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Abstract 

Two problems dealing with urn schemes are studied. The first looks 

at a finite urn scheme with balls uniformly distributed amongst the urns. 

The asympt9tic behavior of the number of throws necessary to achieve 

at least r balls in each urn is examined. The second problem deals with 

an infinite urn scheme and studies the number of urns containing at least 

r balls. A method of proof is developed which applies equally well in 

both cases. 
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A GENERALIZATION OF A RESULT OF ERDOS AND RENYI 

AND A RELATED PROBLEM 

1. INTRODUCTION 

Consider the following problem. Balls are thrown into n urns uni-

formly and independently. Let N (n) equal the number of throws necessary 
ill 

to obtain at least m balls in each urn. Erdos and Renyi [1] proved that 

for any _00. < x < 00, 

(1) lim P(Nm(n) 2 n(log n + (m - l)loglog n + x)) 
n-+oo 

-x e 

The purpose of this note is to prove the following generalization 

of (1). Define for each 1 < £ < n, 

N (n.R.) = m number of throws after which R. boxes will first contain 
at least m balls. 

Observe that Nm(n) = Nm(n,n). We then have: 

Theorem 1. Let m > 1 and define for each _00 < x < 00, 

b = [n(log n + (m - l)loglog n + x)] 
n 

where [y] denotes the greatest integer in y. Then, 

(2) max 
O<£<n 

Ip(N (n,R.) < b ) -
m - n 

where for any z > O. j ~ 0, 

n-R. x 
L qj(e (m-l)I)1 

j=O 
= 0 (1) 
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A heuristic proof of Theorem 1 can easily be given. Define: 

X. (i) = number of balls in urn j after i throws, 1 ~ j ~ n, i 
J 

and 

{: 
if y < m 

I (y) = m otherwise 

It then follows that 

n 
P(,N (n,5/,) < b ) 

m - n = p( I Im(Xj(b)) 
j=l n 

< n - 5/,). 

Also note that 

-x 
= n(me_ 1)1(1 + 0(1)) 1 .2. j < n. 

~ 1; 

If we were able to treat the {Xj (bn )} as "independent random variables," 

then Theorem 1 is a consequence of the next result of Hodges and LeCam [5J. 

Before stating the result we introduce some notation and definitions. 

For 8 > 0, Y(8) denotes a Poisson variable with parameter e. Let Xl and 

X2 be any two nonnegative integer-valued random variables,and define 

= sup Ip(Xl E A) - P(X2 E B)I, 
A 

where A ranges over all subsets of the nonnegative integers. For a dis-

cussion of the metric d, the reader is referred to [2J. The two properties 

of d that we will need are: 
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and if Xl and X2 are Poisson with parameters 61 and 62 , then 

P~oofs of (4) and (5) are given in [2]. We then have: 

Proposition 1. (Hodges and LeCam [5]) Let· Bl, ••. ,Bn be n independent 
n 

events and let N = I IB be the number which occurs. Let 
i=l i. 

6 = 
n 
I P(B.) 

~ i=l 
and 

n 
e: = I 

i=l 

1 
Suppose e: < 2. Then there exists a constant C such that 

d(N,Y(6)) < Ce:o 

If the {Xj (bn)}vrere indeed independent, then by Proposition 1 and (3), 

Noting that 

completes the proof of Theorem 1. 

The difficulty with the previous argument, of course, is that the 
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{Xj(bn )} are not independent. To get around this problem we use the 

following property of the Poisson process. It is convenient to state the 

result in greater generality than needed for Theorem 1. Suppose we have 

a finite or countable number of urns, and at each event of a Poisson 

process with unit parameter we independently pick an urn according to 

some specified distribution {p(j)} and place a ball in it .. Let 

Xj(t) = number of balls in urn j at time t. 

We then have: 

Proposition 2. For each t, the {Xj(t)} are independent random 

variables with Xj(t) distributed as Poisson with parameter p(j)t. 

A proof of Proposition 2 can be found in [7]. 

For Theorem 1 there are n urns with p(j) =~. Since the {Xj(bn )} 

are independent, we can apply Proposition 1 to conclude that 

(6) 

where 

-x 
< m - n(me_ I)! (1 + 0(1)), 

1 2. j < n. 

Also, by (5), 

( 8) ( ( ~ -) ( e -x ) ) 1 ~ - e -x 1_ 0 [ loglog n ] 
d Y k;l ~ ,Y (m - I)! < k;l ~ - (m - I)! - log n 
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It follows from (6) and (8) that 

It remains only to show that 

n n 

d( I I ( :X 0 (b ». I Im( Xj (b n) » = 0 ( 1) . 
0lmJ n 01 J= J= 

This is accomplished using the Central Limit Theorem, and the details are 

carried out in Section 2. 

It turns out that the technique used to prove Theorem 1 has wide 

applicability. This is because of the generality of Propositions 1 and 2. 

A typical result is stated and proven in Section 3. 

The motivation for this work comes from a paper of Karlin [6] wh~re 

the same idea was used. The proof of Theorem 1 has its origin in Karlin's 

paper. 

2. COMPLETION OF THE PROOF OF THEOREM 1 

As shown in Section 1, we need to prove (9). To simplify notation, let 

n 
H(i) = I I (Xo(i»), 

j=l ill J 
i > 1. 

H(i) is defined analogously. We then have the following lemma. 

Lemma 2.1. Let D be any positive constant. Then, 

Dvb 
sup P(H(i) f H(b » = o ( __ n) . 

I i - b I <D Ib n n 
n n 
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Proof. Observe for Ii - b I < D{b , n n 

P(H(i) f H(i + 1)) 
n 

< I P(urn j has m - 1 balls after i tosses 
j=l and the (i + 1) toss. is into urn j) 

where Cl is some constant independent of i. Thus 

Q.E.D. 

·We now prove (9). Recalling the definition of the {Xj(bn )}, we have 

for any subset A, 

00 

" 

< I Ip(H(i} E A) - P(H(b ) E A) Ig,. (b ) . n J. n 
i=O 

Let D be any positive constant. It then follows by the Berry~Esseen 

Theorem [3, p. 201] that 

(10) 
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Also, by Lemma 2.1, 

(11) 
DIb"" 

I Ip(H(i) E A) - P(H(b ) E A) 1'1. (b ) < T] = o ( __ n) . 
I i-b / <D~ n 1 n - D n 

n n 

(9) is now a conse'1uence of (10) and (11) and so TheOJ~'em 1 is complete. 

Remark. Since there is an estimate of the error in Proposition I, 

we can easily make an estimate of the error in Theorem 1. Indeed, it 

follows from Proposition 1, (6), (8), (10), and (11) that 

If m = 1, the bound is sharper. Indeed, one has that it is 

D~ J 2 o ( __ n) _1_ e -z· /2dz ). 

n + /zl>D & 

3. ANOTRER APPLICATION 

In this section we allow a countable number of urns and examine the 

behavior of 

L (n) = number of urns containing at least r balls after n tosses 
r 

The set-up is the following. Let K be a positive integer and suppose 

that we perform a se'1uence of experiments,where, for the t-th experiment, 
K 

we toss I nk t balls independently into urns according to some distribu­
k=l • 

tion {Pt(j)}. To simplify notation we suppress the t and just write ~ 

for ~,t and p(j) for PQ, (j). It will always be assumed that 
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(12) lim [min nk ] = 00 and sup p{ j) =.o{l). 

t~ l<k<K j>l 

Define: 

k 
= I 1 2. k 2. K; sk 

i=l 
ni , 

K 
@ Y ( nk ) denotes the random vector whose components are ind~pendent 
k~ ~, 

Poissons with parameters (ni). libr any two random vectors ~l !3-nd ~2 whose 

components assume nonnegative integer values, let d{~1'~2) den,ote the 

natural analog of the d metric, i.e., 

= sup lp{~l E A) - P{~2 E A)l, 
A 

where A ranges over all subsets of K-tuples whose components are nonnegative 

integers. Note that (4) is still valid. Finally, let 

if y ~ r 

otherwise. 

It is easy to see that 

L (n) = 
r 

00 

I I (Xj (n) ) . 
j=l r 
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We now state our result. 

Theorem 2. Assume (12) and 

(13) sk sup p(j) = 0(1). 
j~l 

Also assume that for some integer r ~ 2, 

where 

lim 8k (r) = 6k < ~, 
JI,~ 

d(L ,W) = 0(1), 
-r -

o < k < K. 

Proof of Theorem 2. In the spirit of the proof of Theorem 1, we 

consider K independent Poisson processes, each wi.th unit parameter, and 

at each event of these processes an urn is independently picked according 

to {p( j )} and a ball is placed in it. Let 

and define 

Xjk(t) = number of balls in box j by time t for the k-th process; 

1 2. k 2. K, j > 1 

00 k 
I ( L X .. (n. )) , 

r i=l J~ ~ 
1 < k < K. I 

j=l 



- 11 -

Let 

-We first stuqy the behavior of ~r In order to do this we need to 

generalize Proposition 1. Let 

and 

k 
= I ( I i .. (n.)), 

r . 1 J1 1 1= 
1 ~ k ~ K. 

j > 1. 

Note that the {V.} are independent random vectors and that 
-J 

L = -r 

ao 

\' V .• 
L -J 

j=l 

Following the ideas of Hodges and LeCam [5], we need to find a convenient 

representation for the {V.}. Indeed, assume that we have constructed on 
-J 

a common probability space independent random vectors {W.} such that 
-J 

j > 1. 

where the {n jk} are constants to be determined. Define 

1 ~ k ~ K, 
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and set 

We now want to choose the {njk } so that ~j and Yj have the same distribu­

tion. Let 

b jk = L qi (skP(j)) 
i.::.r 

1 < k < K 

b· O - O. 
J 

In view of (12) and (13) it is not difficult to show that 

(14) 

and 

sup b Ok = 0(1) 
j.::.l J 

l<k<K 

00 

I b jk -+- 6k , 
j=l 

1 < k < K. 

K Yj can only take on the values {~~}~=O' where typically ~~ has its first 

~ components equal to 0 and the remaining ones equal to 1. Furthermore, 

(16) o < ~ < K-l. 

Also, it is not difficult to check that 

p(z. 
~J 

i 

- I nj" . 1 1 
= e 1= (1 -njHl) 

- e , o < ~ < K-l. 

Simple algebra shows that for the r.h.s. of (16) and (17) to be equal, 
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it mUst be true that 

(18) 

Let W' 

1 - b o 0 _ JJ. 
Tljo - -log 1 _ b 
J.ji~l 

1 < i < K. 

= I W o. 
j=l -J 

We then have 

00 00 

= d( I Yj , I No) 
j=l j=l J 

00 00 

= d( I ~ 0' I l:! 0 ) 
j=l J j=l J 

00 

.::.. I P(some WOk ~ 2; 1 .::. k .::. K) 
j=l J 

00 K 
.::. I I P(Wjk ~ 2) 

j=l k=l 

00 K 
.::. I I (-log (1 - bjk ))2 = 0(1) . 

. j=l k=l 

The last inequality follows from (14), (15), and. the fact that 

WOk NY(-log (1 - bok)). Also, note that because of (14) and (15), 
J . J 

d(W,W') < p(W ::j:. W') - - - - -

K 00 

< I Isk + IIog(l-bok)1 
k=l j=l J 

= 0 (1) . 
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Thus we have 

d(i. ,W) = 0 (1) . -r 

It remains only to prove that 

d(L,L)=o(l). -r -r 

We first prove the analog of Lemma 2.1. 

Lemma 3.1. For every positive constant D, 

Proof. Since L (i) is an increasing function of i, 
r 

P(L (i) # L (sk» = p( IL (i) - L (sk)1 > ±2) r r r r -

A straightforward calculation shows 

where 

co 

= L (;)pr(j)(l _ p(j»i-r, 
j=l 

co i 
= L L (!)pt(j)(l _ p(j»i-t. 

j=l t=r+l 

Using (12) and (13), it is not hard to prove that for any D > 0, 
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and 

This proves the lemma. Q.E.D. 

One can now complete the proof of Theorem 2 by arguing in essentially 

the same way as in Section 2. The details are left to the reader. 

Remarks. 

(1) Theorem 2 is a generalization of a result of Hafner [4]. He 

showed that 

(2) Just as for Theorem 1, it is possible to give an estimate of 

the error. 

(3) The case r = 1 deserves special attention. The reason for this 

is that E(Ll(sk)) ~ 00, 1 < k < K. If r = 2, we do have that 

To prove (23) we argue as follows. Define 

H (n) = number of urns with exactly r balls after n throws; 
r 

= L (n) - L l(n); r > 1. r r+ -
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Next, observe that 

Thus 

Therefore, 

and 

nl 

= L2(nl ) + I (r - 2)Hr (nl )· 
r=3 

nl 

d(nl - Ll (nl ),L2(nl )) < p( I (r - 2)Hr (nl ) > 1) 
r=3 

nl 

2. E (I (r - 2) Hr ( nl )) = 0 ( 1) . 
r=3 

The last equality is an easy calculation left to the reader. (23) now 

follows from Theorem 2 since 
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