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Abstract 

Assuming positive regularity in a sense suggested by 

branching diffusions on bounded domains, some of the 

basic limit theorems for Markov branching processes are 

formulated with a general set of types and minimal moment 

conditions. 
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Several standard limit theorems for Markov branching 

processes have recently been proved with a general set of 

types in as sharp a form as they were known with a finite 

set of types. However, the theory as presented in [6, 7 , 

10J is somewhat inhomogeneous. The degree of generality 

varies from paper to paper. In particular, [6, 10J and 

the application to branching diffusions in [7J assume a 

local ,branching law, thus excluding for example multitype 

branching diffusions. Besides, the moment conditions in [6J 

are not quite minimal. In this note we formulate a coherent 

theory in a completely general setting and discuss its con

di t'ions for proce sses constructed from a transition fUnc-

tion on the type space, a bounded termination density, and 

a not necessarily local branching kernel. 

1.Set-up 

Let (X,~) be a measurable space, a the Banach algebra 

of all bounded, complex-valued, ~-measurable functions S 

on X with supremum-norm II s II, B the non-negative cone in 
+ 

X:= U X(n) 
n=O 

where X(n), n> 1 , is the symmetrization of the direct product 

of n disjoint copies of X and X(O):={S} with some extra 

point e. Let 
A A m be the a-algebra on X induced by m • 

By definition a transition function Pt(X,A) on Cx,iD 

with Parameter set T = Z , or T;: JR , is a branching trans-
+ ,+ 

ition function if its generating functional, 
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satisfies 

n 

ns.(xv ) ; 
,r= 1 

n 

Ft «x1 ,··,xn),S) = n1FtC<XV)~S) 
'\1l::: 

for all t ET, S E g, and <x1 ' •• X n ) E X(n) , n > o. Correspondingly, 

'" .A. 

a Markov process {~t'pX} on (i,U) is a Markov branching 

process if it has a branching transition function. 

In Particular, we shall refer to the following more expli-

ci t. setting: 

iSuppose T = R , let X bea locally compact Hausdorff space 
+ 

wi th countable open base, and let U be the topological Borel 

algebra on X 0 If X is non-compact, let XU {a} be the one-

point compactification of X. Define" C as the subalgebra 
o 

of all continuous ~ e:: a. such that lim a g (x) = 0 if' X is 
x-

non-compact. Suppose to be given 

(A. 1) a transition semigroup (Tt } t > 0 on B t which is 
-

strongly continuous on c 
o wii;h Tee C for t > 0, t 0- 0 -

(A .. 2) a termination density k E e 
+ 

and a branching kernel 
A. 

Tr on X ® U. 

AS.is we 1 lknown, these data uniquely determine a right-con

tinuous strong Markov branching process on (X,m), cf.[3,4]. 

If {Tt } is the transition semigroup of a diffusion, this 

process is called a branching diffusion. 

For every U-measurable function S on X define 

x[s]:= 0 i x=9, 
n 

:= I s(x.);. x=(x1 ,··,Xn )EX, n>O. 
\1.=1 ' 
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Let O(x):= 0 and 1(x):= 1 V XEX. If P t is a branching 

transition function on (X,~) such that 

M t [ s J ( .) : = lA. x [ S J P t ( < ~ > ,dx) E 3 
X 

for S = 1 and thus all S E 6, then 
t 

{M }t>O is a semigroup 

of linear-bounded operators on 6. In the (A.1-2) framework 

the assumption 

assures that 

J A X [ 1 J TT ( • , dx) E a 
X 

m[' J (y) : = J A X[· J TT (y, d5U ; y EX, 

. X 

defines a linear-bounded operator on 6, which in conjunction 

with k e: 2 implies Mt: B ... a for all t > 0, cf. [3J. 
+. 

We assume throughout that the following condition is 

satisfied: 

(M) The moment semigroup 
t 

{M } t > 0 can be represented 

in the form 

where p E J 0, 00 [ , 

t . t * 
M = p cp cP + Qt; t > 0, 

>I< 
cp e:B t cP is a non-negative, linear

-I-

'bounded functional on 3 , and Qt: a -» a such that 

wi th some (X.'.: T - [ 0 , 00 [ satisfying 

We propose to call a Markov branching process positively 

regular if it satisfies (M). For finite X this definition 

is equivalent to the historic one. Verifications of (M) for i-
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large classes of branching diffusions and related processes 

are to be found in [6,7J and particularly in [9J. While 

admitting inf X cp (x) = 0, we can assume wol.o.g. that 
x E 

cp-(x) > 0 V X EX. In case of' a restricted branching diffusion 

this merely means that any totally absorbing barrier is by 

definition not included in X. Note also that CP*[1 AJ is 

automatically (J -addi ti ve in A e: ~. Here 1 ~ is the indica tor 

function of A. 

2.Limit theorems 

~et us first recall two -results on supercritical proces-

ses (p>1). 
..... 

THEOREM 1 ([7 J). If {5{t' pX} is a Markov branching process 

satisfying (M) with p > 1 , then there exists a random varia-

ble W such that 

lim p -n x [g] = cp* [s-J W 
N3n-o- GlO n 

for every 5 absolutely integrable with respect to ep*[1.,J.If 

for 

and 

some t e: T" {O}, then this ine quali ty holds for all 

E <x> W = cp (x) V X e: X. Otherwise W = 0 a. s. [p~]. 
t e: T, 

In order to handle t.-. 00 , t e: R , some additional structure 
+ 

is needed: 

(C.1) There exists a set of non-negative random variables 

(r t ; t >O} such that Xs [1] < f t V se: [O,tJ and II E<·>r t llJ.1 

as t.J,. 0 • 

.,.. 
If (xt,px) can be constructed from a system [Tt,k,rrJ 
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satisfying (A.1-3), define Yt:= 

x 0[1J > ,.- x [1 ] ; 0 < ,. < t } • Then ,. -

Xt [ 1 J + n t wi th n t : ,= 

~s[1J < Yt V s E [O,tJ 

{ ,. : 

and 1 < /I E < • > Y t II < exp { II k II ( II m [ 1 J + 1) t} , so that (C.1) 

is satisfied, cf.[7J. 

THEOREM 1 * ([7, 8J). let X be a separable metric space, 
A 

m the topological Borel algebra, and {Xt,pX } a right-con-

tillUOUS Markov branching process satisfying (M) with p > 1 

and (C. 1). Then 

-t A [ J lim p x t 11 = 
t .... co 

for all 11 e: a which are continuous a. e. [cp [1. J J. 

Given (A.1-3)t condition (2.1) can be expressed in terms 

of k and TT • For this we need the following property: 

(B.1) There exists a c*e:R such .that cp*[km[gJJ < c*qr*[SJ 
+ 

Clearly, (B. 1) has to be discussed. For finite X, or a 

local TT ,this condition is , of course, empty. However, let 

{Tt } be, for example, the transition semigroup of the restrict

ed Brownian motion on the bounded interval (0', ~) cJR with 

total absorption at a and ~. Suppose 

~, ' 

k(x)m[S;](x) = J ~ (x,y) ~ (y) dy , 
0' 

K continuous on, [0', ~] ® [O!, ~ J. Then (B. 1) cannot be satisfied 

unless )(.(',0') = x.(·,S) = O. Concerning the involvement of cp* 

see Remark 1 at the end of this section. 

PROPOSITION 1. Given (A.1-3), suppose (M) and (B.1) are 

satisfied. Let f:JR -+ lR be concave with f(O) = o. Then for 
+ + 

any t> 0 
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if and only if 

(2.3) ep*[kIx x[epJ f(x[cpJ) 'IT("tdx)] < co • 

The proof is a routine extension of the·proof given in 

a more special setting in [7J, and there is no need. to re-

peat the details. Note that, while f(x) = log x does not 

satisfy the assumptions of Proposition 1, (2.2) and (2.3) with 

f(x) = 1 [0, eJ ex) : + 1 [e,oo) (x)log x 

are eOqui valent to (2.1) and 

respectively. Concerning extensions of Proposition 1 see 

Remark 2 below. 

Turning n9W to p <1 , we introduc"e the mappings F t [ • ] ~ 

. to 
g -->0 g t t e: T , d.efined by F t [ • J(xJ ~ = F t «x) , .) ; X E X. If M : 

t -2 .. -+ e , there exists a mapping R (.)[. ] : g ® ~ ->- 43 , sequen-

tially continuous with respect to the product topology on 

bounded regions, non-increasing in the first and linear-

bounded in the second variable, such that 

. (2.6) 

cf.[2,6J. We shall need the foil owing property : 

(R) For every teT'(O} there exists a mapping gt: g+ .... e 

such that 

t t 
R (S)[1 - gJ = gt[g] p cp*[1 - ~] cp 

lim II gt [ S] II = 0 . 
111 - s!l .... o 
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If X is fini te, (R) is automatically satisfied. To prove 

(R) in the [Tt , k , IT J setting for general X, we need 

another consistency condition: 

(B.2) There exists a c ER such that km[cp] < ccp. 
+ 

As (B. 1) this condition is empty if X is finite, or if 

IT is local. Returning to the example given in connection 

with .(B.1) , note that (B.2) cannot hold unless ,da,,') = 

x (~,.) = O. Concerning the role of cp we again refer to Re-

mark -1. 

PROPOSITION 2. Given (A.1-3), suppose eM) and (B.1-2) 

are satisfied. Then (R) holds. 

A proof is to be found in section 3e It extends the argu-

ment given in [10J. 

In accordance with the remark at the end of section 1 we 

tacidly assume :from now' on that c:p (x) > 0 for all x EX. 

In connection with the subcritical case (p < 1) we shall 

need the following continuity property: 

. (C.2) The space (X~W) is a topological measurable space, 

and there exists a compactification X of X such that 

(1 -F t [ IE: J ) / cp 

t e: T' {oJ and 

has a continuous extension on X for every 

~ e g • 
+ 

A verification of (C.2) for a large class of branching 

diffusions has been given in [10J. The proof does not depend 

on whether or not IT is local. 

If P t is a branching transition function satisfying (M) 

wi th P < 1 , then by (2. 4) 9 (2. 5) , 

uniformly' in ~ e: X(n) for every n > 0 • 

1 imt P ( x t {e}) = 1 
..... 00 
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THEOREM 2. Let P t be a branching transition function 

. satisfying (M) with p < 1 and (R). Then there exists a 

'Y E JR such that 
+ 

(2.7) lim p-tPt(~' Cy/e}) = y x[cp] 
t ..... co 

uniformly in A (n) > x E X for every n > O. Moreover, y 0 

only if 

(2.8) 

if and 

for some (and thus all) t E T'{O}. If 'Y = 0 , suppose (C.1) 

is satisfied. Then for any A E~ 
\I 

with U j A = X 9 j > 0 ,the limit 
v= 1 \I 

and nrcZ-, ~\I=1, •• ,j, 
\I + 

I .. Pt· (x, {y[1A ]=n ;\I=1, •• ,j}n(Y/e}) 
( ) 1 · \I \I . 

P A 1 9 •• , A . ; n 1 ' ... ,n. : = l..m 
. J J t_co . P t (x, ( y /e }) , 

. t 'oC' 1 . X"'EX(n) for >0 d' . d exiS s unJ..L orm y l..n every n. . an J..S l..n epen-

dent of i .~he limits form a consistent set of probabilities, 

and if X is a locaily compact Hausdorff space and ~ the 

topological Borel algebra, this set determines a probability 

" ,., 
measure P on (X, ~) such that 

If' 'Y > 0, then 

Ix ~ [ . ] P (d5U = 1 - cp*['], 

.1 

but if' Y = 0, then P does not have a bounded first· moment 

functional. 

For the proof we refer to section 3. Details are given 

only where the argument deviates from the more special proof 

in [10]. 

We now turn to the critical case (p = 1 ). 
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LEMNA 3. Let P t be a branching tr~ns~tion function satis

fying (M). with p = 1 . Then the value of· 

which is non-negative, possibly infinite; does not depend on 

PROPOSITION 3. Given CAo 1-3) such that (M) with p = 1 and 

(~.1) are satisfied, 

~,=~ cp",!, [ k J x{x[ep] 2_ ~[ep2J} 1T C· , dx)] . 

Again, the proofs are deferred to section 3. 

LetPt be a branching transition function satisfying (M) 

with p =1. C.learly, ~=O if and only if PtC<.),X(1» = 1 

a.s. [cp*J V te:T. If ~>o, then cp,*[ptc<·),{e})J>o 'rI tET,,{e}. 

Assuming ~. > 0, define 
. 

-N(t):={XEX: Pt«·),{e}) =O}; te:T,{e}' 

q bd : = lim P t «x) , {e}) ; 
t ~.,."" 

If cp ~ [N (t) ] = 0 for some t > 0,. then q = 1 a. s. [ep *] as in 

( 1; III,no. 11, 12J. If' ep*[NCt) J > 0 'rI. t> 0, fix s > 0 such that 

Of' < 1 and' de fine 
s 

N Cns) . 

A routine extension of [1; II,no,6J shows that P2sC<x), 

( y [ 1 N J > 1 }) >0 V x e: X and, if 

(2.10) in!' P 2 s ( < x) , { y [1 NJ > 1 } > 0, 
xe:N . 

that {O < y[ 1 ] <d },' d> 0 9 is a. transient event of the process 
A 

{x2' ., pX; n e:z } determined by' P 2 ' which implies again that 
ns + . s 

q = 1 • 
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- If X is finite, (2.10) is automatic. If more generally 

(x,:~O is a topological measurable space and N compact, 

then continuity of P 2s «x> , { y[ 1NJ < 1 }) in x EN is suf:ficient 

for (2.10). Given (A.1-2), this continuity is guaranteed, 

if Tt~ (x) is continuous in x E X for all t > 0 and SEa, 

and that is the case for many diffusions, cf. [9J. 

From (1.1) and the Chapman-Kolmogorov equation 

F t [SJ=Ft[F [SJJ; 
+s s 

.t , s e: T, S E ~L 

By use of (2.11), (2.5), (2.6), and (M) it follows from 

qJ-*[1 - qJ = 0 that limt -+ CIO P t (5c, {e}) = 1 uniformly in xEx(n) 

for every n > 0 . 

We shall need the following continuity property: 

(C.3) If T = JR , then for every x E X and every decomposi
+ 

tion {A1 , ..... Aj } of- X with A'VE~., 'V=1, •. ,j, j>O, the _func

tion P t c<x>, {y[1 A ] = n ; 'V = 1,.0, j } is continuous in t e:T . 
. 'V 'V 

In the (A.1-3) setting (C.3) is automatic. 

THEOREM 3. Let P t be a branching transition function 

satisfying (M) wi-th p = 1 and (R). If cp * [1 - qJ = 0 and IJ. < 00, then 

lim t P t (x,x',-.{e}) = ~ x[cp] 
t-+oO 

uniformly in x E X(n) for every n> O. If in addition (C.3) is 

satisfied, then for every decomposition {A1 , •• , A j } of X with 

A e: m:, 'V = 1 , •• , j, j > 0, and every x edC" {e} 
'V 

lim 
t .... oo 

P t (5l t { i y [ ~ A 'V] S A 'V; \) = 1 , • • , j} n {y I· e} ) 

p t (~, ( y 1 e}) 

=[ 
o ; 

- -1 
1 - exp { - min [ (IJ. cp >I< [ 1 A J) A] } ; 

min A < 0 , 
\/-

min A > 0 
\/ \/ \/. \/ 
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uniformly in (A l' •• ,A j) ER j 

REMARK 1. The conditions (2.1), (2.4), (B.1-2), and ~ <<>0 

are less implicit than they may appear to, be. There is often 

enough general information about q:> * and q:> to allow more 
A 

explicit expressions. For example, if [~t'pX} is a branching 

diffusion on a bounded domain in R n with mixed boundary 

conditions, then with sufficient smoothness assumptions q:> 

is the restriction to X of a smooth function on the closure 

X which vanishes on X\X and has a strictly negative deriva-

tive in the direction of the exterior normal there, while q:>* 

has a Lebesgue density with the same properties. As one of 

the simplest Cases consider again a Brownian motion on a bound-

ed interval (at~) with total absorption at both endpoints. We 

may then replace q:> by (x - Of )(~ - :l,'J .. and q:> * [g] by 

I·~ (x - cr)(~ -x)g (x)dx and arrive at conditions which are equi-
01 

valent to the original ones. 

REMARK 2. Although Proposition 1 is already more general 

than is needed here, the full scope of the method of proof in 

[7] is of interest 

(a) In order to prove that 

is sufficient for 

l,ri th f as in the proposition and n=29 3,4, •.. , the corre-

sponding higher order analogue of CA.3)~ 

IAi [1J Dn C;,di) E a, 
x , 

is needed. For finite X this is, of course, already contained 
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in (2.12), but in general it is not. The necessity part of 

the proof goes through as before. 

(b) When replacing cp*, or cp , the sensitive details of the 

proof are the following. The sufficiency part relies on (B.2) 

and (3.11), the necessity Part on (3.12) and the submartin

gale property of {~t[cpJ/pt}. In fact, (3.11),(3.12), and 

tbesubmartingale property are needed only with some positive 

t 
continuous function in place of p • 

3.Proofs 

PROOF OF PROPOSITION 2 •. Given (A.1-2), let {xt,pX} be the 

Markov process determined by {Tt } and EX the expectation 

x 
wi th respect to P • Define 

and let f[· J(x) be the generating functional of 11 ex, . y, 

x E X. Then for every S Eg the function Ft[S](x); t > 0, X EX, 

is the unique solution of 

If we also assume CA. 3), then for every S E6 the function 

t 
M [sJCx); t > 0, X E X, is the unique solution of 

t 
vtCx) =T~S(x) +JoT:{km[Vt_s]}(:X:)dS, 

c:f.[3J,[4]. It follows by use of (2.6) and the corresponding 

eXPansion for f, 

that for every E> 0 and S e g the' function R t (~)[ 1 ~ s J(x) r 
, + 
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t > e:~ x E X, solves 

t-e: -
Wt ex) = At ex) + B~ (x) + I ° T~ {km[ wt _ s ]} (x) dx, 

t 
At(x):= r TO(kr(F t ' [g])[1-Ft "[g]]}(x)ds, 

J'o s -s -s 

In fact, R t (g)[ 1 - g ](x) is the only bounded solution in 

[£ 9 e +'1"] for any T > 0, and thus equals the limit of the 

( ) ( (\I) )} 0_ 
non-I de .creasing. iteration sequence W t (x \I e z+ ' wt = o. 

We estimate this sequence, modifying the argument given in [10]" 

Suppose 0 < 0 < 8/2 and g E: g • By (2.5) and (2.6) there 
+ 

exists "a c > 0 such that 1- F t _ s [g] > 1 - c 1 U 1 - g 111 for 6 < 

s < t-o. , t < E +'1" 0 E"quation (3.1) implies 
o t 

T t < M on a +. Final-

ly, we have 0=r(1)[g] <r(C)(g] <mrs] 'tJ (c,g) Eg+®a+. Hence, 

making u'se of (M) and (B. 1-2), for . t.2:. € 

can be chosen arbitrarily-small, this shows that 

lim 6 [g] = 0 ; 
. 1I1-gll-0 8," 

8>0, ,.>0 . 

o t-€ £ -8 a 
Using (2.5),(3.1), and the fact that Tt_s~M M on +' 
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Again by use of eM) and (B.1-2) it follows from (3.2-4) that 

\/ ct [ -(t-e) t 
1 im W t < (e t ~ e ,'I" sJ + e:.. c* (1 + p 01 t _ e )} p cp * [ 1 - s J cp; 

\/_00 

€ < t < e +'1". 

Since e, 'I" > 0 were arbitrary, this implies (R). 0 

The following l·emma is used in the proofs of Theorems 2 

and 3. 

LEMMA 1. If' P t is a branching transition function such 

that eM) and (R) are satisfied and limt -+ 00 P t «x) ,e) = 1 

V X EXt then there exists for every t e: T". (o} a mapping' 

h t : g + -+ B such that 

1 - F t [ S J '= (1 + h t [S ] )cp * [1 - F t [ S ] ] cpo, ; 

lim II h t [S] II = O' uniformly on . g +' 
t_co 

The proof of this lemma is the same as in [10J except for 
." 

the last statement, which ",e verify as follows. Suppose S e: 

g n{cp-*[1-S] > O} and t> O. If 0 < () < 1, then by (M) and (R) 
+ . -. 

cp;* [1 - F t [S J ] > cp * [1 - F t [ 1-0 ( 1-S ) ] ] 

> pt6cp *[1-SJ{1 -lIgt [1-o(1-s)]IIL 

and there- is a 0 = oCt) such that IIgt [1-6 (1-s)]l! < 1. 

PROOF OF THEOREM 2. Given (M) with p <,1 , there exists a 

y' elR' such that 
+ 

as t i 00 • 



Moreover, y > 0 if and only if for some e < II cp II -1 

co L cp * [ R t (1 - ecp p \/ t )[cp,J J < G>O , 

\/=1 

where t E T'\ {e} is arbitrary. The proof of these two state-

ments is the same as in [10J. It is a routine extension of 

the argument given in [2J. 

Lemma 1 and (3.5) imply (2.7). The equivalence of (3.6) 

and (2.8) follows from the next lemma·· 

LEMMA 2· Let PC',·) be a stochastic kernel on such 

that 

M['](x):=I y[oJ P(x,dy); 
X 

x e X, 

define.s a bounded operator M on 43. Let F [. J(x) be the gene-

rating'f'urictional of PCx,'), and exPand 

as in (2.6). Finally, let g * be a ,non-negative ~ linear-bound-

ed functional on 43, sequentially continuous with respect to 

the product topology on bounded regions, .-

that Sex) > 0 't/ x EX, and let A E (0,1). Then 

00 

L ~:« [ R (1 - A \/ S)[ s lJ < 00 

\1=1 

if. and only if 

g*[I x[~J log x[gJ PCo.,dx)] < 00 • 

X", 

let seg such 
+ 

PROOF. We extend the proof of [10: Lemma 4]. Notice the 

relation to the argument used in [5]. Clearly, 



- 17 -

co 
~ -

< I s * [ R (1 - A \I O[ s J J < J 0 s * -C R (1 - At S )[ s J Jd t • 

\1=1 

With the substitution s = s(~,t):= - x[ 10g(1 - >,.tg)J/x[sJ . 

co . Io s*[ R(1 - xts)[sJdt = 

1 J s(~,O){ 2 . 
= ~ * [ A S - (e xp ( - 52 [ s J s} - 1 + x [ s J s ) 

. X 0 . . 

+ a (x, s ) } b (x,-s ) d s P ( • , d:x)] , 

Observing that a (x, s (x, t» and bex, s (x, t» are bounded as 

functions of (x,t) on X ® R ,. even if inf S = 0, and sub
+ 

stituting cr = x[g]s , we obtain the equivalence of-"(3.7) and 

Since there eX:Lst 'real constants C 1 and C2 such. that 

[ -1I w - 2 ~cr . o < C 1 < log (1 + w ) ] 0 cr ( e' - 1 + cr ) dcr ~ C 2 < ()O 

for all w > 0, (3.9) is equivalent to 

~ * [I ..... ~ [ s ] log (1 + ~ [ 110 g ( 1 - s) I ]) p ( • , d~)] < co ~ 
X . 

which is clearly equivalent to (3.8).0 

. The remaining parts of the proof of Theorem 2 are the 

same as in [10]. 
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PROOF OF LEMMA 3. Let tP be the set of all non-nega ti ve, 

not necessarily finite-valued, .m-measurable functions on X. 

Extend ~['J2_~[(.)2J to fJ in the obvious way. Then 

defines a quadra~ic mapping for very t e T. Ext end-

ing also 
t M [. ](x) to P , we deduce from (2.11) that 

If we have (M) with p =1 and extend ep * to tP , it follows that 

q:,.~ [M~2)[qJ ] ] is non-decreasing in t e: T and 

(3. 10) cp * [ M ~ 2) [ep ] ] = t ep * [ M i'2) [epJ ] 

for all rationalt eT'\. {O}. Consequently (3.10) holds for all 

--
PROOF OF PROPOSITION 3. Let ~. e: a , define 

- + 

and extend T~ [. lex) and- m[' lex) to fJ • Then the function 

t 
M(2) [g](x), t > 0, x eX, is the minimal non-negative solution of 

cf.[3]. Given eM), it :follows from (3.1) that 

t >0, S e tP, 

and, using (B.1), that 

t 
(3.12) cp*[ T~S] 2: (1 -c*t) p cp*[gJ 

Hence, if p = 1, 

s 2 < t c* sup _ cp >I< [ M (2) [ep J J = 2 c * t fJo, 
se[O,t] . 
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t E T. 

Letting 0 < t -1-0 , we have (2.9). 0 

PROOF OF THEOREM 3. Given Lemmata 1,3, and 4, the proof 

is the same as in [6J. 

LENMA 4. Assuming (M) with p = 1, (R) f and IJ. < 00, we have 

lim n~ { cp * [1- F nO [S J J - 1 - cp * [1 - S ] - 1} = IJ. 
N3n ...... QO 

uniformly on g n{cp*[1-sJ>0} for every OET\{O}. 
+ 

PROOF. Let Se g n {cp*[1'-SJ > O}. Then by Lemma 1 also 
+ 

cp * [1 - F t [ So] J > 0 'V t e T • Us i ng ( 2. 11 ) , 

Given IJ. <00, there exists for every teT,,(O} a functional 

on g ®B , sequentially continuous on bound
+ + 

ed regions in g+ ®{ S=11CP =11 E 6 +}, such that 

. '. t . t t 2 
0= CP*[R(2)(1)[11CPJJ<CP*[R(2)(S)[11CP]] <q'J*[M(2)[T]CPJJ < 2t~ 111111 

for t.2: 0, C = 1 -11q1 E g. +' 11 e a +. . In view o:f p , = 1 and Lenuna 1, 
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Ao[Ft[sJJ = ~cp*[ M~2) [(1 + ht[SJ)cp]] 

- ~cp*[ R~2)(1-Ft[SJ)[(1+ht[SJ)q>J]. 

Since 1 > Ft[sJ(x) > Ft[O](x) = P t «x), (e})~. we have 

1 im A 6 [F t [. s J J = 0 ~ 
t_eo 

uniformly in S. This completes the proof. 0" . 
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