


Uffe M(Hler 

OC AND ASN OF THE SPRT FOR THE POISSON PROCESS 

Preprint 1976 No.8 

INSTITUTE OF MATHEMATICAL STATISTICS 

UNIVERSITY OF COPENHAGEN 

April 1976 



Summary 

OC AND ASN OF THE SPRT FOR THE POISSON PROCESS 

by 

Uffe M¢ller 

Institute of Mathematical Statistics 

University of Copenhagen 

The paper presents an algorithm for the operating characteristic (OC) 

and the average sample number (ASN) functions of the sequential 

probability ratio test (SPRT) of the mean of a Poisson process. 

As a basis of the algorithm an appendix g~ves a discussion of the 

accuracy of different formulas for the OC and ASN. 
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Language: Algol 60 

Purpose: 

In a Poisson process where A denotes the mean occurence rate per 

observational unit, we want to test the hypotesis A = Al against the 

alternative A = A2 , A2 > Al > O. The sequential probability ratio test 

(SPRT) has a continuation region of the form 

for t > O. 

where xt r;l:e~nQtes the number of events in [0, tJ , 

A12 (A 2 - AI) / (In(A2/A l ))· 

a and r could be determined as shown by RaId and Mwller (1976). 

For glven v = A/A12 > 0 and a,r > 0 the procedure computes the 

probability of accepting A = Al (OC(A» and the average sample number 

(ASN(A». 

Tables of the OC and ASN for selected values of (v,a,r) have been 

given by Kiefer and Wolfowitz (1956). 
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Method: 

The OC and ASN functions have been derived by Bartky (1943), Burman 

(1946) and Dvoretzky et a1. (1953). 

With OC (A) = L(a,v)/L(a+r,v) and ASN(A) = OC(A)S(a+r,v) - S(r,v) 

we compute L(y,v) and S(y,v) according to the value of y. 

If y lS less than 8 we must use the exact formulas rearranged 

way 

L(y,v) 
[y] J }' 

eYv L ~ (j-y)ve-v J/j! 
. 0 I J= " 

[y] 
S(y,v) L 

[y] J } 
. ~ 1 (i-y)v j /. I J . * (y-i)v e -

j=O l=J+1 

which makes computation rather easy. 

Otherwise we find the solution, t, to the equation 

v = t / (e t - 1) 

and use the approximation formulas from Bartky (1943): 

with 0 
v 

Structure: 

-yt 
J1/(1-v) + e /(l-v-t) 

L(y,v)D! 1 
-2(y + 1/3) 

f(y+oV)V/(l-v) - L(y,v)(t+v)/t 
S(y,v)D! 1 

(y + 1/3)(y - 5/3) - 1/18 

1/t - !v/(l-v). 

V 

v 

v 

v 

[y] - 1 

..!. 1 -r 

= 1 

1= 1 

= 1 

In this 
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Formal parameters: 

v Real value: v A/A12 

a Real value: a 

r Real value: r 

asn Real output: the average sample number 

Failure indications: 

If v, a, r are outside the allowed range indicated ~n the Purpose section, 

sprtoc and asn will be set to -1. 

Restrictions: 

None. 

Accuracy: 

For a computer working with at least 11 significant digits, the algorithm 

will normally work with a smallest relative accuracy at 10-8 . The only 

exception is when a is small and r ~s large at the same time, in this 

-3 
case the relative accuracy of ASN may be as small as 10 • 

If the computer works with less significant digits, the accuracy will 

be less and we may use the approximation formulas for smaller values of y. 

Given the number of significant digits at the computer we are able to 

give a rough guide for the accuracy of the result using the exact 

formulas by means of the following table. This could again lead to 

a new limit on y for using the approximation formulas. 
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Number of lost digits computing Number of lost digits computing 
y L(y,l) by the exact formula. 

a+r 
ASN by the exact formula with 

v = 1 and! < ria < 2. 

5 1.3 

6 1.8 6 1.1 

7 2.2 7 1.5 

8 2.7 8 1.9 

9 3.2 9 2.3 

10 3.7 10 2.7 

12 4.7 12 3.7 

14 5.7 14 4.6 

16 6.7 16 5.6 

18 7.7 18 6.5 

The number of correct digits computing L(y,l) by Bartky's approximation 

formula is approximately y + 1. 
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~~AL '~~;C'cf)t;f~tr: 5~~TOC(\!'," A" ~ ,$,\$'N); 
VALUE V+ A+ R; 
REAL V, A, R, ASN; 

COMMENT COMPUTES OC AND ASN OF THE SPRT FOR A POISSON PROCESS; 

BEGIN 
REAL T, DELTA, AR, TERM, EPS, LR, LAR, SR, SAR, VI, THIRD, D18, 

HALF, ONE, TWO, FOUR; 
INTEGER IR, IAR, I I J; 

EPS 1.0'0- 8; COMMENT 
D18 · - 0.0555555555555555556; COMMENT 
TH.I RD · - 0.333333333333333333; COMMENT 
HALF · - 0.5; COMMENT 
ONE · - 1. 0; COMMENT 
TWO 2.0; COMMENT 
FOUR 4.0; COMMENT 

COMMENT CHECK PARAMETERS; 
IF V LSS 0.0 OR A LEQ 0.0 OR R LEQ 0.0 THEN 

BEGIN 

IR 

COMMENT INVALID PARAMETERS; 
SPRTOC := ASN .- -ONE; 
GOTO EXIT 
END; 

.- ENTIER(R - EPS); 
AR . - A + R; 
IAR .- ENTIER(AR - EPS); 

IF IAR GEQ 8 THEN 
BEGIN 

SMALL NUMBER; 
1/18; 
1/3 ; 
1/2; 
1 . , 
2· , 
4· , 

COMMENT COMPUTE PARAMETERS FOR APPROXIMATION FORMULAS: 
SOLUTION, T, TO V = T/(EXP(T) - 1) 
AND DELTA = liT - 0.5 x V/(1-V) ; 

VI: = ONE - V; 
T:= VI x (TWO 
IF ABS(V1) GTR 

TERM :=.V1 x THIRD; 
+ TERMx(TWO + TERMx(FOUR + TERMx(8.8 + TERM x20.8)))); 
0.01 THEN 

LOOP: 

BEGIN 
REAL DERIV, TOLD, FUN, ET1; 

COMMENT FOR V f 1 USE NEWTON ITERATION; 

ET1 := EXP(T) - ONE; 
FUN := T I ET1; 
DERIV := (ONE - FUN)/ETl - FUN; 
TOLD := T; 
T := T - (FUN-V)/DERIV; 
IF ABS(T-TOLD) GTR EPSxABS(T) THEN GOTO LOOP 
END; 

DELTA := IF ABS(T) GTR EPS THEN ONEIT - HALFxV/Vl ELSE THIRD 
END APPROXIMATION PARAMETERS; 



IF IR LSS 8 THEN 
BEGIN 
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REAL ARRAY EXPSI~BASEI POTS(O:IAR); 
REAL DIDJ, EXPNV, EXPNAV; 

COMMENT COMPUTE L(R,V) AND S(R,V) BY SUMMATION; 

EXPNV := EXP(-V); 
EXPNAV := EXP(-AxV); 
EXPS(O) := TERM := EXP(RxV); 

FOR I := 1 STEP 1 UNTIL IR DO 
BEGIN 
TERM := TERM x EXPNVi EXPS(I).- TERM; 
COMMENT EXPS(I) = EXP(R-I); 
END I; 

TERM:= - R x Vi 
LR := EXPS(O); 
SR := IR + 1; 
FOR I := 1 STEP 1 UNTIL IR DO 

BEGIN 
TERM := TERM + V; 
BASE(I) := TERM; POTS(I):= ONE; 
COMMENT BASE(I) = (I-R)xV; 
SR := SR - EXPS(I) 
END I; 

FOR J := 1 STEP 1 UNTIL IR DO 
BEGIN 
DIDJ := ONE I Jj 
LR := LR + BASE(J)xPOTS(J)xEXPS(J)xDIDJi 
FOR I := J+l STEP 1 UNTIL IR DO 

BEGIN 
POTS(I) := TERM := BASE(I)xPOTS(I)xDIDJi 
COMMENT POTS(I) = ((I-R)xV)xxJ/FAK(J)i 
SR := SR - TERMxEXPS(I) 
END Ii 

END J; 

IF IAR LSS 8 THEN 
BEGIN 

~ 

COMMENT COMPUTE L(A+R,V) AND S(A+R,V) BY SUMMATION; 

TERM := EXPS(IR); 
FOR I := IR+l STEP 1 UNTIL IAR DO 

BEGIN 
TERM := TERM x EXPNV; EXPS(I).- TERM; 
COMMENT EXPS(I) = EXP(R-I)i 
END Ii 

TERM ;= - AR x V; 
LAR := EXPS(O); 
SAR:= - (IAR + 1) x EXPNAVi 
FOR I := 1 STEP 1 UNTIL IAR DO 

BEGIN 
TERM := TERM + V; 
BASE(I) := TERM; POTS(I):= ONE; 
COMMENT BASE(I) = (I-(A+R)) x Vi 
SAR := SAR + EXPS(I) 
END Ii 
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FOR J := 1 STEP 1 UNTIL IAR DO 
BEGIN 
DIDJ := ONE / J; 
LAR := LAR + BASE(J)xPOTS(J)xEXPS(J)xDIDJ; 
FOR I := J+I STEP 1 UNTIL IAR DO 

BEGIN 
POTS(I) := TERM := BASE(I)xPOTS(I)xDIDJj 
COMMENT POTS(I) = ((I-(A+R))xV)xxJ / FAK(J)j 
SAR := SAR + TERMxEXPS(I) 
END I j 

END J; 

TERM := LR / LAR; 
SPRTOC := TERM x EXPNAVj 
ASN := TERMxSAR + SRi 
COMMENT A+R <= 8 FINISHED; 
END 

ELSE 
BEGIN 

--
COMMENT COMPUTE L(A+R.V) AND S(A+R,V) BY APPROXIMATIONj 

IF ABS(T) LSS EPS THEN 
BEGIN 
TERM := AR + THIRD; 
LAR .- TWO x TERM; 
SAR := TERMx(TERM-TWO) - DI8; 
END 

ELSE 
BEGIN 
LAR := ONE/VI + EXP(-ARxT)/(VI-T)j 
SAR := (AR+DELTA)xV/VI - LARx(T+V)/T 
ENDj 

SPRTOC := TERM := LR / LARj 
ASN := TERMxSAR + SR 
END; 

COMMENT 
END 

R <= 8 FINISHED; 

ELSE 
BEGIN 

COMMENT USE APPROXIMATION FOR ALL TERMS; 

IF ABS(T) LSS EPS THEN 
BEGIN 
SPRTOC := (R+THIRD) / (AR+THIRD)j 
ASN := A x (R+THIRD + DI8/(AR+THIRD)) 
END 

ELSE 
BEGIN 
TERM := (VI-T)/VIj 
SPRTOC := TERM := (TERM + EXP(-RxT))/(TERM + EXP(-ARxT))j 
ASN := ((AR+DELTA)xTERM - R-DELTA) x V / VI 
END 

END APPROXIMATIONj 
EXIT: 

END SPRTOCj 
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APPENDIX 

THE ACCURACY OF THE FORMULAS FOR THE OC AND ASN. 

1. The exact formulas 

It is well-known - see e.g. Burman (1946) - that the OC of the SPRT 18 

peA) H(a,r,v) L(r,v)/L(a+r,v), v (1) 

with 

v [y] f -V}i 
L(y,v) = eY .L ) (i-y)ve /i! 

1=0 l 
(2) 

where a,r > 0, v ~ 0 and [y]denote8 the integral part of y. 

It it also known that the ASN function may be found by means of 

ASN(A) M(a,r,v)v 

f[a+rJ L r[r] } 
H(a,r,v)) .L L(a+r-i,v)-[a+r]-lf - '.L L(r-i,v)-[r]-l 

l 1=1 '1=1 
(3) 

It 1S easy to verify that the definition of [y]could be changed to 

[y] = max {i E Z I i < y}, 

which is more convenient for computational purposes. 

For small values of a and r these formulas glve accurate results within 

a reasonable amount of computation. But as a and r become larger this 

1S not necessarily true. 

It 1S easy to show that for fixed y, the minimum for the sum in (2) is 

found for v = 1. This means that in investigations of the accuracy it is 

reasonable to consider L(y,l). From approximations we know that for large 

values of y we will have L(y, 1) ~ 2 (y+l/3)andthis means that the 

sum 1n (2) will be approximately 2ye-Y• The first term in the alternating 

sum 1S 1 and the next are of the same order of magnitude. For increasing 

values of y the accuracy of (2) and (3) is thus decreasing rapidly. 
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At UNIVAC 1110 where double precision real numbers have 17-18 correct 

decimals we may use (1) and (3) for a+r < 20 yielding at least 6-7 

significant digits. If we want the same accuracy for larger values of a 

and r, we must use an approximation formula with this property. 

WALD'S APPROXIMATION 

The most well-known approximation 1S g1ven by Jones (1952) adapting 

the formulas found by Wald (1947) for the approximate values of (a,r) 

to the exact (a,r). 

where t 1S the solution of v = t/(et-l), v f 1. 

This approximation could also be written in terms of 

.. {~(y+ 1/3 )t -l} / (l-v-t) 
L(y,v) ~ LWCy,v)= { 

'2 (y+l/3) 

The approximation to the ASN 1S found from 

_f {(a+r+l/3)PW(A) - (r+l/3)} / (I-v) 
M(a,r,v) ~ ~(a,r,v) -1 

~ a(r+l/3) 

vi-I 
(4) 

v 1 

(5) 

vi-I 
(6) 

v 1 

v f: 1 
(7) 

v 1 

Table 1 shows a summary of the investigation of the accuracy of (4) and 

(7) for 0.001 ~ peA) ~ 0.999. For both formulas the accuracy is shown 

in the case where it is smallest, which is a peA) = 0.999 for (4) and at 

peA) = 0.001 for (7). The accuracy is measured in terms of 

-loglO{(fW(A)-f(A»/f(A)}, which gives the number of correct significant 

digits in the approximation. Investigating the OC we use the tail 

probability for f. 
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Table lao 

Table of -loglO {(PW(A)-P(A» / (l-P(A»} for peA) 0.999. 

r 

2 4 6 8 10 

4 1.46 

8 1.46 1.98 2.52 

a+r 12 1.46 1. 98 2.50 2.86 3.20 

16 1.46 1.98 2.50 2.86 3.14 

20 1.46 1.98 2.50 2.86 3.13 

Table lb. 

Table of -log 10 {(ASNw(A)-ASN(A» / ASN(A)} for peA) 0.001. 

r 

2 4 6 8 10 

4 1.34 

8 1.82 2.03 1. 95 

a+r 12 2.09 2.29 2.34 2.30 2.17 

16 2.17 2.46 2.54 2.57 2.55 

20 2.27 2.58 2 .. 68 2.74 2.75 
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BARTKY'S APPROXIMATION 

Bartky (1943) has given approximations to the OC for the binomial SPRT 

From which we can derive for p(A.) ~ PB(A.) = LB( r,v)/LB(a+r,v) 

-vt 
_f1/(1-v) +e • /(l-v-t) 

LB (y, v) - L 
2(y+1/3) 

where t ~s given ~n (5). 

For the ASN we get 

[y] f(y+8 )v/(l-v) - LB(y,v)(t+v)/~ 
r L(y-i)-[y]-l ~ I v 

i=l ~(y+1/3)(y - 5/3) - 1/18 

with 8 lit - I v/(l-v). 2 
v 

This leads to 

f{(a+r+8v )PB(A.) - (r+8v )}/(1-v) 
M (a,r,v) ~ MB(a,r,v) I 

!'a{r + 1/3 + 1/(18(a+r+1/3»} 

v I- 1 

v = 1 

v I- 1 

v = 1 

v I- 1 

v 1 

In the same way as for Wa1d's approximation we show the relative 

accuracy of Bartky's formulas in table 2. 

(8) 

(9) 

(10) 
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Table 2a. 

Table of -loglO {(PB(A)-P(A»/(l-P(A»} for peA) 0.999. 

r 

2 4 6 8 10 

4 1.02 

8 1. 02 3.05 5.32 

a+r 12 1.02 3.05 5.35 7.29 > 8 

16 1.02 3.05 5.35 7.29 > 8 

20 1.02 3.05 5.35 > 7 > 8 

Table 2b. 

Table of -loglO {(ASNB(A) - ASN (A»/ASN(A)} for peA) = 0.001. 

r 

2 4 6 8 10 

4 1. 79 

8 2.55 3.75 4.61 

a+r 12 2.75 4.38 5.99 6.74 5.00 

16 2.84 4.63 6.50 8.20 8.69 

20 2.89 4.75 6.75 > 8 > 8 
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