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Estimation for an epidemic model. 
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SUMMARY 

In many epidemic models the initial infection rate, suitably defined, plays 

a fundamental role ~n determining the probability of a major epidemic. An esti

mate for this rate ~s suggested on the basis of least squares and maximum like

lihood estimation. The model used to, arrive at the estimate is a Galton-Watson 

process modified by letting the offspring distribution change from generation to 

generation in a way as to approximate to an epidemic process. The estimates of 

the parameter and its associated variance are easily computed and compare well 

with other, computationally tedious, methods in an application to smallpox data. 

Keywords: Density dependent population model; Modified Galton-Watson process; 

General epidemic model; Epidemic threshold theorem; Least-squares; Maximum like

lihood estimation; Application to smallpox data. 

1. THE PARAMETER OF INTEREST. 

It is possible to formulate many mathematical models for the spread of com

municable diseases in a way which clearly indicates that the initial infection 

rate, suitably defined, plays a fundamental role in determining the probability 

of a major epidemic. Recall the general epidemic model for a closed population. 

At time t there are S(t) susceptibles, I(t) infectives and R(t) removals. The mo

del is specified by the following transitions and associated probabilities for a 

time increment (t,t+h): 

transition 

(S,I,R)~(S-l,I+l,R) 

~(S,I-1,R+1) 

no change 

probability 

SSIh + o(h) 

yIh + o(h) 

l-yIh-SSIh + o(h) 

with initial conditions S(O) = k, 1(0) = xo and R(O) = o. Whittle (1955) used this 

model to deduce the stochastic epidemic threshold theorem, which states essential

ly that for large k, 

pr(minor epidemic) = 1-pr(major epidemic) = min{l,(y/Sk)xo}. Here the initi

al infection rate kS/y determines the probability of a major outbreak. It is pos

sible to deduce this threshold theorem from a simple birth-death process for 

* The work was initiated at the Unit of Health Statistical Methodology, WHO, Geneva, 
and completed at the Institut for matematisk statistik, University of Copenhagen. 
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{I(t): t;O} byadoptingkS (y) as birth (death) rate and interpreting extinction 

(non-extinction) of the process as the event of a minor (major) epidemic. The 

reason is that the event of a major outbreak is essentially determined by whether 

or not there is a build up of infectives during the early stages of the outbreak. 

For large k it is reasonable to set S(t)=k during the early stages and thereby 

the general epidemic model reduces to the above mentioned birth-death process. 

Since the simple birth-death process is an example of a branching process the 

following more general version of the stochastic epidemic threshold theorem sug

gests itself: For large susceptible populations pr(minor epidemic) = 1-pr(major 

epidemic) = qX~where q is the smaller root of s=f(s), and f is the probability 

generating function of the offspring distribution for the initial infectives. 

Here all individuals infected by an infective are considered his offsprings. For 

branching processes it is known that q<l if and only if ~=f'(l»l, and it is this 

result which relates the value of ~, taken as the initial infection rate in this 

formulation, to the probability of a major epidemic. In particular, suppose that 

~>1 for a certain community and a certain disease. Suppose further that a propor

tion v of the community is to be vaccinated against the disease. Following the 

vaccination campaign the mean of the initial offspring distribution can reasonably 

be taken as (l-v)~. The proportion of the community that needs to be successfully 

vaccinated in order to prevent major outbreaks must be ;1-1/~, so that (l-v)~~l. 

Hence the value of ~ provides valuable information for deciding on disease control 

policies. The estimation of ~ is the main concern of this paper. 

The approach of Bailey and Thomas (1971) provides a method for estimating 

kS/y for the general epidemic model. Since kS/y may be identified with ~, their 

approach provides one solution to this problem. Unfortunately their method invol

ves an impractical amount of computation. It also depends on knowing the interremo

val times, which will often not be available. Finally, the dependence of their 

approach on the general epidemic model with its implied zero latent period and 

assumption of homogeneous mixing 1S of some concern. It 1S the aim here to indi

cate an approximate method which is computationally simple and does not depend 

on durations of latent or infectious periods. 

The content of this paper could more generally be viewed as concerned with 

the estimation of the initial growth rate for a density dependent population mo

del. Minor changes would permit application to ecological population data. 

2. APPROXIMATION TO EPIDEMIC MODELS. 

A branching process can approximately describe the spread of m1nor epidemics 

and the early stages of major epidemics. In order to describe the later stages or 

total size of major epidemics it is necessary to allow for the depletion of the 

susceptible population. This is done here by using a modified (embedded) Ga1ton

Watson process to describe the development of the infective population. 
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The modification is to change the offspring distribution from generation 

to generation in a way as to allow for the depletion of the susceptible popula

tion. In the formulation it is assumed that the generation to which each infec

tive belongs is observable. In practice this is not a realistic assumption and 

it is illustrated later how this difficulty can be overcome. 

Let X. denote the size of the infective population in generation j, j=O,1,2, .... 
J 

The initial size Xo is known to be xO' Write 

J 
Y. L: X. 

J i=l 1. 

and let k denote the initial size of the susceptible population. The mean and 

variance of the offspring distribution 1.n the jth generation are denoted by ~. 
2 J 

and OJ It is assumed throughout that ~l=~' the initial infection rate, and 

~.=~g.(X. 1) , j=2,3, .•. ,k , 
J J -J-

where the g. are known functions of the previous generation S1.zes. For homogene
J 

ously mixing populations it would be natural to take 

g.(X. 1) = max{l-Y. 11k, a}. 
J -J- J-

(1) 

Comparisons with epidemic data has encouraged Chelsky and Angulo (1973) to con

sider g.(X. 1) = (l-Y. l/k)2 more appropriate. For an ecological density depen-
J -J- r 

dent population one might use 

g.(X. 1) = max{l-X. 11k, O} , 
J -J- J-

where k is now interpreted as the saturation level of the environment. 

The aim is to make as few assumptions about the offspring distribution as 

possible. However 

f f ,2 I orm or 0. • t 

in order to proceed it will often be necessary to stipulate a 

will then be assumed that 
J 

2 2 
0. = ° h. (X. 1) 

J J -J-

2 
where the h. are known functions of the previous generation S1.zes and ° is an 

J 
unknown parameter. 

3. LEAST SQUARES ESTIMATION. 

Viewing the model as an autoregressive process we write 

X. ~X. 19·(X. 1) +,,1.. 
J J - J -J - J 

By taking conditional expectations given X. 1 first, it follows that 
-J-

E (W .) = Cov (W. , W . .) = 0 , V (W . ) 
J 1. 1.+J J 

2 
X. 10' J- J 
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2 2 
To get constant var~ances take 0. =0 h.(X. 1) and consider 

J J -J-
_1 _1 

X.X. 2lh. 2 
J J- J 

1 __ 1 

]lX: 19.h. 2 + U .. 
J- J J J 

2 The U. have zero mean, variance 0 and are uncorrelated. The least squares es-
J 

timator of]l is now seen to be 

]l 
l: (X. g . /h . ) 

J J J 
2 ' l: (X. 19. /h.) r J J 

(2) 

where the summation is up to n, the number of generations observed. For any 

stochastic process Zl,Z2' ... it ~s known that l:[Z.-E(Z.!Z. 1)] 
J J -J-

martingale. By taking Z. X.g./h. it follows that 
J J J J 

]l 
El: (X. g. /h. ) 

J J J 
2 

El: (X. 19. /h. ) 
J- J J 

~s a zero mean 

and hence that ]l will generally be biased. The residual sum of squares divided 

by (n-l), namely 
"2 
o =[ l: 

n 

j=l 

X~ 
J 

X. lh. 
J- J 

" n 
- ]l l: (X.g./h.)]/(n-l) 

j =1 J J J 
(3) 

2 
suggests itself as an estimator for 0 . It will generally be biased. From Theo-

"2 . . f 2 rem 3 of Dion (1975) it can be deduced that the estimator 0 ~s cons~stent or 0 

when g.=h.=l, for all j. 
J J 

4. MAXIMUM LIKELIHOOD ESTIMATION. 

Let the offspring distribution in generation J, given X. l' belong to the 
-J-

one-parameter exponential family with probabilities given by 

p.(x) = a.(x)[c.(8)]x/A.(8). 
J J J J 

In the previous notation this implies that 

]l!c./c! , 
J J J 

(4) 

(5) 

where the pr~mes indicate derivatives with respect to 8. The log-likelihood as

sociated with X =x is then given by _n _n 

t(8;~n) = l:(x.~nc.-x. l~nA.) + constant. 
- J J J- J 

By differentiating and using (5) one obtains 

d~ 2 
--d = l:(x.-]lg.x. l)g·/o. 

]l J J J- J J (6) 

In order to obtain the maximum likelihood estimate for ]l it ~s now necessary to 

specify the o~. In particular, if 0~=02h., for all j, then the maximum likelihood 
J J J 
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estimator for ~ is the same as the least squares estimator given by (2). 

The usual asymptotic properties of maximum likelihood estimators do not 

apply directly due to the chance of small epidemics, however, for large epide

mics it seems reasonable to use the inverse of the information t(~) = 

E[- ~2f(V;~n~ as a means of approximating the variance of the maximum likelihood 

estim~~or. From (6) it follows, after simplifying, that 

f(~) =E(LX.g./cr~)/~ . 
J J J 

(7) 

The results take a particularly simple form when cr~=cr2g., that lS when the vari-
J J 

ance of the offspring distribution is proportional to its mean for each genera-

tion, namely 

,~ = Y /LX, 19. , k(~) 
... n J- J J 

2 
E(Y )/~cr . 

n 
(8) 

For small epidemics the depletion of susceptibles may be ignored and so g.=l for 
J 

all j. The results of (8) then reduce to those of Becker (1974). That the results 

of (8) correspond to a non-trivial class of distributions 
2 2 

even when g.fl is seen 
J 

by noting that v.=~g. and cr.=cr g. hold whenever 
J J J J 

g. 
A. (e) = [A ( e)] J 

J ' 
(9) 

where A(e) specifies a power serles distribution with probability generating 

function A(ze)/A(e) . Here V and cr2 are the mean and variance of the power se

ries distribution. The family of power series distributions includes the Poisson, 

binomial, negative binomial and logarithmic series distributions, as well as 

truncated forms of these, which seems to provide adequate scope for using (8) as 

a basis for inference. 

5. HOMOGENEOUSLY MIXING POPUTATIONS. 

For homogeneously mixing populations it is reasonable to take g. as In (1). 
J 

It is then possible to indicate that the model is an approximation to existing 

epidemic models. Although the well known Reed-Frost chain binomial model is not 

a branching process it is formulated in terms of "generations" and so the present 

notation is suitable for its description. According to the Reed-Frost model 

(
k ~ x. 1 x. x. 1 (k-y . ) 

pr(X.=x. /X._l=x._ l )=· -Yj-l [l-(l-p) J- ] J(l-p) J- J, 
J J -J -J x. 

J 

where y.= ~~ IX .. When p lS small this glves J l= l 

E(X./X. l=x. l)oex . l(k-y. l)PoeV(X./x. l=x. 1) 
J -J- -J- J- J- J -J- -J- . 

(10) 

These moments are as for the above modified branching process with offspring dis

tributions as suggested by (9) provided cr2=e~~ = ~ holds, at least approximately. 
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The latter requirement is that ~~b8 for some positive b. In fact ~=8 for 

the Poisson offspring distribution, while ~~b8 for the binomial, negative bi

nomial and logarithmic series distribution whenever 8 1S small. A more care

ful argument for the approximation of (10) by the use of a Poisson offspring 

distribution is given by Ludwig (1975). 

The fact that the present modified Galton-Watson process with ~ .=;CJ~::ux ... 1 (k-y. 1) 
J J r J:- J-

1S an approximation to the Reed-Frost model adds additional support to the use 

of ky 
n 

Ix. l(k-y. 1) J- J-

as a point estimate of ~, for homogeneously mixing populations. 

(11) 

In practice the number of cases in each generation is usually not observable. 

If it is known that the epidemic is terminated but only the total size y of the 

epidemic is observed it is useful to have bounds on ~ which involve only y, k 

and xO. With gj as given by (1) it is known that there are at most k+1 genera

tions and the denominator on the right hand side of equation (11) can then be 

written as k j 
- I I x.x. 
j=l i=l 1 J (12) 

For a given xk consider what happens to (12) when one individual is removed from 

generation ~ and placed into generation m. The increase in (12) is found to be 

x -x . This result plus the fact that x.=~x.=O for all j>i, implies that the 
~ m 1 J 

expression (12) attains its maximum value, for a given total size y, when 

xj =l, j=1,2, ... ,y. The corresponding minimum value is attained when x1=y. By sub

stituting these extremes into (11) the inequalities 

ky < ~ < ky 
k(y+xO)-y"2 

(13) 
k(y+xO)-y(y+1)/2 

are obtained, for a given total Slze y. If xO«y the inequalities simplify to 

1/(1-y/2k) ~~~ l/(l-y/k). 

When the intensity y/k of the epidemic 1S not too large, less than about !, the 

difference between the upper and lower bound for ~ is seen to be small. This 

suggests that for such epidemics there is very little information contained in 

the generation Slzes, given the total size of the outbreak. 

While the number of generations and the generation sizes are generally not 

observable, the duration of the epidemic is sometimes known. This information to

gether with knowledge about the latent and infectious periods can often be used 

to put bounds on the number of generations. Suppose in this way it is determined 

that the number of generations lies strictly between ~ and u. The bounds in (13) 

can then be tightened to give 
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ky 
< )1 < 

ky (14) 

k(y+xQ)-uy2/2(u-1) 

If no information on the duration of the epidemic is available then £ must be 

taken as zero and u as y+1, in which~a~~ the bounds in (14) reduce to those of 

(13). For large outbreaks the bounds in (14) will generally not be very diffe

rent from those of (13) suggesting that the duration of an epidemic does not 

contain much information for the estimation of )1 above that contained in y. 

In applications it is suggested that )1 be computed whenever it is possible 

to obtain the generation sizes, at least roughly. Otherwise the interval given 

by (13) should be used as an estimate of )1. It is then necessary to compute an 

associated variance. In view of (8) it seems appropriate to use ~;2fY, where ;2 

1S given by (3). Unfortunately this approach requires the number of generations 
A 

to be large and the generation sizes to be known exactly since a2is quite sen-

sitive to variations in the generation sizes. Such data are rarely available 

and hence it will generally be necessary to overcome this difficulty by being 

more specific about the model. When the duration of the infectious period can 

be assumed constant and contacts between infectives and susceptibles occur ran-
A 

dom1y according to a Poisson process, then it seems appropriate to use )12/y as 

an estimate of the var1ance. This suggestion is further supported by the fact 

that this model then provides an approximation to the Reed-Frost model. If, on 

the other hand, the assumptions of the general epidemic model seem more appro

priate, it seems better to substitute 

into (6) and hence solve 

g. (x. 1) = l-y. l/k and a?=)1g. ()1g.+1) 
J -J - J - J J J 

x.+x. 1 
J J

L: 
. 1 k+)1(k-y. 1) 
J= r 

n 

(15) 

(16) 

to obtain the maX1mum likelihood estimate )1. Then substitute (15) in (7) and 

hence use the reciprocal of 
n X. 
L: J 

j=l k+)1(k-y. 1) . J-
(17) 

as estimate of the variance of )1. The suggestion of using a? as given by (15) is 
J 

based on approximating the general epidemic model by a modified Galton-Watson 

process with the offspring distribution in generation j being given by (4) with 

a.(x)=l, c.(8) = 8g./(1+8g.), 
J J J J 

(18) 

where g. is as given by (1) and 8=kS/Y=)1. This is justified by assuming that du
J 

ring the course of an infective's infectious period the number of susceptib1es 
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rema~ns approximately constant and may be taken as k-yj _l , where Yj-l ~s the 

number of secondary infections up to that time. The number of individuals then 

infected by this infective, prior to his removal, has the geometric distribu

tion specified by (4) and (18). 

Although the computations involved ~n the use of (16) and (17) are not 

too severe, it will sometimes be useful to make some further crude approxima

tions. According to the deterministic version of the epidemic threshold theo

rem, see Bailey (1975), in a large epidemic the ultimate number of susceptibles 

will be about as much below the threshold value as it was initially above it. 

"On average" the infection rate will thus be about unity. Substituting ~gj+l=2 

in (15) give$ 

~.=~(l-y. 11k), a~ =2~(1-y. 11k) 
J J- J J-

(19) 

as an approximation and suggests ~ as given by (11) as an estimate of ~ with 
A 

2~2/y as an estimate of the associated variance. 

6. APPLICATION TO SMALLPOX DATA. 

Bailey and Thomas (1971) quote data of D.M. Thompson and W.H. Foege on an 

outbreak of smallpox in a closed community in Abakaliki in south-eastern Nige

ria. A total of 30 cases were observed in a population of 120 individuals at 

risk. The removal times, in days since the first removal, are given by 0,13, 

20,22,25,25,25,26,30,35,38,40,40,42,42,47,50,51,55,55,56,57,58,60,60,61,66,66, 

71,76. Using the method of maximum likelihood estimation based on the general 

epidemic model Bailey and Thomas, see Bailey (1975, p. 125), obtain estimates 

(rates per day) 
S .00088 , y .091, 

with associated covar~ance matrix 

6.05 x 10-8 5.31 x 10-6-[ 

5.31 x 10-6 9.42 x 10-4 . -I 

Using the large-sample formula 

var(S) 2 cov(S,y) + va:(y) , 

Sy y2 

where ~=kS/y, gives 
A + 
~ = 1·15 - '28 

When the source of infection of each case ~s known the generation s~zes 

are easily deduced. Without this information it is necessary to make use of the 

known properties of the disease in order to obtain approximate generation sizes. 

It·~s known that the duration of the incubation period for smallpox is usually 

12 days and rarely lies outside the interval 9 to 15 days. Considering clusters 

~n the data about multiples of 12 days suggests that the generation sizes given by 
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generation, J 0 1 2 3 4 5 6 7 

no. of cases, x. 1 1 7 6 3 8 4 0 
J 

are reasonable. That these give the generation s~zes exactly is too much to 

hope for, but since the estimate of ].1 is rather insensitive to the generation 

sizes this need not concern us unduly. The rough approximation to the general 

epidemic model obtained by using ].1. and a~ as ~n (19) gives 
J J 

A 

].1 + ].1/2/y = 1'14 ~ '30 (20) 

Using instead equations (16) and (17) in order to obtain estimates for ].1 and 

the associated variance, gives 

1·10 :: '29 . 

The assumptions of the general epidemic model, ~n particular the assumption of 

a zero latent period, are not very realistic for smallpox. Assuming a Poisson 

offspring di~tribution would seem to be more realistic. This leads to the same 

est~mate of ].1 as in (20), namely 1 014, but the associated standard error reduces 

to ].1lyY = 021 With xO=l, k=119 and y=29 the bounds in (13) reduce to 1 010< 

].1~1026. The fact that the difference between the upper and lower bounds is small 

illustrates that these bounds, based only on the total size y, provide a useful 

means of estimating ].1. It also illustrates that the estimate ].1 is quite insensi

tive to the generation sizes and that the generation sizes contain little infor

mation above that contained in y. In v~ew of the fact that the incubation period 

for smallpox rarely lies outside the limits 9 to 15 days and that the duration of 

the outbreak was 76 days, it can be said confidently that there were at least 6 

generations and at most 10 generations. Substituting ~=5 and u=ll into (14) gives 

loll < ].1~ 1 020 (21) 

Using the upper bound of (21) and, because it ~s the largest, the standard error 

of (20) it can be stated with a high degree of confidence that ].1<1020+2x 030=108. With 
-- - - - -

].1<108 it would follow, under the assumptions of these models, that if half of the 

original susceptibles had been immune then a minor outbreak would have resulted 

with probability one. 

It is interesting to note that a reasonable estimate of ].1 is obtained by 

using the deterministic general epidemic model. In the present notation the de

terministic model, see Bailey (1975, equation 6.14), gives 

xo+k 
].1 = - -- ~n(l-y/k) . 

xo+y 
(22) 

Substituting xO=l, ~=119 and y=29 leads to the estimate 1 012 of ].1. This determi

nistic approach of course does not provide any indication as to the accuracy of 

the estimate. In an announcement Startsev (1970) suggests 
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(23) 
k[N(k)-N(k-y-l)] 

k / where N(k)=E. 1 1 j, as an estimate of l/~ for the stochastic general epidemic 
J= 

model. Since N(n)-~nn~constant for large n, it follows that (23) gives the same 

estimate as- (22) wheneverxQ«k and y«k. These conditions are also used by 

Startsev to justify (23) as an estimate. 

By way of summary it is noted that the estimates provided by the methods 

of the present paper are in close agreement with those of Bailey and Thomas. 

The main advantage of the present approach lies in the simplicity of the com

putations involved and the fact that some of the results involve only the to

tal size of the outbreak. 
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