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Abstract. 

A projective statistical field is defined as a projective system of measurable 

spaces and Markov kernels, equipped with a system of statistical models consi

stent with the projections. 

A statistical population can then be defined as the projective limit of such a 

system. 

An appropriate definition of a sufficient reduction of a projective statistical 

field is given and shown to coincide with Bahadurs notion of a sufficient and 

transitive sequence of statistics In the sequential case. A canonical projective 

statistical field is defined as a field where the parameter space lS the pro

jective limit of a sufficient system. 

Construction of canonical fields and its relation to foundational questions 

in statistical inference lS touched upon. 

Finally examples are given illustrating the impacts of the theory on questions 

as conditional inference and extension of statistical models. 

Key words: Projective systems, repetitive structures, statistical inference, 

sufficiency, transitivity. 
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1. Introduction and Summary. 

The present paper 1S a further development of ideas from Martin-Lof (1970), (1974) 

and Lauritzen (1972), (1974a), (1974b), (1975). 

It can be seen as an attempt to give a mathematical framework in which it is 

possible to discuss the relation between a statistical model and the reference 

population it is supposed to describe. 

Usually, a statistical field is thought of as a measurable space equipped with 

a parametrised family of probability measures 

{[l, (p 8 E 8)} • 

The observation can then be thought of as a sample from a hypothetically infinite 

population of independent, identically distributed random variables following the 

probability law 8 E 8. This is the population one uses to interpret testprobabi

lities in the Neyman-Pearson theory. However, in many situations, where we would 

do statistical analyses this population becomes very hypothetical and is not at 

all the population one really would like to describe by the statistical model. 

Consider for example an observation from a time serles 

1, ... , T 

where t really denotes time. It seems awkward to think of this as a sample from 

a population of independent random vectors with identical distributions. One would 

rather think of it as a sample fram the whole series itself 

0, ±l, ±2, ... } • 

This difficulty is sometimes overcome by assumptions like stationarity and ergo

dicity, which gives a connection between two populations in the sense that they 

have same averages. It remains nevertheless that the two populations are diffe-
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rent and the probabilistic model g~ves a description of the wrong one, seen from 

a statistical point of view. 

Now consider a situation with many nu~sance parameters 

x. 
~ 

p 
e, 'Y • 

~ 

e E e , 'Y. E r. 
~ ~ 

~ 1,2, ... ,N. 

Also here one would like to think of the observation as a sample from a hypothe-

tically infinite population, but of the form 

x. 
~ 

p 
e, 'Y. 

~ 

e E e , 'Y. E r. 
~ ~ 

~ 1,2, ... 

The usual probability model refers to a population of the form 

x .. 
~J 

P , e E e , 'Y. E r. 
e,'Y. ~ ~ 

~ 

1,2, ... ,N 

j 1,2, .. . 

This is aga~n "the wrong" population seen from a statistical point of view. A 

resulting difficulty ~s for example the non-consistency of max~mum likelihood 

estimators when the asymptotics are referred to the former population see e.g. 

Neyman and Scott (1948). This is then u'$ua1fl.y. takeu"care of, by, c,ond:ktio;b:ing 

on statistics that are ancillary to e and sufficient for 'Y •• 
:L 

This procedure is still under discussion but can be thought of as an adaption of 

the model to the population of interest. 

Many other examples could be given, where there is a "conflict" between the hypo-

thetical population and the relevant one. Some of these are: 

1) Sampling from finite populations. 

2) Two-way analysis of variance. (Here the two-way scheme should be considered 

a part of a doubly infinite two-way scheme, since mostly, the combination of 

blocks and treatments cannot be repeated. 
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3) Pairwise comparisons. 

4) All types of inference Ln stochastic processes. 

To be able to discuss such things in a reasonably rigorous way, one needs a 

mathematical definition of a population and a sample. 

To give such a definition we consider simultaneously a whole family of experiments 

i.e. a family of measurable spaces 

(S1.,iEI) . 
L 

These spaces have to be related in the sense that some experiments are subexperi-

ments of others, i.e. there is a partial ordering of the spaces 

S1. "e" S1. 
L J 

When we want to gLve statistical models for such families the distributions of 

experiments that are related, also have to be related. We formalise this by spe-

cifying the conditional distribution on the space S1. given the value on S1., if 
L J 

S1. is a subexperiment of S1 .. Often this distribution is degenerate, but it turns 
L J 

out to be convenient not always to assume so. 

These have to satisfy certain consistency conditions gLven the fact that when we 

have 

S1. 
L 

we also have 

"e" (") "e" (") 
"j "k 

(") "e" (") 
"i "k 

Systems of this kind is what is formalised as projective systems of measurable 

spaces and Markov kernels. Sections 2 and 3 contain the definition and elementary 

properties. 
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The "population" now corresponds to the smallest experiment containing all other 

experiments in the system. This is exactly what is called the projective limit 

and the theory LS described in section 4. 

We then construct statistical models for these experiments by specifying "consi

stent" systems of parametrised probability measures. We use the term "projective 

statistical fields" for such models and give the definition and examples on sec

tion 5. 

We would also like to consider sufficient reductions of experiments. But then we 

have to take care that the reduced experiments again can be thought of as an ex

periment from a system of the type defined. Therefore we need a definition of 

sufficiency that LS a bit more restrictive that usual. This definition is given 

in section 6 and LS shown to coincide with the notion of a sufficient and tran

sitive sequence in the sequential case. 

In section 7 we define a canonical projective statistical field which is to be 

thought of as a statistical model with an especially simple relation between 

population, parameter and statistics. 

In section 8 it LS shown how such canonical fields can be constructed, and how 

one can compare a given projective statistical field to the corresponding cano

nical statistical field , thus getting an insight into the relation between 

population, parameters and model in the given field. This is illustrated by 

examples. 

Throughout the paper we consider the situation of hypergeometric sampling or 

sampling without replacement from infinite populations to illustrate the theory. 
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2. Measurable Spaces and Markov Kernels. 

In the following, a measurable space ~ is a pair ~ = (S,S), where S is a set 

and S a a-algebra of subsets of S. We shall sometimes write ~ = S when it is 

clear which a-algebra of subsets one would think of. This is to avoid a compli-

cated notation. 

If ~ = (S,S) and ~' = (S' ,Sf) are measurable spaces, a Markov kernel P from 

~ to ~' is a mapp~ng 

P: S x S' [0,1] 

satisfying 

i) V s E S, P(s,·) ~s a probability measure on S' 

ii) V A E Sf, P(·,A) ~s an S-measurable function. 

For conven~ence we shall write 

P: ~ -+ ~' or 
P 

~-+~'. 

Let us introduce the indicatorfunction of a set A: 

for x E A 

otherwise 

Via the indicatorftltlction, any ordinary measurable mapping from one probability 

space to another can be thought of as a Markov kernel. Suppose namely that 

f: ~.:; ~ 'is such a mapping, Define the Markov kernel 

lA(f(s». 

Such a Markov kernel is said to be induced. by the mapping f. When misunder-

standing is impossible we shall not distinguish between a mapping and the Markov 

kernel induced by it. 
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Example 2.1 

Let S = {O,~ ... ,n} and S consist of all subsets of S. Let S' = t\l, ... ,N} and S' 

be all subsets of S'. Suppose n <N. One can define a Markov kernel 

(S',S') 

by 

P(s',A) L 
sEA 

(S,S) , 

, N ' (s )( - s ) 
s n - s 

This will 1n the following be referred to as the hypergeometric kernel. 

Let us now suppose that we have two Markov kernels P and Q as follows 

s st" • 

We can then compose. P and Q and cons trllct the Markov kernel QP as 

QP(s,A") fst' Q(s',A") P(s,ds'). 

To each measurable space st there 1S an identity on st, 1st , defined as 

If P: st ~ st' 1S a Markov kernel we have 

P . 

We shall say, that two measurable spaces st and st' are isomorphic and write 

if there are Markov kernels M and M' 
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such that 

MM' and MM ' I = rll 

It is easy to see that both M and M' must be induced by bimeasurable mappings 

that are one-to-one and onto. 

Example 2.2 

Let S =fP.l, ... ,i}, Sl = {O,l, ••• ,j}, S" = {O,l, .... ,k} where i < j < k and let the 

a-algebras consist of all subsets. Define P: rll + rl and Q from rlll to rll as 

the hypergeometric kernels. We then have 

PQ(s I ',A) 
j 
L L: 

Sl=O sE£A 

I • I 

(s ) (~ - s ) 
s ~ - s 

(~ ) 
~ 

S" k-s" 
(1)(' ,) 

s J - s 

(2. L) 

~.e. the corresponding hypergeometric kernel from rlll to rl. 



9 

3. Projective Systems of Measurable Spaces. 

Let (1,<) be a partially ordered set, directed to the right, ~.e. 

Vi,jEI3kEI i,j < k • 

Let (Q.,i E I) be a family of measurable spaces indexed by I. Suppose further 
~ 

that there is given a family of Harkov kernels (P .. ,i < j) 
~J 

P .. 
Q. (~J Q. 
~ J 

(3.1) 

Such a system ~s called a projective system of measurable spaces provided 

Pik whenever ~ < j < k . (3.2) 

Examples of such systems are plenty. 

Example 3.1 

If I contains only one element, a projective system corresponding to I ~s just 

a measurable space Q. 

Example 3.2 

Another degenerate projective system appears when Q. 
~ 

corresponding P .. = I~. 
~J " 

Example 3.3 

Q for all i E I and 

Let I = :IN with the usual ordering and let Q. be the space defined in example 
~ 

2.2. For~ i~ jiwe define P .. to be the relevant hypergeometric kernels. 
~J 

(2.1) shows that this ~s ~n fact a projective system. 
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Example 3.4 

Let I consist of all finite subsets of a set T, ordered by inclusion. Define 

for DEI 

II 
tED 

st* 
t 

where (st~,t E T) is a family of measurable spaces. For Dl C D2 define PU1D2 as 

the Markov kernel ihduced by usual coordinate projection. Clearly we have 

and the system considered 1S thus a projective system. 

'The formulae (3.1) and (3. 2) tog~ther imply that one can think of a proj ective 

system as a "reverse Markov chain". This gives the connection to the work in 

Lauritzen (1974a). 
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4. Projective Limits. 

We consider a projective system 

{ (rl . , i E I), (P .. , i < j)} 
~ ~J 

(4.1) 

of measurable spaces. Suppose rl* is a measurable space and (Q.,i E I) a system 
~ 

of Markov kernels, so that the diagram below is commutative 

P .. 
rl. ~ rl. 
~ J 

Q~ /Qj 
r2* 

~.e. satisfying for all ~ < j 

Q. = P .. Q .• 
~ ~J J 

(4.2) 

A measurable space G ~s said to be theJ?rojective limit of the system (4.1), 

and we write 

if 

i) 

ii) 

r2 lim r2. 
~ ~ 
iEI 

for all i E I there are Markov kernels P.: r2 + rl. so that 

P. 
~ 

p, • ~P . 
~J J 

~ ~ 

(4.3) 

for all systems (r2*,(O.,i E I»satisfying (4.2) there ~s one and only 
.~ 

one Markov kernel R: r2* + r2 such that for all i E I 

P. R = Q. 
~ ~ 

(4.4) 

The projective limit, if it exists, ~s well defined up to isomorphism. Assume 

namely that both r2 and r2' are projective limits of (4.1). Then (4.3) and (4.4) 

combined imply existence of Markov kernels M and M' so that 



But then 

p! M' 
~ 

P. MM' 
~ 
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P. and P. M 
~ ~ 

P. and p! M'M 
~ ~ 

p! 
~ 

p! 
~ 

The uniqueness of the mapp~ng R ~n (4.4) then implies 

MM' Irl 

and thus that rl and rl' are isomorphic . 

. Projective limits do not exist ~n general and usually their existence LS a non-

trivial matter. The Kolmogorov consistency theorem for stochastic processes is 

a special case of an existence theorem for projective limits, see ex.4.3. In the 

case where the spaces rl. are compact topological spaces and the Markov kernels 
~ 

are continuous, the existence has been proved by Scheffer (1971). In the theore-

tical considerations of the present work we shall plainly assume existence of 

projective limits. 

Example 4.1 

In the two degenerate systems of examples 3.1 and 3.2, the projective limit ~s 

. just rl itself. 

Example 4.2 

Consider the projective system defined ~n example 3.3. (hypergeometric kernels). 

A consistent system 

~s equivalent to a family (Q.(s,·),s E S*) of distributions reproducible under 
~ 

hypergeometrie sampling, cf. RaId (196;0), s~nce the equation 



~s equivalent to 

Q. (s ,A) 
~ 
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Q. P .. Q. 
~ ~J J 

j 
L L 

yEA x=O 

(x)(~ - x) 
y ~ - y 

d) 
~ 

Q.(s,{x}). 
J 

It can be proved that this implies that Q.(s,·) are mixed binomial distributions 
~ 

with the mixing measure being independent of iE ill 

Q. (s,{x}) 
~ 

(4.5) 

Obviously, the measure]J is uniquely defined and therefore [0,1] with the 
s 

usuaiL Borel a-algebra is the projective limit of this system, since (4.5) can 

be written 

when P. ~s defined as 
~ 

Example 4.3 

Q. P. M 
~ ~ 

P.(8,{x}) 
~ 

Consider the projective system defined in example 3.4. A system of the form 

where the diagram is commutative ~s exactly a consistent family of finite-dimen-

sional distributions. An obvious candidate for the limit is the infinite product 

space 

II 
t ET 

[2* 
t 

? 
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To say that this is the limit ~s equivalent to saying that to any consistent 

family {QD(s,'),D C T finite} of finite~dimensional distributions there is a 

. uniquely defined probability measure V on the procuct 
s 

II 
tET 

rl* such that 
t 

This is exactly Kolmogorovs consistency theorem for stochastic processes which 

~s known to be false without further assumptions on T or the family (rl~,t E T), 

cf. Sparre Andersen and Jessen (1948). 

We shall now informally state an important theorem about construction of pro-

jective limits. It says that, roughly, the projective limit can be identified 

with the limits of the measures 

P .. (s.,'), j -+ 00 

~J J 

The theorem is a direct generalisation of the theorem on p.279 in Martin-Lof (1974). 

We shall name it "Boltzmann's law" as it is analogous to a theorem used to prove 

Boltzmann's law in statistical mechanics, Khinchin (1949). See also Martin-Lof 

(1970) . 

Let there be given a projective system of measurable spaces 

{ (rl. , i E I), (P .. , i < j)} 
~ ~J 

Define the following system of measures for ~,J E I, s. E S., A. E S. 
J J ~ ~ 

(j,s.) 
1.1. J (A.) 
~ ~ 

{ 
P .. (s.,A.) 
~J J ~ 

o otherwise 

if ~ < j 

Suppose that we have a suitable topology given on the measures on ~ .. 
~ 

(4.6) 

A system (v.,i E I) is said to be .an accumulation point of the system (4.6) if 
~ 

there ~s a cofinal subset J C I, ~.e. a subset satisfying 



and points s . , 
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V~EI3jEJ 

j E J so that for all i E I 

(j, s . ) 
lim]1. J 
jEJ ~ 

in the topology mentioned before. 

~ < j , 

lJ· 
~ 

Let B consist of all such accumulation points and let B be the Borel sets of 

B induced by the pointwise topology. 

Let rl' (B,B). and let the Markov kernels P I. ~, +~. be g~ven as 
~ ~ 

P!((lJk,k f I),A.)= lJ.(A.). 
~ ~ ~ ~ 

Under certain regularity conditions one can now prove the following 

Theorem 4.1 : (Beltzmatln'.s law) If ~* is a measurab Le space and Qi a system of 

Markov kernels from ~* to rl. such that 
~ 

P .. Q. = Q. 
~J J ~ 

V i,j E I: i < j 

then there ~s at least one Markov kernel M* from rl* to rl' so that 

Q. 
~ 

p! M* . 
~ 

ViE I (4.7) 

We shall not here give a proof of the theorem nor state the exact regularity 

conditions needed. There ~s no reason to believe the theorem to be true in full 

generality. 

If one assumes the spaces rl. to be locally compact topological spaces, the 
~ 

Markov kernels to be continuous with limits at infinity and the index set I to 

have a cofinal sequence, the theorem can be proved by a direct adaption of the 

proof of the theorem on p. 279 in Martin-L~f (1974). 
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The significance of the theorem is that apart from the uniqueness of the Markov 

kernel in (4.7) the projective limit can be identified with ~'. A way to find 

the projective limit will offen be to find ~' and then prove uniqueness of the 

integral representation (4.7). In many cases indeed it 1S so that ~' in fact 

is the projective limit itself. 

Example 4.4 

Consider the projective system of examples 3.3 and 4.2, i.e. the hypergeometric 

(j,sJ.) 
kernels. The measures ~. are here given as 

1 

(Sj)(~ _ Sj) 
X 1-X 

(j,s.) 
~. J ({x}) 

1 

d) 
1 

o if 1 > j 

It. is well known that if (j ,s.) + 00 1n such a way that 
J 

then 

s./j+8, 
J 

(j ,s.) 
~. J ({x}) + 

1 

Comparing this result with the considerations 1n ex. 4.2, we see that 

~' Jim ~i 
iEI 
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5. Projective Statistical Fields 

In this sectie.,n we shall consider statistical models for projeetive systems 

of measurable spaces or, 1n short, projective statistical fields. 

A proejctive statistical field consists of 

i) a projective system of measurable spaces 

{ (~. , i E I) , (P .. ,i < j) } ; 
1 1J 

ii) .a p:a,ramet:e.r spacce e = (T ,T) that for convenience 1S considered equipped 

with a measurable structure. 

iii) a parametrisation, which 1S a system of Markov kernels (ll., i E I) 
1 

tl.: e-+~. 
1 1 

that 1S consistent with the projections 

'v'i<j tl· 
1 

P.. tl. 
1J J 

To interpret the definition one should think of an increasing system of experi-

ments 

~. c ~. 
1 J 

each of them glv1ng r1se to random variables 

X. E ~. 
1 1 

with distributions given by tl.(8) and depending on the unknown parameter 8. 
1 

To say that 

tl· P .. tl. 
1 1J J 

means that the measure 
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P .. (s , . ) on ~ . 
1.J 1. 

1.S the conditional distribution of X. g1.ven X., S1.nce one could write it as 
1. J 

Frequently one has I 

~.(e,A) J P .• (s,A) ~.(e,ds) 
1. 1.J J 

IN and X. 1. (y l' ••• , Y i) . 

The P .. 's would then just be coordinate projections mapp1.ng the distribution 
1.J 

~. of X. into the marginal distribution of: 
J J 

The reason for considering more complicated structures is that one would like 

to reduce data by sufficiency, and as we shall see in the next section, this 

generates projective statistical fields where P .. are truly random. 
1.J 

If the projective system has a limit 

~ lim ~. 
t-- 1. 
iEI 

we shall call this the reference population. 

The fundamental property of the projective limit then implies existence of a 

unique Markov kernel ~ 

such that 

]1. = P. ~ 1. 1. 

Thus the parametrisation can be identified with the single Markov kernel ]1 V1.a 

the projective limit. 

In the examples we consider, the projective limit does exist and probably we 

are not at all interested 1.n dealing with situations where this is not the case. 
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Example 5.1 

If we consider the degenerate system with I having only one element, a projec-

tive statistical field is just a usual statistical field. 

Example 5.2 

Let I = IN and $1. 
~ 

~ 
{a,l} , and let P .. be induced by the coordinate projections. 

~J 

Let e [a,1] and define 

~ i 

1-.1. C 8 , { C xl' ... , x. ) } ) 
~ ~ 

~ x. ~ C1-x.) 
'-1 J '-1 J 

8J - C1- 8)J-

The Markov kernel 

]1: e IN 
-+ {a,l} lim $1. 

~ ~ 

iEI 

assigns to a 8 E e the probability measure corresponding to an infinite sequence 

of independent Bernoulli random variables with probability 8 of succes. 

Example 5.3 

Let I {Ci,j),i,j E IN} with the ordering 

Let $1 Ci ,J') = {a,l}i.j and let PC' . )C' .) be induced by· coordinate projections. 
~1 d 1 ~2 oJ 2 

Let e JR IN x JR IN and define 

~ J 
Cam+/3n )xmn 

II II 
e 

a +/3 m=l n=l 1 m n + e 
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This example corresponds to Rasch's models for the item analysis, cf. Rasch 

(1960). 

Example 5.4 

Let I consist of all closed subintervals of the positive real ax~s 

I = {[a,b], 0 ~ a,b < +oo}, 

partially ordered by inclusion. Let [l be ]R. [a,b] with the cylinder a-alge-
[a,b] 

bra and let P[a,b],[c,d] be induced by coordinate projection. 

Let e = [O,oo[ and let V[a,b](8) be the measure induced on [l[a,b] by the gaussian 

process ~ with mean 
E ~(t) 8t , t ~ 0 

and covar~ance 

E ~(s) ~(t) = m~n {s,t} , 

i.e. the Wiener proces with unkh:own drift. 



21 

6. Sufficient Reductions of Projective Statistical Fields. 

Consider a projective statistical field 

F {(st.,i E I),(P .. ,i < j),8,(]1.,i E I)} , 
l lJ l 

a family of measurable spaces (st~,i E I) and Markov kernels (R.,i E I) 
l l 

R. st. -+ st! 
l l l 

We shan say that CR.,i E I) is a sufficient system of reductions if there lS 
l 

an "inverse" family of Markov kernels 

R't' st! -+ st. 
l l l 

so that the following three conditions are fulfilled 

i) ViE I 

ii) :.'. R't' R.]1. ]1. 
l l l l 

ViE I 

iii) R't'R.P .. R'!' 
l l lJ J 

P .. R'!' 
lJ J 

V i,j E I: i < j 

60mments: Condition i) ensures that R. is induced by a mapping; i) and ii) 
l 

combined says that R't' is the conditional distribution In ]1.(8) given R .. Since 
l l l 

R't' lS chosen independently of 8 E 8, i) and ii) lS just the "usual" definition 
l 

of sufficiency. 

The last condition combined with i) says analogously, that R't' also is the con
l 

ditional distribution on st i given both R. and R. and thus that the random 
l J 

elements 

X. E Q. 
l l 

and R. (X.) E Q! 
J J J 

are conditionally independent given R.CX.). This is obvious because P .. R'!' is 
l l lJ J 

the conditional distribution on Q. given R. and P .. R'!' plays the same role in 
l J lJ J 
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iii) as does v. 1n ii). The reasoning is eased by the diagram below 
1 

P .. 
~. ( 

1J 
~. 

1 J 

Rill R'!' 
RjJT 

R'!' 1 J 

~~ ~~ 
1 J 

Example 6.1 

Consider the projective statistical field defined 1n example 5.2 and let 

~ ! { 0 , 1 , .. .. , i } . 
1 

The system of reductions (R.,i E I) 
1 

R.: ~. -+ ~~ 
1 1 1 

induced by the mapp1ngs 

1S sufficient because it 18 1n the usual sense and because iii) 1S satisfied. 

We define namely R't' as 
1 

R'!'(t,{(xl,···,x.)}) 
1 1 

and have 

1 
P .. R'!' (t, { (xl' ... , x. )}) = 2: 

1J J 1 { ( ) . _ } (J) x. 1'" . .)_x .. xl +· .+x.-t t 1+ .. J J 

Then 

R. P .. R'!' 
1 1J J 

(i)(j-i) 
s t-s 

(J) 
t 



and obviously 

R'!' R. P .. R'!'(t,{(xl, .. "x.)}) 
~ ~ ~J J ~ 

P .. R'(t,{(xl, ... ,x.)}) . 
~J J ~ 

A consequence of the above comments is, that in the case I = ill, the definition 

here given of a sufficient system (apart form technicalities) coincides with 

that of a sufficient and transitive system as defined by Bahadur (1954). The 

present definition is therefore a direct generalisation of Bahadur's notion. 

We can, whenever we have a sufficient system of reductions define a system of 

Markov kernels 

rI! 
J 

by 

Q .. 
( ~J rI! 

~ 
~ < j 

Q .. = R. P .. R'!' . 
~J ~ ~J J 

The last condition ~n the definition then implies for i < J < k 

Q .. Q'k = R. P .. R' R. P' k R.* = R. P .. PJ' k R~ ~J J ~ ~J J J J --k ~ ~J -K 

and thus that {(rI.,i E I),(Q .. ,i < j)} ~s a projective system and that the 
~ ~J 

diagram 

~s commutative. 

rI. 
~ 

P .. 
( ~J 

Q .. 
~ 

rI. 
J 

i R'!' 
J 
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If we define v.: 8 +~! by 
~ ~ 

we have that 

F' = {(~!,i E I),(Q .. ,i < j),8,(v.,i E I)} 
~ ~J ~ 

is a projective statistical field. 

Here Q .. denotes the conditional distribution of the sufficient statistic R. in 
~J ~ 

the "small" experiment given the statistic R. ~n the "large" experiment and will 
J 

~n most cases be truly random. 

Introducing the notation R (R., i E I) we can write 
~ 

F ~ F' • 

We shall now state an important but simple result about composition of sufficient 

transformations. 

Theorem 6.1: If we have projective statistical fields 

F 
R 
+ F' T 

+ F" 

where Rand T are sufficient then the reduction 

defined as 

~s also sufficient. 

TR. 
~ 

Proof: We aSSume that we have 

A) i) R. R'!' I~! ~ ~ 
~ 

ii) R'!' R. tl· tl· 
~ ~ ~ ~ 

iii) R'!' R. P .. R'!' P .. 
~ ~ ~J J ~J 

F :!1 F" 

T. R. 
~ ~ 

R. 
J 

i E I 
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and 

B) i) T. T'!' = I~! ' 1 1 1 

ii) T'!' T. R. ].1. = R. ].1. 1 1 1 1 1 1 

iii) T'!' T. R. P .. R'!' T'!' R. P .. R'!' T'!' 1 1 1 1J J J 1 1J J J 

and want to prove the existence of Markov kernels TR'!', 1 1 

C) i) TR. TR'!' = I~! ' 1 1 1 

ii) TR'!' TR. ].1. = ].1i 1 1 1 

iii) TR'!' TR. P .. TR'!' P .. TR'!' 
1 1 1J J 1J J 

The proof 1S then simple algebraic manipulations. Define 

To prove C i) we have 

T. R. 1 1 

And C ii) follows as 

R'!' T?!' T~ . . R. 
1 1- T 1 

R'!' 1 

].1. 
1 

TR'!' R'!' T'!' 111 

T'!' A}) T. T'!' 1 1 1 

B i}) R'!' R. 1 1 

Finally ,.to establish C iii) we get 

B})I 
~! ' 1 

].1. A ij.) 
11· 1 1 

E I so 

~ iii) ~ iii) R'l' T'l' T. R. P .. R'!' T'!' R'!' R. P .. R'!' T'!' P .. R'!' T'l' 
1 1 1 1 1J J J 1 1 1J J J 1J J J 

that 

P .. TR'!' 
1J J 

Remark. The converse, 1.e. that C implies A and B is not true 1n general (It 

is true that C i) and ii) imply A and B i) and ii)). 

A system (R.,i E I) 1S called minimal sufficient if to any sufficient system 
1 

(S.,i E I) there 1S a family of Markov kernels (T.,i E I) such that 
1 1 

R. 
1 

T. S. 
1 1 

ViE I • 
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It is obvious, that if for each i, R. is minimal sufficient in the usual sense, 
1 

and the system (R., i E I) is sufficient in the sense defined here, then (R., i E I) 
1 1 

is a minimal sufficient system of reductions. 

Example 6.2 

Consider the projective statistical field ln example 5.4. Let R[a,b] be induced 

by the mapping 

R[a,b](x(t),t E [a,b]) = (x(a),x(b» , 

:JR [a,b] -+ :JR 2 . 

The conditional distribution of {E;(t),t E [a,b]} given (E;(a),E;(b» 1S the so-

called Brownian bridge. 

The system {R[a,b]' a ~ b} lS a minimal sufficient system because of the Markov 

property of the process E;. 
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7. Canonical Projective Statistical Fields. 

This section g~ves a definition of a canonical projective statistical field 

which is to be seen as a generalisation of the notion of an extreme family of 

Markov chains as defined in Lauritzen (1974a). 

In certain projective statistical fields there is a special coherence between 

the parameter space and the sufficient reductions. Such fields shall be called 

canonical and a precise definition is following. 

Let 

F = {(rl.,i E I),(P .. ,i < j),8,(]J.,i E I)} 
~ ~J ~ 

be a projective statistical field. F is said to be canonical if 

i) 

ii) 

lim rl. exists 
~ ~ 

iEI 

there ~s a sufficient system of reductions (R.,i E I) 
~ 

R.: rl. -+ rl! 
~ ~ ~ 

such that the paranieter spa~e 'n the p~ojective limit'Mthe red~~ed system 

8 lim rl! 
~ ~ 

iEI 

If a projective statistical field ~s canonical, we have the following diagram 

A verbal interpretation of the definition is that a projective statistical field 

~s canonical exactly when the parameter is the limit of the sufficient statistic. 
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Another interpretation can be given from the following diagram for a projective 

statistical field having a projective limit and sufficient reductions 

P. 
~. ( 

~ 
~ 

~ 

1)8 Ril R* 
Q. 

~! ~ ~ ~' \J 
~ 

As mentioned earlier, ~, the projective limit of the system can be thought of 

as the population or the maximal possible observation. Because of the existence 

of R~: ~'+ ~, ~' can be considered statistically equivalent to ~. Condition 

ii) can be stated as the existence of a Markov kernel M so that 

M \J \J M 

M: ~' + 8, 

or, ~n other words that \J ~s induced by a bimeasurable mapping that ~s one-to-

one and onto. This connection between parameter and population ~s a fundamental 

property of a statistical model. 

Example 7.1 

In examples 4.2, 5.2 and 6.1 we have considered the projective systems given by 

~. 
~ 

rl! 
~ 

i 

{O,l, ... ,i} 

1,2, ... 

~ 1,2, ... 

P •. : rl. + rl. "coordinate projections" 
~J J ~ 

Q .. : rl! + rl! hyp~rg~ometric kertle,ls ,. 
~J J ~ 

and the system of reductions Ri : rl i + rli g~ven by 

R. (xl' ... , x . ) 
~ ~ 
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The projective limits have been shown to be 

and 

lim r2. 
~ 1 

iEl 

lim r2! 
<.- 1 

iEI 

[0,1] 

It follows that the system of binomial distributions considered in examples 5.2 

and 6.1 constitutes a canonical proj ective statistical field. 

Genereally speaking, all the "canonical models" introduced in Martin-Lof (1974), 

are canonical projective statistical fields. This will be clear in the next 

section. 
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8. Construction of Canonical Fields. 

Suppose that we have given two projective systems of probability spaces 

{(~.,i E I),(P . . ,i < j)} and 
1. 1.J 

{(~!,i E I),(Q .. ,i < j)} 
1. 1.J 

and a system of reductions and their "inverses" 

R.: ~. -+ ~! 
1. 1. 1. 

R'!': ~! -+ ~. 
1. 1. 1. 

i E I , 

satisfying 

a) R. R'!' I~! ViE I 
1. 1. 

1. 

b) R'!' Q .. = P .. R'!' Vi, j E I i < j 
1. 1.J 1.J J 

Suppose that both systems have projective limits 

lim ~. 
(- 1. 

iEI 

lim ~! ~I 

~ 1. 

iEI 

We can then define a canonical projective statistical field by letting 

8 ~I rv ~ ~i 

iEI 

and the parametrisations be given as 

]1. R'l' Q .• 
1. 1. 1. 

To verify that the field 

F {(~.,iEI),(P .. ,i < j),8,(]1.,i E I) 
1. 1.J 1. 

1.S canonical, we jus t have to prove that the system of reductions (R .,i E I) 1.S 
1. . 

sufficient. 
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Condition i) ~s already supposed to be satisfied (assumption a)). ii) follows 

s~nce 

R'!' R. ].1. 
~ ~ ~ 

R'!' R. (R'!' Q.) 
~ ~ ~ ~ 

R'!' (R. R'!') Q. 
~ ~ ~ ~ 

R'!' Q. 
~ ~ 

Finally iii) ~s true because of 

Rf<R: F;~ R'!' = R'!' R. R'!' Q .. = R'!' (R. R'!') Q .. = R'!' Q~J. 
~' ~ ~J J ~ ~ ~ ~J ~ ~ ~ ~J ~.L 

].1. 
~ 

P .. R'!' 
~J J 

The construction procedure described here is exactly a formalisation of the 

procedure given in Martin-Lof (1970) and (1974). 

There, the system (g.,i E I) is defined, the R. 's are considered to be given 
~ ~ 

statistics and the R. 's are the conditional distributions on g. given R. with 
~ ~ ~ 

respect to certain canonically determined uniform measures (given by e.g. Rie-

mann~an metrics). 

The consistency condition on some combinatorial coefficients given ~n the latter 

of the above mentioned papers ~s exactly corresponding to condition b) here. 

In var~ous situations it would be interesting to do the following. Suppose a 

usual statistical field is given 

{g, Pe, e E 8} • (8.1) 

One could then embed this statistical field into a relevant projective statisti-

cal field. Sometimes the relevant projective statistical field is formed by 

independent repetitions of the experiment leading to the field (8.1). But in 

many cases it would be a very different projective field, depending on the way 

the observations are produced. By doing this, one obtains a mathematically 

specified reference population. 
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Suppose this 1S done and we now have a projective statistical field 

F = {(Sl.,i E I),(P .. ,i < j),8,(1l.,i E I)} . 
1 1J 1 

One would then look for a (mini~al) sufficient system of reductions (R.,i E I). 
1 

Defining 

Q.. R. P .. R'!' 
1J 1 1J J 

one could then find the canonical statistical field generated by the system, 

If this is the same as F, the original field was canonical. If this is not the 

case, it might be convenient to modify the original statistical field by sub-

stituting the canonical field for F. At least it might throw some light on the 

relation between F and the corresponding canonical field. 

If all projective limits exist, a projective statistical field can be non-cano-

nical for three different reasons. We have the diagram 

P. 
Sl. < 1 

Sl 
1 

~ 
Rili 

R'!' 8 
1 Q. V, 

Sl! < 1 Sl' \) 
1 

and the field is canonical iff \) is induced by a one-to-one and onto mapping. 

The deficiences can be divided into the following three types 

1. The Markov kernel \) 1S induced by a mapping, but this mapping 1S not one..,.... 

to-one. 

In this case, the parameter 8 E 8 will not be identifiable and it 1S con-

venient to introduce a new, identifiable parametrisation V1a Sl' . 

II \) 1S induced by a mapp1ng that is one- to -one but not onto. 

In this case the parameter space has inconvenient restraints and there is 

not variability enough in the parameter space to take care of the variabi-: 
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lity in the population. It might be convenient to extend the model by sub

stituting ~, for 8 as parameter space. 

III v is not induced by a mapping but is truly random. 

In this case the parameter will not be estimable even from complete obser

vation of the entire population. This suggests that the parameter is not 

well-defined as a characteristic of an empirically observable phenomenon. 

The model contains superfluous randomisation. It might be convenient to 

remove this randomisation by a conditioning procedure, i.e. by substituting 

~' for 8. 

It should be noted that the "new" statistical field induced on a given field 

by embedding this into a projective field, considering reduction of this and 

finally substituting the generated canonical field ~s very sensitive and depends 

drastically on into which projective system it is embedded. 

This should encourage one to be careful, using the procedure. However, statisti

cal models ought to be very dependent on the reference populations that they 

are supposed to describe! 

In Lauritzen (1975) projective statistical fields corresponding to indepenElent 

identically distributed random variables, whose distributions are supposed to 

be member of a (somewhat generalised) exponential family of distributions are 

discussed. In such situati0ns it is shown that the canonical fields roughly 

correspond to "full" exponential families. 

Below we shall give two examples where the relation between a projective stati

stical field and the corresponding canonical field are different. 
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Example 8.1 

Here we shall investigate a classical problem first discussed by Neyman and 

Scott (1948). 

Let 

rl. {(xl'Yl;"';x.,y.): (x.,y.) E ]R2, J=l, ... ,i} . 
1. 1. 1. J J 

and let P .. : rl. + rl. be induced by the coordinate projections. Let 
1.J J 1. 

8 
IN ]R x [O,oo[ , 

and let the measure ~.(8) of a parameter 1. 

8 [(E;.,j E IN),iJ 
J 

be the product of 2i normal distributions with means 

2 and var1.ances 0 . 

E X. 
J 

E Y. 
J 

E;. 
J 

j 1, ... , i 

This is the model for determining the accuracy (1/02) of a measur1.ng instrument 

by considering double measurements (X.,Y.) of unknown quantities E;., j =1,2, .•.. 
J J J 

We then define 

the reductions R.: rl. + rl! by 
1. 1. 1. 

rl! ]R i x [O,oo[ , 
1. 

R. ( (xl' Yl ; ... ; x. , y. ) ) 1. 1. 1. 

i 
(xl+Yl, ... ,xi+Yi; E 

j=l 

2 
(x. -y.) ) 

1. 1. 

and R*1.' as the conditional distribution of (Xl'Yl, ••. ;X.S;~)givenR. in the .. 1.1. 1. 

normal distributions mentioned. 
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Clearly (R.,i E I) ~s a minimal sufficient system of reductions. 
~ 

Now we let 

Q •. = R. P .. R'!' 
~J ~ ~J J 

Q •. {(sl' ... 'S.,S~)} is the probability measure on JR J x [O,oo[ which H the pro-
~J J J 

duct of a measure degenerate ~n (sl, ..• ,Sj) and a beta-distribution with density 

w.r.t. Lebesgue-measure 

~-l 
S~) 1 ( x\ (1 x\ f. . (x 

2 
~J J S~ B(i. j - i) 's~) - S~) 

J 2' 2 J J 

It ~s an easy consequence of Stirlings formula that 

when S ~ / j -+ 202 • 
J 

lim f .. (x I S~) 
j~ ~J J 

1 

r(~) 
2 

x 
~ --

( x \"2- 1 202 

'202) e 

j-i --1 2 

Combining this fact, Boltzmann's law and the fact that a genuine mixture of gamma 

densities cannot be a gamma density, one obtains the result, that the projective 

limit of (~!,i E I) ~s 
~ 

lim ~! rv JR IN x [0, oo[ ~' 
~ ~ 

iEI 

where the probability measures Q.(w), w E ~',are g~ven as follows. 
~ 

If w = «z.,j E IN),02) 
J 

then .. Qi (w) is the distribution on JR i x [O,oo[ given 

as the product of a distribution degenerate in (zl, ... ,zi) and a x2-distribution 

2 
with i degrees of freedom and G as scale parameter. 

Defining 8* =~' and 

jective statistical field 

R'!' Q. , we have that the modified (canonical) pro
~ ~ 

F* {(~.,i E I),(P .. ,i < j),8*,(~'!',i E I)} 
~ ~J ~ 
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~s obtained from the original field 

F = {(st.,i E I),(P .. ,i < j),8,(]J.,i E I) 
~ ~J ~ 

the statistics minimal sufficient for the "nuisance parameters" (t;.,j E IN). 
J 

It is worth noting that the vague statement "t;.,j E IN are nu~sance parameters 
J 

2 and 0 the parameter of interest" ~s substituted by a precise specification of 

the reference population ~n question. The procedure suggested to remove deficien-

cies of type III here plays the role of a conditionality principle. 

Example 8.2 (Autoregressive processes). 

Let I consist of bounded intervals on the integer axis ordered by inclusion 

I {(s,s+l, ..• ,t): s < t,s,t E Z }. 

Let for [s,t] E I 

st = JR t-s+l 
[s, tJ 

and let as usual p[ ][ ] be induced by. coordinate projections. s,t u,v 

Let 
8 = ]-l,l[ x [O,oo[ 

d 1 f 8 (8 8) E 8 (8) b h 1 d · 'b' JR t-s+l an et or = l' 2 -, ]J[s,t] e t e norma ~str~ ut~on on 

with mean zero and inverse covariance g~ven as 

1 -81 0 0 

-8 
1 1+8i -81 0 

0 -8 
1 1+8 2 

1 
-8 1 0 

I- l (8) 
0 0 -8 1+8 2 -8 1 1 1 

s,t 2 0 -8 82 (1-81 ) 1 

o 

1 0 

o 
o 

-8 1 
o 

0 
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This corresponds to the autoregressive scheme of order . one defined as the unique 

gaussian stationary process 

{X(t),t E Z } 

satisfying the stochastic difference-equation 

X(t + 1) - 81 X(t) = dt), 

where {E(t),t E Z} is supposed to be "gaussian white no~se with mean zero and 

2 
var~ance C5 • Equivalently the ee"\7ariance· st:r:ucture·is g~veu:.:;as 

E Xes) X(t) 8 8 ls-tl 
2 1 . 

From the expression defining I- l (8) one clearly has that the likelihood func
s,t 

tion is proportional to 

Thus the statistic 

(x , ... ,x ) 
s t 

2 2 2 t-l 2 
[x+x+(l+8l ) I x.-28 l 

s t i=s+l ~ 

'" 
R 2 2 t-l 
s, t) (x + x I 

st·' 
i=s+l 

~s minimal sufficient ~n the usual sense. 

'" 

t-l 
I xi xi+1J} . 

i=s 

R is not a sufficient system of reductions ~n the sense defined here. One 
s,t 

can show that the statistics R defined as 
s,t 

R 
(x , ... ,x ) 

s t 
__ s-'-,_t----7) (x 

s 

t-l 
I 

i=s+l 

t-l 
I 

~=s 

constitute a minimal sufficient system of reductions. 
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It is quite a bit technical, and the details are omitted in the present paper, 

but possible to show, that the canonical projective statistical field generated 

by this system of reductions has parameter space 

8* JR x JR x ] -1, l[ x [0,00 [ 

and that the canonical distributions of (X(s), ... ,X(t)) with parameter 

lS given as the multivariate normal distribution with the same covariance as 

before but with mean 

E X(t) 

l.e. a model with a trend of form as a hyperbolic sine/cosine superimposed with 

autoregression errors. 

Hence in this example the original model has a deficiency of type II compared 

to the reference population. 
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