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Some stochastic generalizations of classical single-species population growth 
models are discussed from the viewpoint of branching processes with random en
vironments. The basic theme is the interplay between environmental and sampling 
("demographic") variability. Although the former will presumably most often 
dominate, it is possible in some cases to obtain a balance. This leads to the 
study of some diffusion processes from which earlier models are obtained by 
specialization. Two examples are presented in order to indicate some of the 
difficulties around direct empirical use of the models. 

1. INTRODUCTION 

The influence of randomly varying environments on the qualitative conclusions 

of simple models in population dynamics has lately been studied by a number 

of authors. We want in this paper to add some comments to this literature by 

making explicit the connection to recent developments in the theory of bran-

ching processes. This approach emphasizes the interplay between environmental 

and sampling (or "demographic") variability. The main conclusion is that if 

these variations are of about the same magnitude per individual per time unit, 

then the environmental variations will dominate in large populations, that is, 

sampling variation is unimportant except as regards questions of extinction. 

However, in some cases the environmental fluctuations may be assumed small so 

that a balance may be obtained. It is indicated how diffusion processes may 

then be obtained as approximations for large populations. 

Section 2 treats the simple (Malthusian) case of unrestricted exponential 

growth, with comments on age-dependent vital rates and various stochastic 

models. A more detailed review was given by Keiding (1975). 

• 
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The case of finite carrying capacity 1.S studied in Section 3~ via the tradi-

tional (Verhulst) logistic law and some related stochastic models, although 

the warnings sounded already by Feller (1939) about the arbitrariness of this 

approach may be more relevant than ever in th~ face of the current elaborate 

generalizations. 

Although the prime purpose of this work is in obtaining qualitative conclu-

sions we briefly sketch in Section 4 two sets of data where the question of 

random environmental variation seems essential to the description. These ex-

amples are not supposed to prove or disprove the models but rather to indi-

cate how and where difficulties regarding empirical inference with such mo-

dels may ar1.se. 

As a final note we should point out that there exists a large body of work 

on random temporal variations of the parameters of models in population gene-

tics. Some references were given by Keiding (1975) but we shall not comment 

further upon this literature here. 

2. UNRESTRICTED GROWTH 

The simple deterministic Malthusian growth 

(2.1) rt 
e 

may be derived from a number of increasingly complex deterministic and sto-

chastic models. These were partly reviewed by Keiding 01975) and we shall be 

satisfied with a few brief remarks here. Of course, (2.1) is the solution of 

the differential equation dNt/dt = r Nt' which will apply for a population 

where all individuals have age-independent instantaneous birth and death ra-

tes band d with b - d = r. The generalization to age-dependent birth and 

death rates band d dates back from the beginning of this century, see e.g. 
x x 

Pollard (1973, Chapter 3). In this case (2.1) holds provided the initial age 
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distribution is stable, that is, given by a density proportional to 

e 

x 
-rx - f d dy o y 

where now r 18 g1ven as the un1que real solution to 

I(r) 
00 

-rx 
feb 
o x 

x 
-fOd dy 

e y dx 1 

A simple stochastic model incorporating sampling variations 1S the linear birth~ 

and-death process with birth and death intensities A. = iI., 11. = i jJ. Here 
1 .1 

= X e(A-'jJ)t 
o 

giving average Malthusian growth with r = A -jJ. The combined effects of age-

structure and sampling variations may be analyzed 1n a so-called age-depen-

dent birth-and-'death process (see e.g. the review by Keiding and Hoem (1976)) 

or via the more general branching processes reviewed by Jagers (1975) and 

Mode (1975). The result 1S that given that the average initial age distribu-

tion 1S of the stable form, the expected population S1ze at time t 1S given 

by (2.1). 

'there are several possible approaches to the problem of incorporating random 

environme~tal variation, that is, stochastic fluctuations in the growth rate. 

Several authors, including Cappocelli and Ricciardi (1974) and Tuckwell (1974) 

suggested adding a white noise term to the basic differential equation of the 

deterministic model, thus converting it into the stochastic differential equa-

tion 

(2.2) 

with E = white noise with variance w2 . A basic problem is how to interpret the 

right hand side of t!his equation. According to the so-called Ito Calculus, the 



solution of (2.2) is a diffusion process with infinitesimal mean and variance 

ax and w2x2 whereas the so-called Stratonovich calculus yields the solution 

as the diffusion with parameters (a + w2/2)x and w2x2 • The resulting expected 

population sizes at time t (conditional on the population size at time 0) are, 

respectively 

and 

whereas the median population S1zes are 

2 (a-w /2)t 
e resp. 

2 
(a + w /2)t 

e 

It may be seen that p{O < N < oo} = 1 for all t and that the following extinc
t 

don/explosion criteria hold (limits are almost sure) . 

lto Stratonovich 

2 
> w a 2" a > 0 -roo 

2 
w 

a = 2" a o Nt fluctuates, liminf Nt = 0, lim sup Nt = 00 

2 
w 

a < 2" a < 0 

For further details concern1ng the alternative stochastic integiation calculi 

we refer to Goel and Richter-Dyn (1974), Feldman and Roughgarden (1975) and 

their references to the theoretical literature. 

It is also possible to interpret the growth parameters of the stochastic mo-

dels as being· themselves random in a similar fashion as in the theory of doub-

ly stochastic Poisson processes. For Markov branching processes (including 

the linear birth-and-death process discussed above) this was done by Kaplan 

(1973). Keiding (1975) pointed out that if the net growth rate p = E(A '-]1) > 0 

and provided the stochastic process specifying the random birth and death rates 

A and ]1 satisfies certain mixing conditions, then the distribution of the 

f 
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-~ 
I , d l' , ( -P t) t , , 11 h f U V h norma 1ze . popu at10n Slze Xt e 1S asymptot1ca y t at 0 e were 

U and V are independent, U = I{Xt f o} and V is normal with zero mean and 

variance specified only by the environmental variations. This is one mathema-

tical version of the conventional wisdom that environmental variation out-

weighs sampling variation (except as regards extinction), cf. May (1973). 

To arrive at a more general diffusion process, Keiding (1975) suggested the 

following approximation scheme, starting from a discrete-time branching pro-

cess with random environments (BPRE), cf.Athreya and Karlin (1971). 

Let, for each k, ZO(k),Zl(k), •.• be a BPRE with initial pophlation Slze 

ZO(k) = k. Assume that the environments are independent and identically distri

buted and let Q,. (k) be the conditional expected offspring per individual given 
1 

the ilth environment. We then assume 

and finally that 2 
T , 

E(Q,. (k» 
1 

Var(Q,. (k» 
1 

-1 
- 1 + a/k + o(k ) 

the average reproduction variance per individual, is con-

stant. Then as n -+ 00, the process Yt(n) , == Z[ntJ (n)/n will converge in distri~ 

b ' d ' ff' 'h d 2 2 2 , 1 ' ·1 d' ut10n to a 1 uS10n W1t parameters ax an T x + W x . Detal s lnc u lng a 

complete diffusion-theoretical boundary classification were given by Keiding 

(1975). For T2 = 0, the diffusion process corresponds to the Ito solution 

2 
above, and an important effect of T > 0 is that the asymptotic attraction of 

the state 0 is replaced by absorption, or in other words: extinction in finite 

time is possible if and only if sampling variation is included in the model. 

We notice also that the diffusion approximation generalizes a classical result 

due to Feller (1951) who assumed constant environment (w 2 = 0). 
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3. FINITE CARRYING CAPACITY 

The simplest and most conunonly studied mathematical description of growth 

under limited resources is the logistic (Verhulst) model given by the diffe-

rential equation 

(3.1) 

with solution 

-rt 
e 

The number of possible micromodels generalizing this basic deterministic 

relation is considerably larger than for the Malthusian growth model dis-

cussed above. Various birth-and-death processes have thus been proposed by 

Feller (1939) (see also Kendall (1949», Bartlett (1960), and Prendiville 

(see e.g. Iosifescu and Tautu(1973». 

We shall here consider some.· discrete-time stochastic processes motivated by 

generalizations of the simple branching process reproduction scheme. Although 

we shall as usual use the "discrete generation" terminology, some of the 

results may have a more natural interpretation for time-equidistant sampling 

of populations with overlapping generations. 

Retaining the assumption of independence of reproducing individuals, there 

are basically two ways of letting the density influence·the growth structure: 

.either. the offspring size of each reproducing individual may be depressed 

under crowding or the number of reproducing individuals may be dependent on 

the population size. It is tempting to interpret the first of these schemes 

as "regulation of survival" and the second as "regulation of recruitment" 

al though the concepts of "reproducing individuals" and "offspring size" are 

defined relative to the census scheme, in particular the age at which indi-

viduals are counted. 
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The details of these models are as follows. Working with branching procese 

approximations to the general stochastic epidemic, Becker (1976) suggested 

a modification modelling density-dependent growth. Let the distribution of 

the offspring of each individual in a generation of size x have mean r g(x) . 

with g(x) = max{l- x/K,O} and some variance o2(x) where one choice is o2(x) 

constant but a more realistic one, compatible with the Poisson distribution, 

2 may be a (x) i g(x). 

On the other hand Sevast 'yanov and Zubkov (1974) defined the so-called cP-

branching processes by assuming that the offspring distribution is constant 

but that the number of (independently) reproducing individuals in a genera-

tion of size x is some function cjJ(x) of x, where the case CP(x) = x corre-

sponds to the simple Galton-Watson process and CP(x) "" a + x (a an integer) 

to a Galton-Watson process with immigration. This scheme was generalized to 

random cP by Yanev (1975). 

It is possible to arrive at similar diffusion approximations for the later 

stages of the development of large populations as in Section 2 by appropriate 

choices of the parameters In these models. We proceed to show one such con-

struction In detail and add some remarks on other possible. schemes. 

Consider a branching process with offspring distributions depending on the 

current (random) environment as well as olf the size of the current genera-

tion. 

The environments are assumed to vary independently with time:-homogeneous 

distributions. The conditional mean .Q,(x) given the environment and the size 

x of the previous generation is 

.Q,(x) l·+m(l--x/K). 

Assume that the carrying capacity K is constant but that the growth rate m 

depends on the environment (but not on x). 
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To arrive at an approximating diffusion we study a series {Z (j),n=O,1,2, ... }, n 

j= 1,2, .•. of these processes with ZO(j) = j and associated carrying capa

cities jK. Let E. and Var. refer to the j'th process and assume that (in 
] ] 

analogy with Section 2) 

E. (1 + m) 
] 

Var.(l + m) 
] 

2 -1 
w/j+o(j ) 

2 
Finally the average offspring variance T ~s assumed constant. 

Then, letting Yt(n) Z[nt] (n) /n, one obtains to the first approximation 

and 

= .!.fl 
no.. 

a 
T

n 

1 12 
(1 -~i) J ny - y = il(ay - ai ) 

Varn (Y 1 (n) - Y t (n) I Yt (n) y) 
t+--

n 

= ~ En[VadZ[nt+l](n) I Z[nt1(n) ny, nt'th environmend] 
n 

+ 12 Varn[E{Z[nt+l] (n.) I Z[ntJ(n) ny, nt'th environmend] 
n 

1 2 1 w2 ny. ) 2 2 2 
= 2 nyT + 2 n (1- nK n y 

n n 

From standard diffusion approximation theory (e.g. Kurtz (1975» it will then 

follow that under suitable moment conditions Yt(n) will converg~ in distri-
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bution to a diffusion Xt with infinitesimal mean and vananceax(1- x/K) and 

T 2X + w2x2 (1 - xjK) 2. 

2 
For this diffusion, the boundary 0 is exit if the sampling variance T > 0, 

otherwise natural. If T2 > 0, the upper boundary 1.S 2 
00 and natural, if T = 0, 

the infinitesimal variance is 0 at K and both ° and K are natural boundaries. 

These facts may be summarized as follows. When there ~s sampling variation 

2 2 
(T > O),environmental fluctuation in the growth rate (w > 0) and finite 

regulation term (K < (0), then the population will fluctuate over (0,00) but 

• 
is certain to go extinct sooner or later. However, this situation changes 

l ' . 1 ;f 2 0 2 qua 1.tat1.ve y ~ T = ,w 0, or K -)- 00. 

Thus if there is·no sampling variation (Tf = 0), the population will stay 

within CO,K) and never go extinct. If K ~ w2/2, however, the population size 

will converge to 0, otherwise there will exist a stationary distribution. 

The properties of the diffusion process when K -)- 00 were discussed 1.n Sec-

tion 2. Notice in particular that when K = 00, the process need not go ex

tinct whent2 > 0 (it will have a positive probability of growing indefini

tely if a > w2 /2) and a stationary distribution will never exist for T2 O. 

Special cases of the diffusion process have been considered earlier. The 

model with T2 = 0 is the Ito solution of a stochastic differential equation 

model analyzed by Levins (1969), May (1973), Tuckwell (1974), Gael and 

Richter-'Dyn (1974) and Feldman and Roughgarden (1975). A different approach· 

is due to Kiester and Barakat (1974). The model with no environmental vari

ation(w2 =0) may be seen as a possibly more satisfactory alternative to 

the mixed deterministic-stochastic model describing random variation "in the 

death of adults" proposed by Levins (1969) and further discussed by Tuckwell 

(1974) and Goel and Richter-Dyn (1974). 
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Notice that if the average offspring variance had been chosen as 

,2 max [ (1- x/jK) ,0] (such as discussed above) instead of constant we would 

222 2 have obtained an infinitesimal variance term of, x(l - x/K) + w x (1 - x/K) 

and the process would have been confined to [O,K] even when ,2 > 0. This 

diffusion has been studied ln connection with population genetics, see Kimura 

(1962), cf. the discussion by Jensen (1973) and the review by Karlin and 

Levikson (1974). 

The above derivation assumed a randomly varying growth rate but a constant 

regulation term. Fluctuations in the regulation term could also have been 

studied within this framework but we shall rather indicate how one might 

proceed from Yanev's generalization of Sevast'yanov and Zubkov's ~-branching 

process. Assume that given the environment, the average number Hx) of indi-

viduals that are allowed to reproduce in a generation of size x is given by 

2 Hx) :;: x - mx /K and that each of these have an average offspring of 1 + m. 

Consider a similar series of processes {X (j)} as above bpt assume now that 
n 

.in the j'th process m is constant = a/j (although a randomly varying m could 

also be easily handled), that K is random with 

(1:.) 1 1 E. = -.- + 0(--;-) 
J K JK . J 

and 

(1:.) 
2 

o(~) Var, =: ~ + 
J K J J 

and that the offspring variance T2 lS constant. Then Z [nd (n) /n will converge 

in distribution to a diffusion with infinitesimal parameters ax(1- X/K) and 

2 24Th' " 1" f 'd d I' T X + 8 X. 1S agaln lS a genera lzatlon 0 processes conSl ere ear ler 

by the above mentioned authors. 
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4. EXAMPLES 

The purpose of this section is to present two empirical examples of situations 

where consideration of environmental stochasticity seems unavoidable. In par

ticular we want to indicate that a definite identification of a random compo

nent as environmental (as opposed to measurement error, or intrinsic sampling 

variation) will sometimes be rather difficult. 

Example 1. Growth of human placenta during pregnancy. 

In an effort to set up a scheme for early detection of abnormal pregnanc~es 

Winkel et.al. (1976) assumed that the plasmaprogesterone~oncentration (PPC) 

is proportional to the size of the placenta, at least from the 12th to 36th 

weeks of pregnancy. Fig.l shows on a logarithmic scale the results of weekly 

measurements of PPC from the 12th to 31st week of pregnancy for one woman. 

S.L. Lauritzen, in his statistical appendix to the above mentioned paper, 

suggested u~ing a diffusion model for unrestricted growth such as described 

in Section 2. Clearly, sampling variatiori may be disregarded for the large 

population of progesterone producing placenta cells. Assume that mesure-

ment errors may be disregarded as well. The log(P~C) may then be inter~. 

preted as obtained by equidistant sampling from a Wiener process, that is, 

distributed as a homogeneous process with independent normal increments. For 

the woman of Fig. 1, the mean and variance of the weekly increments 

were 0.0302 and 0.0009, respectively. 

• 
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The question of the role of measurement uncertainty was approached by Laurit-

zen by computing the autocorrelation coefficients of the observed increments. 

If measurement errors were unimportant, all autocorrelations should be zero 

whereas one would expect a negative first order autocorrelation R{ otherwise. 

The observed Rl was .01, thus indicating that the variation in the data of 

Fig.·l around the straight line could be ascribed wholly to environmental 

variations in the growth rate of the placenta. 

40 Proges terone 

~g/l plasma 
,..-.,..-

. ,..-,..-

30 
,..-,..-

;.--,..-
./ ,..-

./ ,..-
/' 

20 ,..-,..-
,..-,..-

,..-
,..-

,..-
/' ,..-

weeks of ,..-

pregnancy 

to 12 16 24 28 

Fig. 1 The plasma progesterone concentration fora pregnant woman. 

• 
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On the basis of the analysis, Winkel et.al. suggested a new monitoring scheme, 

where each woman ~s used "as her own. control" in place of the conventional 

population reference intervals commonly used ~n clinical medicine." 

Example 2. The whooping crane population of North America. 

The whooping crane is an extremely rare migratory bird with breeding area ~n 

Wood Buffalo Park, Northwest Territories, Canada, and wintering grounds in 

Aransas National Wildlife Refug~, Texas, USA. Miller et.al. (1974) report the 

annual counts from 1938 - 1972 of whooping cranes arriving at Aransas ~n the 

fall. The birds born the previous spring have a different plumage and are .re

ferred to as "young", the rest are called "adults" even though they probably 

do not reproduce at least during their firsL three years of life·· See Table 1. 

Fig. 2 is a graph on a logarithmic scale of the total number of birds. Some 

of the early counts are known to be incomplete, particularly those of 1938 and 

1945 where the total number of birds was less than the number of adults the 

following year. • 
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Table 1. Adult and young whooping 
cranes counted at Aransas Natio-
nal Wildlife Refuge from 1938 to 
1972 

Year Adult Young Total 

1938 10 4 14 
1939 16 6 22 
1940 21 5 26 
1941 13 2 15 
1942 15 4 19 
1943 16 5 21 
1944 15 3 18 
1945 14 3 17 
1946 22 . 3 25 
1947 25 6 31 
1948 27 3 30 
1949 30 4 34 
1950 26 5 31 
1951 20 5 25 
1952 19 2 21 
1953· 21 3 24 
1954 21 0 21 
1955 20 8 28 
1956 22 2 24 
1957 22 4 26 
1958 23 9 32 
1959 31 2 33 
1960 30 6 36 
1961 33 5 38 
1962 32 0 32 
1963 26 7 33 
1964 32 10 42 
1965 36 8 44 
1966 38 5 43 
1967 39 9 48 , 
1968 44·. 6 50 
1969 48 8 56 
1970 51 6 57 
1971 51 5 56 
1972 46 5 51 

/ : ! 
I . 
I 
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Fig. 2 Numbers of whooping cranes arriving at Aransas National Wildlife Refuge. 
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Miller et.al. applied a simple (linear) birth-and-death process to describe the 

growth and used this as a basis for predictions regarding future population 

size. It seems in fact obvious that at least initially the sampling ("demo-
, r 

graphic") variation should be taken into account for this small po~ulation so 

that some stochastic model should be applied. 

As noticed by Miller et.al., several of the conditions for the simple birth-

and-death process were obviously not met. Let us first notice that under that 

, ' 

model, the average number of births, and hence of surviving young birds arri-

ving in AransaE\ in the fall should be proportional to the total number of birds 

the, previous year. But the observed number of surviving young depends very 

little on the number of birds the year before. A simple regression analysis 

for the whole period gives 

no. surviving young 3.0 + .06 (no. birds last y~ar) 

showing a positive but insignificant dependence (t 1.7, d.f. 32). 

d '1 d study by Nnvakowski (1966) of the breeding This fact as well as the etal e. 

t'hat th' e recruitment is only slightly dependent on population area suggests 

size. 

Table 2. Observed and fitted Poisson distri
bution of surviving 'young whooping cranes 
reaching Aransas 19j8 - 1972. 

No. of young cranes Obs. Exp. 

0 2 6 5.0 
3 5 5.3 
4 4 6.4 
5 8 6.1 
6 5 4.9 

7 - 7 7.3 

Mean 4.8, Variance 5.9 
2 

X = 1. 72, d. f. = 5. 
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still working 1n simple models assuming constant environment, one might then 

attempt a birth-immigration-death (BID) process, see. e.g. Bailey (1964), 

interpreting immigration as the population - independent recruitment. It may 

be noticed (Tabte 2) that the distribution of births may be fitted nicely by 

a Poisson distribution consistent with a BID process with zero birth rate, a 

so-called immigration-:death (ID) process. In the BID process one could esti-

mate the rates .06, 3.0, (from the regression) and .12 (the traditional occur-

rence/exposure rate), and this gives that the process approaches a stationary 

negative binomial distribution with mean 3.0/(.12 - .06) = 50. For the ID 

process ·the rates 4.8 and .12 will imply a stationary Poisson distribution 

with mean 4.8/ .12 = 40. After adding some "initi.al population size" (inter-

preted as the popUlation size at the beginning of the present regime) the 

order of magnitude of the results seems plausible. If applicable, the BID 

process clearly is a simple alternative stochastic description of density-

dependent growth although fixed recruitment becomes inherently meaningless 

• 
for popUlation sizes approaching zero. An important conclusion is that the 

predictions made by Miller et al. on the basis of a birth-and-death process 

seem far too optimistic. 

There are of course serious objections to such descriptions which disregards 

the social structure (including age at sexual maturity, sex differences, etc.) 

as well as age structure (which Miller et al. suggest might be responsible 

for some of the early fluctuations). Moreover, the expected population incre-

, ( -.06t) h' h ment from time 0 to time t of the estimated BID process 1S 50 1 - e w 1C 

converges far more rapidly towards the stationary value than the observations 
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will support. In attempting more detailed studies of the fluctuations, it ~s 

almost necessary to analyse the annual numbers of deaths. These should be equa.1 

to the differences between the total population size one year and the number of 

adults the next year which do show large fluctuations, in particular in the 

beginning of the period, but this phenomenon may to a certain extent be 

exp1a.ined by incomplete recording. 

On the basis of these considerations it seems fairly uncertain whether the 

whooping crane population at present is growing under effective dens.ity regu-

1ation or not and the role of random environmental variations is also open to 

question. At the very least, it is very difficult to predict future population 

s~zes. 
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