theorem Heyde [34] has 
--- - - -- -2 - -. . --- .. - _. '----2-----

stronger results for (] . These have been extended to 6 by P. Feigin 

1n an unpublished thesis. 

Theorem 4.2 (Heyde [34]). Assume PO 

(a) 02 a-+s. (]2 

(b) 1· f ( 4) E Zl <(X), then 

1ll(02_(]2);(2a4)~ ~ N(O,l) and 

() 1· f ( 4+0) s c E Zl for some u>O, then 

-2 2 4 -1 1 a = (] +n(n)(4a n log log n)2, 

2 
0, m > 1 and 0 < a < 00: Then 

where n(n) has its set of a.s. limit points confined to [-1,+1] 

with lim sup n(n)=+l a.s. and lim inf n(n)=-l a.s. 
n~ n~ 

For the proof, which is rather long and far from trivial, the 

reader is referred to Heyde's article. However we will give an 

idea of his proof which relies heavily on strong results for 

martingales. 

Let Fn be the a-field generated by Zl"",Zn and put 

Using once more the underlying independent r.v. that constitute the 

family tree, one has that the U are martingale differences. Apply 
K 

next a strong law of large numbers for martingales to conclude that 

-1 
n 
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and then the property (a) follows after prov~ng that m can be 

replaced by m. (This last fact still requires an iterated logarithm 

analogue for m as given by Heyde & Leslie [37]). 

The central limit result (b) is obtained from a central limit 

theorem for martingales (Theorem 2 of Brown [17]) applied to the 
n 

martingale{L: U.,F} and the iterated logarithm result (c) is 
'-1 J n r 

deduced- from a corresponding iterated logarithm result for 

martingales due to Heyde and Scott [38, Theore~ 1]. 

In the critical case, m= 1, Nagaev [62] observed that 

S = (Z -Z 1)2 /Z 1 could be used to estimate (}2 since 
n n n- n-

E(Sn I Zn-l > 0) = (}2 and if E (Zl 4) < 00, Var· (Sn l Zn-l > 0) O(log n/n). 

1.5 Immigration. 

Consider now XO=1,Xl ,X2 , ... a Galton-Watson process with 

immigration whose offspring distribution has the distribution of Zl 

with EZ I =m and O<Var(Zl) =(}2<00. Suppose further that the 

immigration process has a finite mean A = L: ib .. 
~ 

Estimation problems in that context have been studied by 

Heyde & Seneta [39,40,41] and Quine [65]. 

In the supercritical case, m>l, the asymptotic properties of 

the Lotka-Nagaev estimator as given in Section 3 and Heyde's [34] 

. f 2 b h' est~mator or () are both ro ust ~n the sense that t e asymptot~c 

resul ts as n -r 00 con tinue to app ly unchanged in the cas e where 

immigration occurs. Only minor modifications of the proofs for the 

Galton-Watson process without immigration are necessary to establish 

these results. 

The subcritical case (m<l) however presents a new situation. 

Put Al=m and A2=,\. The estimators investigated are 

~l 

n -1 
L: x. (X. l-n S) 

i=l ~ ~+ n 

n 
L: (X.-n-IS )2 

'-1 ~ n 
~-



and 

where S 
n 

S 
n 

2n 

n 
L: (X. l-X,) 

i=l ~+ ~ 

n 
L: (X.-n-1S )2 

i=l ~ n 
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n 
2 L: X .. Let V = A2(1-Al ), c 

i=l ~ 
2 b2 h b2 . h va + w ere ~s t e 

var~ance of the immigration distribution. Assume further the 

immigration distribution is not degenerate. Then, improving on the 

work by Heyde & Seneta [40,41], Quine. [65] proved that Al and A2 are 

strongly consistent and obey the central limit theorem and law of 

the iterated logarithm under the sole condition c 2 < co. 

Theorem 5.1 (Quine [65]). If 
2 

c < co, then for i 1,2 as n -+ co 

(a) 

(b) 

and 

(c) 

A. -+ A. almost surely. 

Tte a.s~ptotic distribution of rn(~. - A.) /k. ~s standard normal, 
~ ~ ~ 

1 

n Z (A. - A.) 
~ ~ 

lim sup ----------------_'� 
k. (2 log log n) 2 
~ 

! A 

n 2 (A.-A.) 
1 im i nf -------~--~---,-I 

k. (2 log log n):1 
~ 

1 a.s. 

- 1 a.s. 

as long as k. < OJ, where k. are constants given by Quine [65, p.320, 
~ ~ 

cf. the correction note]. 

The theorem follows from known results about Markov chains. 

To illustrate that, let us recall the very elegant proof of (a) 

as given by Quine. Note that the state space I contains a countable 

irreducible set 1* on which Xl 'X2 ' ... have their support. Clearly 

1* is aperiodic s~nce 

K == inf{i : b. > O} = inf{i : i E I*} 
~ 

~s accessible at all times n> 1. Furthermore as L: b. log J < OJ, 1* 
J 
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forms a positive class. Let TI* be the a-field of all subsets of I~ 

If tp is any function from FI* x FJ* to R, and if {'ITi } is the limiting 

distribution of {X }, it follows from Billingsley [15, Theorems 
n 

1.1 and 1.3] that 

-1 I n L: tp(X.,X. 1) -}- L: 'IT.P(X1==j XO==i)tp (i,j) a.s. 
]]+ " ~ 

~,] 

as long as the limiting series converges absolutely. It can be 

shown that the stationary distribution {'IT.} has mean V and variance 
2 2 ~ 

c / (1 - A1 ). 

and 

There rema~ns only to choose suitable tp to show that 

n-1 S -}- V 
n 

a.s. 

-1 n 3 
n L: eX. -V) -}- Y a.s. 

. 1 ~ 
~= 

a.s. 

The property (a) follows from these a.s. convergence results. 

We conclude this section by calling attention to the 

interesting historical remarks and discussions of applications 

provided by Heyde & Seneta [40]. 

1.6 Mu1titype processes 

This section contains a brief survey of some very recent 

results concerning the estimation of the mean matrix M, in 

particular the growth rate p in the positive regular case where 

p is g~ven as the unique largest positive eigenvalue of M. 

Motivated by a wish to be able to estimate at an early stage 

whether an epidemic is minor or major Becker [13] posed the problem 

of the behaviour of the three above mentioned estimators ill, m and 

m* when the process is in fact a multi type Galton-Watson process 
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(Z ) = ((Z (l), ... ,Z (p») and the estimators are based on the 
n n n 

total generation sizes Iz 1 = Z (l)+ ... +Z (p). Becker showed under 
n n n 

mild conditions (p > 1 and "j log j") that all of these estimators 

will converge almost surely to p on the set of nonextinction as 

n +00. 

A more detailed analysis was provided by Asmussen and Keiding 

[6] who-adapted martingale central limit theory to martingale 

difference triangular arrays indexed by the set of all individuals 

ever alive. Aside from (IZll+ ... +lznl)/(IZol+ ... +lzn_ll), which 

we shall henceforth denote by p, these authors concentrated their 

interest on the obvious estimator £1 = (ill .. ) of the whole mean 
~J 

matrix based on the observation of all combinations of types of 

parents and offspring. Let U~i be the vector of offspring of the 

k'th individual of type i in generation \!, '0 = 0, ... ,n-l. Then 

A 
m .. 
~J 

n-l n-l 
L Z~+l(j)/ L 

'0=0 '0=0 
Z (i) 

'0 

. Z (i) 
where Z~+l(j)=Lk~l U~i(j) ~s the number of individuals of type J 

in the ('0+l)st generation whose parents were of type i and 

Z (j) = L Zi (j). As noted by Keiding and Lauritzen [54], M H the 
'0 '0 

max~mum likelihood estimator of 1'1 whether based on observations on 

the U~i or on the Z~(j) only, in the completely general model as 

well as ~n models specified by classes of offspring distributions 

as discussed in Theorem 1.3 above. 

In the results below, we assume throughout that 1'1 is positive 

regular, its principal eigenvalue p> 1, and zero offspring always 
-n 

has probability zero, so that W = lim a. s. p Z > 0 a. s. Finally 
n 

v and u are the left and right eigenvectors, vM = pv and Mu = pu. 

Theorem 6.1 As n + 00, 

(a) £1+1'1 a.s. 

(b) The limiting distribution of the matrix 

([W(l + p + ... + pn-l)v(i)]! (ill .. - m .. » 
~J ~J 



- 16 -

1S that of (y.(j», where yl, ... ,Y 
1 P 

distribution of Y. is p-dimensional 
1 . 

var1ance matrix ,,1 ' by '-' g1ven 

are independent and the 

normal with mean zero and 

By the tTansformation invariance of maximum likelihood estimators, 

the maximum likelihood estimator p of 0 is given as the largest 
A 

positive eigenvalue of M, which will be well-defined at least for 

large n. Standard techniques then immediately yield 

Corollary. As n -+ co, 

(a) p -+ P a.s. 

(b) 
n-l ! 

The asymptotic distribution of [W(l + p + ... + 0 )] 2 (p - p) 1S 

normal (0, v • Var~ 21 • u) . 

Iterated logarithm laws were also derived by Asmussen and 

Keiding. 

We next turn our attention to the estimator 

o (IZll+ ... +lznl) / (lzOI+ ... +lzn-ll). Becker [13] proved strong 

consistency. The rate of convergence turns out to depend in a 

qualitative way on the rate of convergence of the relative type 

distribution to the stable type distribution, cf. Kesten and stigum 

[57] and Asmussen [5]. As it appears from the latter references, 

there is a trichotomy depending on the relative sizes of IAI2 and 

p, where Ie is a certain other eigenvalue of M. In fact, if 
2 

IAI ~ p, no central limit result parallel to that of the Corollary 

above holds. 

I 1
2 n-l ! rv 

Theorem 6.2 When A < p, as n-+co, [W(l + p + ... + p ) J2 (0 - 0) 1S 

asymptotically no~al with mean zero and variance computed by 

Asmussen and Keiding [6J. 

We finally note that Quine and Durham [66] recently obtained 
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multitype analogues of the results by Heyde and Seneta [40,41] and 

Quine [65] concerning the subcritical process with immigration and 

discussed in Section 5 above. 

1.7 Random environments 

Becker [13] continued his investigation by inquiring into the 

properties of ill, m and m* when the process (Z ) is in fact a 
n 

branching process with (independent identically distributed) random 

environments. As is well known, it is here important to distinguish 

between the average offspring mean fl = E (Z I Z = 
1 0 

1) and the 

growth rate (criticality parameter) T = exp(E[log Zl I ZO,1;;l]) , 1;;1 

denoting the environment of the first generation. To Becker, T was 
, 

of prime importance and he observed that m* is strongly consistent 

for T whereas 

-1 
m = n 

n 

1: (Z'/Z'_l) 
j=l J J 

1S strongly consistent for fl. An independent study by Dion and Esty 

[24] also pointed out these facts and went on to derive asymptotic 

var1ances and asymptotic distribution results for m* and iii'. 

1.8 Estimation of the age of the process 

It has been suggested that it might occasionally be of interest 

to estimate the generation number of a Galton-Watson process, 

assuming that it descended from one ancestor, see Stigler [69] and 

Crump and Howe [19]. For a discussion of the possibility of applying 

this idea to rare human blood types we refer to Thompson [70,71]. 

It appears 'from Thompson's analysis that the evaluation of the age 

1S critically dependent on the estimated mean offspring, and at 

least in her context it seemed difficult to estimate both at the 

same time. 
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2. ESTIMATION THEORY FOR CONTINUOUS-TIME 

BRANCHING PROCESSES 

2.1 Maximum likelihood estimation of 

parameters in Markov branching processes 

Consider a Markov branching process (Xt , t~O) with split 

intensity A>O and offspring distribution (Pk' k = 0,1,2, ... , I Pk = 1). 

As usual we assume Pl = 0 and Xo = xo degenerate. 

If this process is assumed observed continuously over a time 

interval [O,t], and if it is known that with probability one only 

finitely many jumps happen in each finite interval (a sufficient 

condi tion being that the offspring mean m = I kPk < co, cf. Harris 

[32, p.107]), then it follows by a minor modification of Albert's 

[4] arguments that a measure may be constructed such that the 

likelihood function isas given in the Theorem below. 

Theorem 2.1 The likelihood function corresponding to observation 

of {X : 0 < u < d ~s 
u = = 

e 
-AS 

t 

where Nt(k) ~s the number of splits of s~ze k-l ~n [O,t], 

Nt = I Nt (k) H the total number of splits, and 

S 
t 

t 

J X du 
o u 

~s the total time lived by the population (the total exposure time) 

~n [O,t]. 

For the statistical problem specified by A E (0,00) and all 

offspring distributions with finite mean the maximum likelihood 

estimators are given as 

A = Nt/S t , P~ = Nt(k)/Nt 
when N > O. 

t 
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Remark. The results of the Theorem continue to hold with the obvious 

changes if the deterministic observation interval [O,t] is replaced 

by [O,T], where T is a stopping time not depending on the parameteru. 

If in particular T is chosen as a first hitting time for Nt or St' 

the distribution of ~ will be more easily tractable, since it ~s 

no longer a ratio between random variables, cf. Moran [60,61] and 

Kendall [55]. 

Corollary. The max~mum likelihood estimator of the offspring mean 

m and the growth rate (Mlithusian parameter) a = (m-l)A are given by 

ill = 1 + (X - x ) IN, {1 = (X - x ) / S • 
tOt ' tOt 

A further look at the estimation problem reveals that as long 

as the split parameter A and the parameters of the offspring 

distribution are variation independent, there are two separate 

problems: The random number N of i i d observations of the offspring 
t ' 

distribution, leading to standard relative frequency estimators, 

and the question of estimating the split intensity A, where the 

occurrence/exposure rate Nt/S t ~s seen to arise in a natural way. 

As will be seen below, the latter question is of greatest 

theoretical interest and will be emphasized. 

It follows from these remarks that no great new theoretical 

insight is to be expected from the analysis of more restricted 

models based on particular classes of offspring distributions. 

Aside from the general model discussed above we shall therefore 

only mention the linear birth-and-death process with PO+P2 = 1, ~n 

particular the pure birth (Yule) process (P2 = 1) and the pure death 

process (PO = 1) . 

Very few small-sample results exist. Beyer, Keiding and 

Simonsen [14] gave formulas, numerical tables, and approximative 

results for the first three moments of the maximum likelihood 

estimator in the pure birth process and the pure death process. 

That paper also surveyed earlier literature. 
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As in Chapter 1, we shall therefore have to be satisfied 

mostly with asymptotic results. 

2.2 Asymptotic results for estimators 

in Markov branching processes. 

As for the time-discrete case, two types of asymptotic theory 

are relevant: large number of ancestors and large interval of 

observation. 

Though the many-ancestors theory might often be the more 

important in practice, it is a fairly standard application of i i d 

estimation theory and we shall therefore be content with referring 

to the statement of the results by Keiding [49,51] and Athreya and 

Keiding [7]. 

The results for t -+ 00 are of greatest interest In the super­

critical case a>O (~m>l) since otherwise X -+0 a.s. Let 
t 

A = {X -+O}. 
t 

Theorem 2. 1 As t -+ 00, 

(a) if m<oo, then A -+ A and Pk -+Pk' k=0,2,3, ... , a.s. on A. 

(b) if 0< 0 2 < 00 (where 0 2 is the offspring variance L:(k -m)2Pk), 

then the asymptotic distribution, given A, of 

lS that of independent normals with parameters (O,APk)' k = 0,2,3, ... 

Remark. Notice that N (k)/S 
t t 

~Pk lS the maXlmum likelihood 

estimator of APk' 

Corollary. As t-+oo, 

(a) if m<oo, a = (Xt -xO)/St -+a a.s. on 11, 

(b) if 0 2 < 00, the asymptotic distribution, given 

is normal (0,11.(02 + (m-l)2)). 

I 

A, of S~ (a - a) , 
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Remark. These statements may be transformed into statements 

with deterministic normalising factors in a similar way as discussed 

for the time-discrete case in Section 1.2 above. Also, for the 

purpose of suggesting asymptotic confidence intervals,conditioning 

on the set A may be replaced by conditioning on {Xt > O}. 

As indicated in Section 1 above, the estimators of the offspring 

probabilities are really just the standard relative frequencies, 

although w:Lth a random number of replications. To give an indication 

of methods of proof we may therefore restrict ourselves to the 

pure birth process with P2 = 1. 

Thus let (Xt,t ~ 0) be a pure birth process with birth intensity 
A 

A and Xo = x degenerate. We want to prove, with A = (x - x) / S , 
t t 

f t 
St 0 Xu du, 

Theorem 2.2 As t -+ 00, 

A 

(a) A -+A a.s., 

1 A 

(b) the asymptotic distribution of (ASt) 2 (A/A - 1) lS standard 

normal. 

We shall indicate three different methods of proof, the two 

first of which are applicable for general Markov branching processe~ 

First proof. (Keiding [51]). Define the stochastic process 

Vu by Sv = u (for each w, V. (w) is the inverse function of the 
. . u 

contlnuous sample function S.(w)). Then it is well-known (Athreya 

and Ney [8, Theorem IILll.l], Papangelou [64], Rudemo [68] that 

Y = X - x, u > 0 
U V 

U 

lS a homogeneous Poisson process with intensity A. This having i i d 

increments, it follows directly from the strong law of large numbers 

that Y /U-+A a.s. as n-+OO. But hence 
u 

(Xt-x)/St=Y /S -?-;\ 
St t 

a.s. on {S -+oo}, that lS, a.s. 
t 
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_1 
Moreover, by the central limit theorem (Au) 2 (Y - AU) is 

u 
asymptotically standard normal as u-+ co . If we may substitute u by 

St' this proves part (b). since 

_1 1 A 

(AS ) 2 (Y - AS ) = (AS ) 2 (A/A - 1) t S t t· . 
t 

It follows from central limit theory for sums of a random 

number of i i d random variables that this substitution is permissible 
-At 

when as here S e -+W/A a.s., where p{O<W<co} = 1, cf. e.g. 
t 

Billingsley [16, Section 17]. 

Second proof. (Athreya and Keiding [7]). Let 0 

be the birth times of (Xt ), that is, 

XT . x + j , XT . _ = x + j -- 1 • 

J J 

Let Z. 
l 

XT (T. -T. 1)' Z' = X (t-TX ). It lS then well known, 
i-I l l- t t- t-X 

cf. Athreya and Ney [8, p.127] that 

X -x 

S 
t 

t 
l: 

i=l 
Z. + Z' 

l t 

where Zl,Z2"" are i i d exponential with intensity A. Therefore 
-1 

(Zl+" '+Zn)/n-+A a.s. and hence (granted the easily shown fact 

tha t z' /X -+ 0 a. s . ) 
t t 

Also, the asymptotic distribution of 

lS standard normal, and by agaln uSlng random sum central limit 

theory it may be concluded that 
X -x 

_ J A _ J t 
S (X -x) 2(A-A) = A(X -x) 2( l: Z. + i' - (Xt-x» 

t t t i=l l t 

lS asymptotically standard normal, from which part (b) follows by 
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I P _1 
noticing that [S / (X - x) P -+ A 2. 

t t 

Third proof. (Keiding [49]. An approach which does not seem 

amenable to generalization beyond the pure birth process is the 

following. Let as usual W = lim a.s. X e-At Then the stochastic 
t 

process Xt - x has, conditional on W = w, the same distribution as 

an (inhomogeneous) Poisson process with intensity function 
h x w A e (Kendall [56]). 

The strong consistency and asymptotic normality may now be 

proved by direct calculation in the Poisson process. - Besides 

yielding these asymptotic results, this latter approach might 

suggest possible conditional inference procedures. We refer to 

Keiding [49] for further discussion. 

2.3 Estimation in mUltitype Markov branching processes. 

The simple estimators studied so far for the single-type 

processes generalize in an obvious way to multi type processes as 

long as all individual offspring may be observed, which it seems 

natural to assume 1n a genuine continuous time context. Details 

were given by Athreya and Keiding [7] and will not be reproduced 

here. 

2.4 Estimation theory for more general continuous-time 

branching processes. 

The simple occurrence/exposure rate (X - x) /s is obviously 
t t 

strongly consistent for the Malthusian parameter a in any branching 

process. To elucidate its rate of convergence, Athreya and Keiding 

[7] remarked that any Bellman-Harris process will for large t in 

a certain sense look very much like a Markov branching process. 

Asymptotic normality was conjectured but later disproved by 

Asmussen and Keiding [6] who showed that 1n fact the rate of 

convergence of the age distribution becomes essential, much in the 

same way as was the case in the discrete-time, multitype case, cf. 

Section 1.6 above. 
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Estimation problems in cell kinetics based on the framework of 

the general branching process defined by Crump and Mode [20] and 

Jagers [43] have been studied by Jagers [45] and Jagers and Norrby 

[47]. Hoel and Crump [42] studied alternative estimators of the 

parameters of the generation time distribution in a Bellman-Harris 

process. 

It should finally be mentioned that Brown and Hewitt [18] 

studied inference for the diffusion branching process. 

3. THE ROLE OF MARTINGALE THEORY; EFFICIENCY CONCEPTS 

3.1 The score function as a martingale 

Let Xl"" ,Xp be i i d random variables from a one-dimensional 

exponential family with density a(S)b(x)eSt(x), SEG, and let 

T(S) = ES[t(Xi )]. Then under suitable regularity conditions the 

statistical model may be parameterized by T and the score function 

based on the p replications is 

S (T) = D log L = p i (T) (f - T) 
p T p 

2 
with L the likelihood function, T = L:t(X.)/p and i(T) = -D 10gL 

P ~ T P 

the usual Fisher information in one observation. (See Barnddrff­

Nielsen [9] for exponential family theory). Notice that the 

max~mum likelihood estimator ~ of T is exactly T, and that 

Var (S (T» 
p 

A -1 
p i (T) = [Var (T)] 

so that each new observatio~ adds an amount of i(T) to the 

information content or "precision" of the experiment. For purposes 

of later generalization we also remark that the stochastic process 

(S (T), P = 1,2, ... ) has i id increments with mean zero and finite 
p 

variance, and hence is a square integrable (local) martingale. 

The Doob decomposition of S2(T) is S2(T) = I (T) + martingale, where 
p p p 

p-l 
I (T) = L: Var (S. 1 (T) I Xl" .. ,X.) := p i (T) . 

p j=O J+ J 
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In this sense the increasing process corresponding to S2(T) exactly 
p 

measures the information content. 

For generalizations of these ideas to the branching process 

context it is useful to concentrate on linear discrete one-parameter 

exponential families, also called power series families, where the 

canonical statistic t(X) = X. As just stated, such a family may be 

parameterized by the mean m. It now follows from the discussion In 

Section 1.1 that if the offspring distribution is assumed to belong 

to a power series family, then the score function S (m) correspond-
n 

ing to observation of the first n + 1 generation sizes ZO,.·· ,Zn of 

a Galton-Watson .process is obtained by replacing p by ZO+",+Zn-l' 

so that 

Sn(m) = (ZO+" ,+Zn-l) i (m)(m-m), 

where, as in Chapter l,m = (Zl+",+Zn)!(ZO+",+Zn-l)' 

It is quite generally true and easily directly verified In 

this particular case that (S (m), n = 0,1, ... ) is a square 
n 

integrable (local) martingale with respect to the "self-exciting" 

family of a-algebras (N = a{zO""'Z }, n = 0,1,2, ... ). 
n n 

2 
The Doob decomposition of the submartingale (S (m),N ) lS 

n n 
given by 

S2(m) 
n 

where 

I (m) = 
n 

I (m) + martingale, 
n 

n-l 2 2 
L [E(S. l(m) IN.) - S.(m)] 

j=o J+ J J 

lS increasing. We may alternatively write 

I (m) = 
n 

n-l 
L E [ (S. 1 (m) - S. (m» 2 

j=O J+ J 
N. ] 

J 

where the individual term In our case lS 

E [{ i (m) (Z. 1 - mZ . ) } 2 IJ. ] 
J+ J J 

i(m)2 Var (Z. 11 N.) 
J+ J 

so that we have 

(1.1) I (m) = (ZO+" .+Z 1) i (m) n n-

and the score function may be written 

Z. i (m) 
J 
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(1. 2) S (m) = I (m) (~ - m) . 
n n 

This very simple form led Heyde [35] and Heyde and Feigin [36] to 

several definitions and generalizations, interpreting quite 

generally the increasing process I (m) as a measure of information 
n 

content. The form 

n-L 
I (T) 
n. 

L: Var (S. 1 (T) IN.) 
j=O J+ . J 

illustrates that I successively accumulates whatever new information 
n 

there is in taking an extra observation, given the previous samples. 

When as in the present branching process context (cf. (1.1» 

the information function I (m) factorises into a product of a 
n 

deterministic factor and an observable quantity, Heyde and Feigin 

termed the statistical model a "conditional exponential family". 

We notice that this concept generalizes the role of mean value 

parameterized exponential families in the i i d theory. 

These ideas carryover to continuous time, with the Doob-Meyer 

decomposition of the squared score function as a key tool, see 

Feigin [27]. For the Yule process studied in Section 

the information content becomes I (A) = S fA with St 
t t 

A general framework for statistical models for point 

2.2 above, 
t 

= fO Xu duo 

processes whose 

conditional intensities factorize into a product of a deterministic 

function and an observable process was given by Aalen [1,2,3] who 

also leaned heavily on martingale theory. 

Turning next to asymptotic theory, we demonstrated in the 

previous chapters how it is possible to reduce all asymptotic results 

for one-type processes to the basic i i d structure inherent in 

branching processes. The analysis by Asmussen and Keiding [6] 

indicated, however, that already for the multitype Galton-Watson 

process, this may no longer be feasible. At least as a starting 

point for a methodology for more general stochastic process 

estimation problems, it lS useful to point out that a martingale 

central limit theorem with random norming factors will yield 

asymptotic normality of 
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-1 I 

I 2 (m) S (m) = 12 (m) (m - m) 
n n n 

which is equivalent to Theorem 1.2.3 (a) for the particular 

processes here discussed. Of course consistency ~s even more direct­

ly shown. The martingale approach is based only on the rather 

generally valid martingale property of the score function and will 

thus have considerably wider applicability. 

3.2 Efficiency concepts. 

Heyde [35] proposed to call a consistent estimator T of 8 
n 

asymptotically efficient if there exists a (deterministic) function 

S(8) such that 

I!(8)[T -8-S(8)S (8)/1 (8)] ~ 0 
n n n n 

as n-+ CXJ • This definition reduces to that of Rao [67, Sec. 5cJ in 

the i i d case. Heyde proved that the maximum likelihood estimator 

of the offspring mean in power series families (including the 

geometric distributions discussed above) is asYmptotically efficient 

~n this sense. 

A complication with the use of the max~mum likelihood estimator 

here is that it is not sufficient. Indeed, from (1.2) it is seen 

that since I (m) is random, the two-dimensional statistic 
. n 

(m,zO+" ,+Zn-l) is minimal sufficient. Generalizing an argument due 

to Rao on the local behaviour of the power function near the null 

hypothesis Basawa and Scott [10] pointed out that asymptotically, 

hypothesis testing based on the maximum likelihood estimator alone 

is inferior to tests based on the full sufficient statistic. A 

different analysis by Feigin [29] based on the concept of contiguity 

raised some doubts about Basawa and Scott's approach. 

A general framework for statistical models with one "curved" 

(nonlinear) submodels of exponential families was provided by 

Efron [25] who coined the term "statistical curvature" for a 

quantity entering into the asymptotic distributions of estimators 

and test statistics. In the discussion of Efron's paper, 
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Keiding [52J mentioned the possible role of this concept in 

branching process situations, and further work along these lines, 

so far unpublished, has been done by I.V. Basawa. 

4. APPLICATIONS 

The area of statistical inference for branching processes lS 

closely related to classical life testing, certain problems in 

reliability, and more general statistical problems for point 

processes, all of which are very important for the applications. 

However, it is not yet clear how far branching process models such 

as those discussed in this paper will be directly applicable as 

statistical models. Although a branching process may be a useful 

description of the underlying stochastic phenomena, the important 

statistical problems might often derive from incomplete observation, 

random temporal variation of parameters, or plain measurement 

uncertainty, and none of these sources of random variation are 

included in the present theory (save for the preliminary results 

concerning BPRE and quoted in Section 1.7). Furthermore, the number 

of replications will presumably often be so large that the intrinsic 

random variation discussed in this paper will be negligible. 

We have already mentioned some specific applications of methods 

like the ones discussed here: the estimation of the. age of rare 

human blood types (Section 1.8) and various questions in cell 

kinetics (Section 2.4). For an example where a branching process 

model leads to quite classical statistical problems, see Gani and 

Saunders [30J. 

We conclude the paper by quoting two further applications of 

the present theory that we have corne across. 
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4.1 Population dynamics of the whooping crane 

population of North America 

The whooping crane is an extremely rare migratory bird with 

breeding area in western Canada. Miller et al. [59J reported the 

annual coun~from 1938-1972 of whooping cranes arriving to the 

wintering grounds in Texas. The birds born the previous spring have 

a different plumage (they are referred to as "young") and it ~s 

therefore possible to obtain the annual number of births and deaths. 

The population has increased from 14 individuals in 1938 to 57 ~n 

1970. Miller et al. fitted a simple linear birth-death process and 

used the estimated values to produce prediction intervals concerning 

future population sizes. A critical discussion and suggestions of 

other possible models were provided by Keiding [53J and a time 

series approach is due to Kashyap and Rao [I'J8, p. 296]. 

4.2 Epidemics: early evaluation of whether an epidemic 
.. . 
~s m~nor or major. 

In a series of papers Becker [11,12,13J has developed and 

applied aspects of the theory of statistical inference for branching 

processes to estimate the initial infection rate of an epidemic. 

The method is to approximate the number of infectives in a 

stochastic epidemic process by a suitable Galton~Watson process, 

and then estimate the offspring mean of the latter. It is also 

possible to study the impact of vaccination by assuming that a 

fixed known proportion of the population in question ~s immunized. 

Becker first [llJ considered the application of the simple 

Galton-Watson process to the 49 sITlallpox epidemics in Europe between 

1950 and 1970. These epidemics were all minor (became extinct) but 

the estimated mean offspring size was not significantly less than 

one which may raise the question whether major smallpox epidemics 

were only avoided by luck. 

The approximation by a Galton-Watson process involves several 

assumptions. First, successive "generations" of infectives should 
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be reasonably discrete, that is, there should be a fairly long 

latent period and a short infective period. Second, the number of 

susceptiblesshould be so large that it does not decrease appreciably 

when individuals get infected. As an example of a situation where 

this assumption clearly does not hold Becker [12] considered an 

observed (major) smallpox epidemic ~n a small, closed Nigerian 

community. To implement the theory for this small population, he 

approximated the number of infectives with a size-dependent Galton­

Watson process and u'sed a least squares approach to derive an 

estimator of the initial infection rate. 

A third assumption is that of a homogeneously mixing population 

It was mentioned ~n Sections 1.6 and 1.7 above that Becker [13] 

studied the fate of several estimators of the offspring mean on 

the assumption that the process is in fact multi type Galton-Watson 

or develops in random environments. 
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