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ABSTRACT. We prove the law of the iterated logarithm for the 

martingales associated with the eigenvectors of the mean matrix 

of a supercritical p-type (1 < p < (0) Galton-Watson process. 

1. Introduction. Consider 2 p-dimensional Galton-Watson process 

[Zn} ={Zn(l) .. 'Zn(p)}· We introduce as briefly as possible the 

basic parameters and refer to Athreya and Ney [6J, Ch. V, for 

additional background material. Let In be the set of 

individuals of the nth generation and, whenever 

Uk be the offspring of k so that 

, 
n 0,1,2, ... 

k E I , 
n 

let 

Specific assumptions on 10 are usually not relevant, but, 

whenever needed, we let pi, Ei, Vari etc. refer to the case 

where 10 consists of one individual of. type i . Letting 

Fn+:L = o( Uk; kE I ; m~n} we see tha tcc:: Zn+ 1- . is F n+ l:-m_easurable 
- - m 

and the basic branching property states,. that for fixed ... n· the-_ 

Uk' ·l\.E In' are· independent "conditioned 
i -. p 

p (ZlEA), AcN, wherei is the type of 

upon~LEn w~th.c __ P( UkEAI-F ri) 

k. Define_ m .... =EiZ l ( j) and 
. l, J 

assume M=(m .. ) l,J to be positively regular, i.e. all elements 

of Mt are strictly pO$itive for some integer t> O. Let p 

be the Frobenius-Perron root of Mwith associated left and 

right eigenvectors v,u. We consider throughout the supercritical 

case p > 1 and defining 
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ab' = a(l)b(l) + ... +a(p)b(p), lal = /a(l)I+···+la(p)r 

for p-vectors a, b, we normalize by vu' = 1, I vI = 1. Since 

E( Z +1
' 
F ) = Z M , n n n the relation Mu' =pu' implies thatp-nZ u' 

n 

is a non-negative martingale. 

is well-known that 1) 

(1. 1) lim p-nZ 
n n 

Defining 

Wv 

-n W = lim p Z u' 
n n ' 

it 

and that [W) O} coincides with the set [Z 10 for all n} n 

of non-extinction under mild moment conditions. In fact, our 

basic assumption 

(1. 2) i=l, ... ,p 

is more than sufficient for this. 

The problem with which we are concerned is this. Given 

any p~vector a such that va' = 0, we want to describe the 

asymptotic behavior. of thelin'earcfunctional· Z a "in a manner 
n 

more· precise than the ~estimate-_~Zna'~ o(pDctCprovided by (1. 1). 

This problem has I'eceived some;attentiQn.in the literature. 

For results, see Kesten andstigum{14J'-candAthYeyaf3l,:-:-:[it],"'c 

[5J. Following Athr~ya [3] and Athreya and Ney [6Ji Ch. V, we 

restrict the problem somewhat by considering nnlya's which 

are eigenvectors of M, 1. e. M ,- 'f a .' .. ~ P 1 a ...or - some: Pl This 

l)all relations between random variables are understood to hold 

almost surely 
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case is somewhat simpler to deal with and of particular interest, 

since is then a martingale in case as 

is easily seen. The first motivation for the results arises 

from the observation that Var W* is O( 1), O( n), or 
n 

O(pn/pin ) according to whether 2 ) 2 2 
< P Pl p, Pl - P or Pl , 

2 the existence of immediate from If Pl ) p, w* = lim w* is 
n n 

the martingale convergence theorem, while otherwise the results 

of Kesten and Stigum and Athreya state (somewhat simplified) 

that if 

while if 

(1. 4) 

v(Var'W*)t 
1 

2 p . 
pi .~ v(i)varlzla t , then 

l=l 

Z at 
lim p( 2 n 1/2 < yj W)O) ~(y) 

n (0 Z U t n) 
n . 

2 2 2 -1 P i 
Pl<P, 0 =(P-Pl) ~ v(i)Var Zla t , then 

i=l 

Z at 
lim p( 2 n 1/2 ~ Y I W) 0) 

n (0 Z u t ) 
n . 

. 2· 

~ (y) 

( )- fY( \ -1/2 -x /2 - , Here. as- usual ~ y .. = . 2Trl--·· e - dx .'. 

-(X) 

Though certainly usef=ul~and~ interesting .inthemselves, 

(1. 3) and ( 1. 4) are, however, only of -limited value -when--·study-ing. 

the a.s, behavior of the process, that is, of one observed 

realization, The complete answer is given hereby our main 

result, 

THEOREM. Let Mat = Plat for some real P 1 and suppo'se (1. 2) 

holds. If pi) p, define 



w* = lim p-mz a' n 1 n ' 

and suppose 2 
cr > o. Then on 

n 
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[W> o} 

(1.5) lim 
n 

p W*-Z a' 
1 nIl" 2 1/2 = , lm 

PnW*-Z a' 
1 n 

(2cr 2 Z u' log n) 1/2 = -1 . 
n 

(2cr Z u' log n) ---n 
n 

If pi ~ p, let cr 2 be defined as in (1.3), (1.4) and suppose 

2 2 cr > o. Then if PI = P , 

(1. 6) 

on [W> o} , ,letting log2 = log log. 

holds on (W> o} that 

Finally if it 

Z a' 
1, lim n 1/2 =:'1 . 

---n (2cr2Z u' log n) 
n 

In the case a =u, PI =P, W* =W, (1.5) may be seen as the 

multitype analogue of a result of Heyde [llJ (also see Heyde 

and Leslie [12J and Leslie [16 J) . (1.'5) is also similar in form 

to a result of Chow and Teicher [8J, Th. 3, for tai'l sums of 

independent random variables. Though (1.6), (1.7) may to some 

extent be motivated from (1.3), (1.4), it seems more natural to 

view the results within the framework of the general theory of 
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the law of the iterated logarithm (LIL) for martingales, see 

stout [19] and also for example stout [20], Heyde [13]. We 

elaborate upon this point in full in §3, but briefly speaking 

the situation is this. The sequence 

(1. 8) A 
n = 

is known from the theory of square integrable martingales to be 

of fundamental importance. Thus w* always converges on n 
[sup A < oo} while in contrast for a number of classes of n n 

martingales 

lim W* / ( 2A log A ) 1/2 = 1 
n n n 2 n 

Explicit computation of A in our example n 

is equivalent to (1. 6) when 2 and to PI =P 

(in contrast, sup A < 00 if n n 
2 

PI> P ) . No 

on [sup A = oo} n n . 

shows that (1. 9) 

(1. 7) when 0< pi < P 

criterion in the 

literature seems, however, to yield (1.9) immediately and our 

proofs exploit a mixture of special properties of the process 

and results and methods developed for general martingales.· 

- ----- - - ,. --------------

Though (1.5), (1.6), (1.7) form a complete trichotomy in the 

present setting, we' feel it reasonable to point out that a 

number of new problems naturally arises .. For example one would 

be interested in extending the results to continuous time and 

to arbitrary linear functionals rather than eigenvector 

functionals. Also it would be of considerable interest to prove 
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similar results for branching diffusions, a large class of which 

have a complete set of ·eigenfunctions of the mean, see Hering 

[lOJ and Asmussen and Hering [2J. It would be tempting to think 

that here the case of an arbitrary linear functional could be 

treated by expanding in eigenfunctions, but, as was remarked 

by Harry Kesten, this is of course not immediate, since 

functionals corresponding to different eigenvalues can have 

normalizing factors of the same order, cf. (1.7). 

We have in fact some results dealing with such generalizations. 

But they are not quite complete and also the proofs are in.part ~ 

more tedious than (and totally different from) the ones of this 

paper. This is why we have focused our attention on the present 

setting which is of particular importance anyway. 
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2. An auxiliary result. Proofs when 

In order to avoid making trivial exceptions on the set of 

extinction, we assume from now on p(w) 0) = 1. Also, the proofs 

of the lim and the lim parts of the results are always similar 

and we tteat only lim. In contrast, the proofs of lim < 1 

and limi 1 are certainly not the same. We shall need the 

following auxilia ry resul t. 

PROPOSITION~ Let Y = Y( ZO' Zl' ... ) . be some functional of the 

process such that 

0< 0 2 =v(Var"Y) I < 00, 
i 

E Y =0, i=l, ... ,p 

and let be the corresponding functional of the line of 

descent ini tia ted by k E In Then 

wi th=::theineguality jepiaced-'.hy equality~'i::fc .c:Yis -~F'm .:...mea-sura bIB-::: __ c 

for- some ill (00 

The proof is based upon - normaJc.approximationsand:=the---

elementary 

where 

00 

~ 8.. < 00 

n::O n 

Then 
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lim T /(2 log n)1/2 < 1 
n n -

with the inequality replaced by equality if 

for some m < 00 • 

PROOF. It is well-known that 

Therefore for y > 1 

T 
n 

and the conditional Borel-Cantelli lemma gives 

The fact that one does not need to require T 
n 

is 

as 

F + -measurable n m -----

y -+ 00 • 

- 1/2 1/2 
lim T /( 2 log n) ~y. n 

to be 

measurable is not in most standard textbooks and we refer to 

Meyer [18], pg.9. As y -+ 1, (2.3) follows. In the same way we 

get for y < 1 

If T 
n 

is F -measurable, this implies lim T /(2 log n) 1/2 L yl/2. 
n+m n n 

For this; it suffices to refer to the standard version of the 

conditional Borel-Cantelli lemma - (BrellIDrl [7]'- -pg. 96):- Now let 

y-+l. n 
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Define 1) 

'l"n2 = Var(S IF ), n n 

By a standard moment inequality, 

en/ 2 

EIYk/3 < EI Ykl 3 + 6EI Ykl (EI Yk-p 2 + (EI Yk / ) 3 < 8EI y k / 3 = 8J y3dF i(k) (y) 
o 

where i(k) is the type of k and Fi(y) =pi( /Y/ < y) 

be the Berry-Esseen constant, we get 

n/2 
~ (8e '1"-3 E Z (i) J y3 

n - . n i=l n 
dF.(y) 

l 

o 

It is readily checked that 

(2.4) 

Therefor_e-c-~--!j" ~ 3z~.i i-)~-· _OJ p 7-J!(2 r; ---and" (2--:2~ _ follows-_f:-roffi'<:C'o= 

n/2- - __ 
00 --n/2.Jf>-- 3. ~J-:_) _ Joo 3-~-:- =,p/2 -p-/n!2)-- --~~( -04- -_r; p _ Y dFi,Y' -:::: --- y- L: P ---c._ I, y ~ P - dF i -y)-,=-~ 

n=O_ - 0 0 

Thus (2.3) holds and it only remains to prove 
~ Yk kEIn 

limn 1/2 
( 20 2 z ul log n) 

n 

Tn 
= lim 

n (2 log n)1/2 

Letting 

1) EYk etc. is a convenient notation, but strictly speaking we mean 
E(YkIFn ) 
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Recalling (2.4) and the explicit d~finitions of Yk , Yk , Tn' 

it suffices that 

I 
or, appealing to Kroneckers lemma, that 

(2.6) ; p -n/2( log n) -1/2 I: I Yk-Ykl < ~ , 
n=O kEIn 

~ p-n/2(log n)-1/2 E I EYkl < 00 

n=l kEI n 

Noting that -I Zn(i) / =O(pn) and that 

1 EYkl = 1 E(Yk ~ Yk ) 1 < EI Yk - Ykl = E/ Ykl I( I Ykl )pn/2) =f y dF i(k) (,.0 
pn/2 

it suffices for both assertions of (2.6) that 

even 

PROOF- OF (1.5). Letting-c Y =W*--:-- Wo-- in- (2)1) gives'-'.-lim < 1, 

lim 2. -1 in (1. 5), . since in tha.t case 



-11-

Defining and letting 

similar fashion 

-m P Z a I -Z a I 
. 1 n+m n 

Combining these results, we obtain 

PnW*_Z a I 
- 1 n 
limn ~~----------~l~/~ 

( 20 2 Z u l log n) 2 
n 

+ lim 
n 

y =W* - W m 0 

= 1 

yields in a 

-m P Z a I -Z a I 
1 n+m n 

m/2 a 
_(L) + ~ 

2 0 
PI 

As m+oo , the right-hand side tends to -0 + 1 . I I 

PROOF OF (1. 7) WHEN PI = O. Let Y = Zl a I. Then PI = 0 implies 

i ) E Y =0 ... It is thus immediate that (2.1. with equality applies 

and since -

Z +l~" lim 2~~_ UI/Z~UI=p~' n_ ~- n n+l:~-.n - , 

(1.7) follows. I I 
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3.~ outline \ of proofs - 0 < pi < (:J 

Let [Gn } be an increasing sequence of a-algebras and 

[Xn } a square integrable martingale with respect to [Gn }. 

Define 

stout [19J proved 

LEMMA 2. Suppose 2 
sUPn sn = 00. 

(3.1) limn 
2 

Xn/tp(sn) 

if there exists a sequence 

such that 

(3.2) 

Then -_. 

= 1 

with ~ G I-measurable, n-

This result extends Kolmogorov IS LIL [15J in full to the 

martingal-e:ccase~ -A-cla.ssi.:cal:::..Cou:trte-:r'ex.ample::{Ma-p.cir:l.k:bewi-G-z.-~ 

and Zygrrll.inq;~f:11']) _. show-s~hat. 03-.~1) cec.ann=ot-:: hD~tr~iTIc~gBriera:l=wit-rIDu;e:_;::.~. ~

some -~c6ndit±bn-?l:ik:e·- :(3.2 )., _-~~ Howeve.r;;-o_::-.;.a'Ss:urning-:_:apefi-a-:L:prop:eI'ti-~&-·~-'o_~._._ 

of thecfuartingaTe' -i±~is ~frequentlbY;Pb.s~~ib-l:e~:;:t:~F€a:i1nina~t'e~~-.::2:)::-;<~-~~~~' 

To this- end, ~ onetrunca ties -y. and proceeds in~ much the- same -. n 

manner...: as when derivi-ng ~t1ie -Hartman,..;'Wi:·ntneT'~BIL~'f9J·from the-. 

KolmogorovcdjIL-.'c ,'"For work--in=::t-hiB, dLre.cti=On:t"'~see-:.Stout-:f~2B:-t-~_-: -'~--~ 

Heyde [13J, Tomkins [21J. 

In our specific example we see,' - recalling the definition 

(1.8) of An' that (1.9) and (3.1) are the same statement. Also 

we have 
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n 
A = L: -2iz (V· r) r 

n.. PI i-I ar Zla 
i=l 

and combining with (1.1) one obtains 

(3.4) P 

(3.5) wa 2 if pi < P . 

Inserting in (1.9) and noting that 7nu r = Wpn, it is seen 

that (1.9) is equivalent to (1.6) if pi = p and to (1.7) if 

o < pi < p. Now the increments of our martingale are 

(3. 6 ) w*-W* n n-l 

Obviously the condition corresponding to (3.2) does not hold 

and also the method of truncating (3.6) directly does not 

seem very tractable. Instead we define an auxilllirymartingale 

Xn , whose increments are the single pin(Uk-Euk)a r rather than 

those given-by:=-~ ~.6) ,. --Theilit-ui ti-vecontentC:o:fthis . de:Vcic-B'--iBj

of couTse,_that _we-, let . the indivi~dua:rs. (jf'.".:.the·~-nt-h gefier:a:::ti'on~=~cc-~= 

reproduce~one ·byone rathecr~than- cal-l.a t 'the- same time .-~~'One 

might note here that this ::new~ structure:oLthe. reproduction· 

mecpanism is automatic in continuous time and thus the method 

might be well suited to-treat this case directly (see also in 

this'-c6hnection ,the proof of. Theorem 5-ofAsmussell :[lcl) -. ~··BUt .-

even in continuous time, Bome extra work is still required and new 

problems arise, and returning to discrete time, we proceed as 

follows. A simple way to formalize the intuitive description 
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of Xn g}ven above is to assume a specific representation of\ 

the set In of individuals of the nth generation as the set· 

of all k E N with 'f n _l < k < 'f n . ,We then define GO = FO' 

Xo = W* = Z a f and inductively. 
0 0 

Recalling that IZnl is 'the total number of individuals in 

the nth generation, we have 

and the martingale property of Xn , Gn is readily checked 

as well as 

(3.7) = G'f 
n 

which permits us to relate a number of properties of ~, Gn 

to those of Zn' Fn. ·Thus we have immediately 

elementaryobservation,- -:--: 

LEMMA 3. Forany~_~,. the random_.:variable_-:~n· defined _by--._ 

'f n-l.< k ~ -'f n' (t e. ,- the generation:~of' k) - is GR_l ':"measu;rable~.:~~~--

The plan is firs'tto show (3;1) for the 'Xn-martingale and 

thus to obtain li~ <-1 in (1.6), (1.7). To this end we 

introduce the truncation scheme 
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Yk = pin - 1 (Uk I ( I Uk I .{ cn ) -EUk ) a I when T n-l < k ( Tn 

By a suitable choice of cn we ensure that 

(3.9) 

that the condi·tion corresponding to (3.2) holds for the 

martingale and that thus by Lemma 2 and (3.9) 

(3.10) , 

x -n 

This step uses techniques similar to those of stout [20J, Heyde 

[13J, Chow and Teicher [8J, Tomkins [21J and we defer the 

somewhat technical details to §4. 

2 So far. the proofs run parallel'for the cas~s PI = p, 

o < pi < p,though ~he details are somewhat more intricate in 

the, ::.:la tte.r<cas e-; -~~ On thB-"c·c:mtraTy;:==the 'proo£S~:;;oi'cc:-:iim-~::-l c=are ~~ "'::.-?'" 

. not:·=the-same-:::=c:i'or :(1·-;'6)'-,as,:f'or~~(±; T):-o. .•. :In ease~='Pi -=-=-p,;-=- we. show~""",;-' 

direec:tly.·that'.~·the:inequa!L-:it¥·':::'in. {:3:,;8);cCan..:be:;.r-e""e·rsed""c..=whi:ie:~c~~:c 

when,'-~pi < 'p,; the method.7of .. §2':.f:~-rcproceeding~~1'..rom:'-:·lim-:-~~~i ~-,--

to lim> -1 works. The details follow in the next section. 
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4. Details of proofs - 0 < pi < p 

LEMMA 4. Let a = n . if 
n if 

(4.1) 

n -7 00 suc h tha t k E In ' 

lim s~/an < 00 

- ·2 
lim ep( sk)/co(an ) < 00 

From (1.2), it is clear that there exists a distribution function 

F on [O,oo[ with finite second moment such that 

( 4·3) 

LEMMJi 5. 

(4.4) 

(4.5) 

• 00 

El/zla'/I(/zl/ )c) =O(fx dF(x)); i=l, ... ,p 

Let 

c 

be as above. 

00 00 

Then the conditions 

n~opinpn/~(an) f x dF(x) < 00 

cn 

aresufi'icient for (3 .. 9), (3.10) anduthusJreca-l-ling the discussion 

of§-:3+ -f6r c ~~im<~=l~~ in-t-r ; 6) ,- (1. T)~· 

PROOF~ 

(4.6) 

Define 

C --700 

n 
is- eas3:.l'yseento-imply ~-

. 2 '""'2 c.>, 

Ilm-s /s= 1- c n n n - , 

Appealing to Le~ma 3, Kk is Gk_l-measurable and also limk~=O, 

since the square root occuring in the definition of ~. is 

bounded by (4.6), (3·4), (3.5). _For some C,/Yk/ < C pin cn when 
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k E I and thus n 

. ~ ...... 2 
slnce/ An ~ sk· Thus Lemma 2 applies to give the first half of 

(3· 10). Recalling (4.6) and noting that Xk - Xk =L:~[Yi -Yi +EYj), 

it suffices for (3.9) that 

By (4.2), we can replace 

k 
~ IEy!1 = 0(~(sk2)) 

. 1 l l= 

2 
sk by an when T n-l < k < Tn 

and it is then enough to take k = Tn' i.e. 

DO 

The sufficiency of {4.S) follows-now inexactly the same 

manner::as whenderiving(2.7f~-byuBeL:of-Kronecker!;s- lemma~-__ 

PR00F.~OFc(c:i. 6Y. ~lim~l:isimtried=iate-=-:from:;ciiemmac~=Swi trr __ ~, -

-- a '= n' ",C = ,pn(,2 c:" In.:fact.r-=(:4.4jc;Is obvious"-~and __ (:4.5)_ -n- J n 
also holds, since even 
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To prove ,~~EJ: > 1, we use the second part of (3.10). ' Let 

€ > 0 and let x(n) be a sequence of random times such that 

(4.7) 

Define v(n) by ~v(n)-l < x(n) < ~v(n)' We can assume that 

x (n+l) > 'fv(n)' We shall show 

00 

(4.8) ~ p(X~ - xx(n) > oIGx(n)) = 00 • 

n=O v(n) 

From the conditional Borel-Cantelli lemma (Breiman [7J, pg. 96) 

we then have X~ > Xx(n) i.o. and thus from (4.7) 
v (n) 

since~i:l > cp{ S~t~))icp~(~~1n)¥~c~q,~(Av{nJ):--:-1~.cp{AV~fi'J+~~aRctr7the~- ~ 
las'C:::' exp±,ession~tends-::L:o'bneoc:by~B ::~~~~~d:;et"tirIg;'·- .~. -+:O:~-~.: and,.. =--~ . 

using (3.7), lim ):-:1' in (-l~ 6)~follows. 

For the progf of.(4.8)_,we.first remark that since. ~v(n-).".~' 

andc Jzv (n:)l.c.,. bothare~-'Gx (n) 7measurable,_so is 

N ='fv(n)- x(n)'t'l=~~v(il)_l + Izv(~)I~-' x(n7+~; Furthermore,-. 

up to the normalizing factor piv(n) ~the distribution of 

X~ v (n) -Xx. (n) condi tioned upon· Gx. (n) is that of VI + ... + Vw 

where 
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p(Vj < y) .1= pi(j) (zla r - Ezlaf < y) 

for some i(j) = 1, ... ,p. No matter how the i(j) are chosen, 

the limiting distribution of, VI + ... + VN, properly normalized, 

is standard normal. Thus for some y > 0, P(;l\+'" +VN > 0) L y 

for all N, i(l), ... ,i(N) and (4.8) is immedia,te. n 
PROOF OF lim < 1 IN (1.7). We take an = (p/pi)n so that 

(4.4), (4.5) reduces to 

(4.9) C --7 
n 

(Xl 
B 

n=o 
pn/2/(10g n)1/2 SOO x dF(x) < (Xl . 

cn 

Assuming nothing more than the second moment of F, it is not 

quite easy to find tcn} directly satisfying (4.9). But 

fortunately, the techniques used in the literature in similar

situations suffice for our application as well. Choose a 

sequenee- c ~ > 0 -suchtha:&,-

(4 .10 )c~aYl ~_p-'. lin - Kr/%lO-g~:Lt)J!~~~(Xl; --f (Xlx2jKfii~F(X)-:-:(- 00-' 

0, •. 

2- 2 
and that cN(m~ = sup{n:[bnr<:m) =,0 (mlog2m/I;;). For a proof 

of the existence of tIS-I}'. see.Chow and Teicher [8] ,pg .. 89, . or . 

stout. [20] ,pg. 2159. ,-~ Obviously-_-the:-~choice Cc~:cn = cb(pUL-'_Js -

consistent with the. two firstrequiremEmtsof -(4.9) . Defining 

N* (m) = suptn: [cn ] < m}; we get by substituting k == [pn] 

, 
- - , 
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N* (m) < sup [log(k+l~ kE {[ pnJ }, [bk- ] < m} 
log p . 

< sup [Jcg(k+l\ kEN [b ] < m} / log(N(m)+l) 
- log p 'k - ~ log P , 

. N* (m) 
p = 

log N*(m) 
( N (m) ) 

o log2 N(m) 

and the last assertion of (4.9) follows from {4.l0) since 

n/2 1/21 ) 
O(p /(log n) n=N*([xJ) = 

PROOF OF lim> 1 IN (1.7). We need the relation 

(4.11) 

see e.g. Athreya and Ney [6J, expression (22), pg. 205. Using 

with equality for Y = W*, we get 
m 

Zna I:~.c:.· _.__ Zn+ma ' 
limn = Ilm > 

('·2-· 2z · . -1-' . - .'\ 1/2 -_.- n (-"> 2 illZ· '., 1 ) 1·/2 a . nU· ::Log-ny -.:c • co- P nU og n . I 

m -7.00-

and the proof is complete. 11 
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