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ABSTRACT 

The paper deals with some modifications of positively regu

lar one-dimensional branching diffusions motivated from the 

applications to e.g. epidemics and neutron transport theory. 

It is shown that known results on positive regularity and 

limiting behaviour extend to processes w~th several types 

of motion, retarded branching and/or general lifelengths. 
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§ 1. INTRODUCTION 

. For stochastic branching processes with a finite set X of 

types satisfactory limit results have been known for some 

time, [1J, [2J. Results of comparative strength for more 

general X are of more recent date, [3J, [4J, [5J, [6J. Some 

of the main mathematical difficulties here concern the ques-

tion of minimal conditions. From an application point of 

view this is of course largely irrelevant, but the admission 

of an infinite X is often essential. A probe into the scope 

and flexibility of the general theory in this respect is 

therefore of some interest. 

A standard example with infinite X is a branching diffusion 

with local branching law p = (Pn(x); n = 0, 2, 3, ... ; xEX). 

In fact, under quite general conditions any Markov branching 

process with continuous motion and local branching law is a 

branching diffusion, [7], [8J Ch. 12. Here, X is a domain 

in some Euclidian space, the motion of the particles is spe-

cified by the differential generator A of a diffusion process, 

and a particle at xEX at time t dies in [t, t + dtJ with 

infinitesimal probability k(x)dt and is replaced (at the 

time and point of death) by n new particles with probability 

p (x). Different particles move and reproduce independently. 
n 

Branching diffusions may serve as approximate descriptions 

of the growth of a bacterial colony, the spread of an epidemic 
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,or an uncontrolled neutron cascade in a reactor. However, 

such an approximation can reflect reality only in a rather 

crudeand general way. Not only may the branching process 

,model only be appropriate for moderate population sizes, but 

i in concrete situations it is often of considerable interest 

to study the way in which some specific phenomena influence 

the behaviour of the simplest model. An illness, for example, 

can have several phases, such as incubation, latent and in- 1 

fectious periods. In a classical reactor, on the other hand, 
I 

: branching is in general not instantaneous but retarded. After 

a neutron is captured by a nucleus, an approximately expo

nentially distributed time elapses until fission occurs. Also 

the description by the termination density k(x) of the events 

of branching may be realistic in case of a neutron cascade, 

but for example in epidemics it would be desirable to incor

porate some sort of age-dependence. 

It is the purpose of the present paper to illustrate in some 

simple settings how such modifications can be handled within 

the general framework. 
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§ 2. SIMPLE DIFFUSIONS 

Our starting point is the branching diffusion model of § 1, 

and we recapitulate some of the main facts about it. For 

simplicity, the present paper is restricted to one-dimension-

al diffusions, though the basic theory has been developed 

on more general domains, [9], [4], [5], [6]. 

Suppose X is a bounded interval with en~points u, v and let 

. CV be the set of functions which are restrictions to X of v 

times continuously differentiable functions on [u, v]. Unless 

otherwise stated, we work with 

(D) A is given in terms of a velocity a and a drift b, 

Af(x) = a(x)f"(x) + b(x)fl(x) 

together with separated endpoint conditions 

fED (A) {gEC 2 :ag(u+) - algi (u+) = 6g(v-) + 6 1 g 1 (v-) =O} 

for some constants' a, ai, 6, 6' ~ 0 such that a + a l > 0, 

6 + 6 1 > 0. Furthermore aEC 2 , bEC 1 , inf a(x) > O. 
xEX 

Here uEX(vEX) if and only if a * 0(6 * 0), the case 

a = 0(6 = 0) corresponds to reflection at u (v) and the 

case a l = O(S' = 0) to total absorption at u(v), cf. [10]. 
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Let B be the set of bounded measurable functions on X and 

B+ = {nEB:n 2 a}. For ~EB we define Qt[~] as 0 when the 

population at time t is extinct and as ~(x1) + ... + ~(xn) 

. when it consists of n particles at sites x 1 ' ... , x EX. For 
n 

example when A 1\ 
C X is measurable, x t [1 A] is the number of 

. x x 
particles in A at time t. Let P , E refer to the probability 

and expectation when the initial population consist of just· 

one particle at xEX, and define 

00 

L: np (x) 
n n=O 

With a, b, k, m suff~ciently smooth, {Mt}t~O is a semigroup 

with differential generator 

Lf(x) = Af(x) + k(x) (m(x)-1)f(x), fED(L) = D(A) 

and the branching diffusion is positively regular in the 

sense that {Mt } has the following property: 

(M) There exist a real number A, -oo<A<oo, a ¢EB+ and a bounded 

measure ¢* ~ 0 such that ¢*[¢] = 1, 
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The quantities A, ¢, ¢* have similar interpretations as what 

in demography is called the Malthusian parameter,the reproduc

tive value and the stable distribution, cf. [11]. 

The proof of (M) in [4] (the underlying idea is the same as 

in [3]) assumes a, k, mEC 2 , bEC 1 • It contains some additional 

information, in particular 

¢ED(A) , ¢(x) > ° VxEX, 

¢(u+) + ¢' (u+) > 0, ¢(v-) - ¢' (v-) > ° 

and the corresponding relations - referred to as (~*) - for 

the Lebesgue density of ¢*. It is shown that for all 

t > 0, nEB, xEX 

( 2 . 1 ) 

(2.2) 

A t 
n ,j,* 

e 'l'n' <5 nm I 

where{A ,¢ } solves the eigenvalue problem Lf = Af, fED(L), n n 

and {A ,¢*} the adjoint problem L*g = Ag, gED(L), the A n n n 

being real. Then asymptotic formulas for A ,¢ ,¢* are used n .n n 
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to derive (M) with A = A1'~ = ~1 ,~* = ~1. While in general 

this leads into the theory of differential equations, there 

are special cases where the argument reduces to elementary 

calculations. 

Suppose, for example, that the diffusion is absorbing Brow-

nian motion on (O,IT) (i.e. a' = S' = 0, b(x) = 0, a(x) = a) 

and that k(x) = k, m(x) = m. Looking for the solutions of 

. Lf = Af which satisfy f(O) = f(IT), we get simply 

(2.4) ~ (x) = sin nx, A = k(m-1) - an 2 , n = 1,2, ... , 
n n 

and it follows from elementary Fourier series theory that 

for all nED (A) , xEX, 

00 

c [n] (2.5) n (x) = L sin nx, 
n=1 n 

2 IT 
where c [n]: = IT In (x) sin nx dx, ~ Ic[n]1 < 00 

n n 
0 n=1 

A t 
Also L~ = A ~ implies Mt~ = e n ~ and it is easily seen n n n n n 

that I IMt[n] I I : e k (m-1)tl Inl I, I I· I I being the suprernumnorm. 

Thus, applying Mt to (2.5), we obtain (2.1) with ~~[n] = 

c [n]for all nED(L). Since A = 0(-n 2 ), we have a bounded 
n n 

measure on each side of (2.1), which hence remains true for 

all nEB. Using the inequality Isin nxl 2 n sin x, xE(O,IT), 

we obtain for all nEB+ 
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Setting A = A1 , ¢1 = ¢, and taking ¢1 

density of ¢*, (M) follows from 

2 = IT¢1 as the Lebesque 

< 00 2 (An- A1)t 
L n e = 00 2 a ( 1 -n 2 ) t L n e 7 0, t 7 00. 

n=2 n=2 

A similar direct argument goes through if we admit a constant 

: drift b * 0, with otherwise unchanged assumptions. Then 

A k (m-1 ) b 2 
an 2 , = -n 4a 

bx bx 

¢ (x) 
2a sin ¢*(x) 2 2a sin 1 , 2, = e nx, = IT e nx, n = ... n n 

Another simple case is that of reflecting Brownian motion 

. on [o,n], with a(x) = a, b(x) = 0, k(X) = k, m(x) = m, where 

A1 = k(m-1), ¢1 (x) 

A = -a(n-1)2 + k(m-1), ¢ (x) = cos(n-1)x, ¢*(x) = n2 cos (n-1)x, n n n 

n = 2, 3, ... 

Returning to the general model with aEC 2 , bEC 1 , k, mECo, we 

quote three limit theorems from [3], [5], [6]. For more spe-

cial topics, see [12], [13], [14]. 

(I) If A > 0, the martingale e-At~t[¢] converges a.s. to a 
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random variable W and for any a.e. continuous ~EB, 

11'm e-AtxAt[c] = w~*[c] S 't' S a.s. 
t+co 

Here EXW = ¢(x) VxEX if and only if 

• A A] (X LOG X) ¢*[E xt[¢]log x t [¢] < co for some (all) t > 0 

while ~x(W = 0) = 1 VxEX otherwise. 

Let ~ be the set of all finite populations ~ with sites in X 

(i.e. the state space of the process) and ~ the a-algebra 

induced on ~ by the Borel a-algebra on X. 

A 
(II) If A < 0, the xt-process becomes eventually extinct, 

i lim pX (~t [1] = 0) = 1 uniformly in xEX 
t+co 

and there exists a constant y ~ 0 such that 

lim e-AtpX(~t[1] * 0) = y¢(x) uniformly in xEX. 
t+co 

Here y > 0 if and only if (X LOG X) is satisfied. Moreover, 

there exists a probability measure P on (~, ~) such that 

1 im pX (~t [ 1 A ] = nv ' v = 1, ... , j I ~t [ 1] > 0) = 
t+co V 

A 
P (x [ 1 A = n v ' V = 1, ..., j) 

V 
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for all finite measurable partitions {A } of X. If Y > 0, 
v 

- ---- -- ----
---- --~-

then for all ~EB J~[~)P(d~) = y-l¢*[~), while otherwise 

JI\ 1\ 
x[~)P(dx) = 00 for any ~EB+ such that ¢*[~) > o. 

1\ (III) If A = 0, then either the xt-process is a motion on 

x 1\ > X, P (xt [1) = 1) = 1VxEXVt _ 0, or it becomes eventually 

extinct, 

lim pX(~t[1) = 0) = 1 uniformly in xEX. 
t+oo 

Furthermore 

is constant as a function of t > 0, with ~ > 0 if and only 

if extinction occurs. If 0 < ~< 00, then 

lim tPx(~t[1) > 0) = 
t+co 

1 ¢(x) uniformly in xEX, 
~ 

and for all finite measurable partitions {Av} of X and all 

-1 1\ 1\ xEX the distribution of t (Xt [1 A1 ], ... , Xt [1 Aj ) with 

x 1\ respect to P (·lxt [1) > 0) converges to that of a vector 

of the form (¢*[1 A1], ... , ¢*[1 A .])w, where pX(w > y) = 

e-Y/~ VxEXVy : o. Finally, J 

lim t EX(~t[~) l~t[1] > 0) = ~¢*[~) xEX ~EB. 
t+co 
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(I), (II), (III) are in their form typical for any positive-

ly regular Markov branching process. In fact, they have 

been derived under more general assumptions than those 

of this section and one of the purposes of the present paper 

is to provide some further examples of these types of limit-

ing behaviour. In concrete examples, it is frequently possible 

to reformulate in terms of natural model parameters. For 

example in the simple branching diffusions considered so 

far, it can be proved that, regardless the value of A, 

(X LOG X) is equivalent to 

(x log x) ~*[kK~] < 00, 

where K (x) : = Lp (x) n log n. By (~), (~*) this amounts to 
n 

v 
J k(x)K(x)dx < 00 a' :j: 0, S' :j: ° 
u 

v 
J k (x) K (x) (x-u) 2dx < 00 a' :j: 0, S' = ° 

(x log x) , u 

v 
J k(x) K (x) (v-x) 2dx < 00 a' = 0, S' :j: ° 
u 

v 
J k (x) K (x) (x-u) 2 (v-x) 2dx < 00 a' = 0, S' = 0. 
u 

Similarly in (III), ~ can be computed as ~ = ~ ¢*[kX¢2], 

where X(x): = Lp (x)n(n-1), and by (~), (~*) the condition n . 

~ < 00 is equivalent to the one obtained from (x log x)' by 

replacing K with X and all squares with cubes. 



-12-

§ 3. COUPLED DIFFUSIONS 

It has been suggested to model the early stages in the spread 

of an epidemic by a branching process, see e.g. [15], [16], 

[17], [18], [19], [20], [21]. Two important factors whose in-

fluence should be accounted for are the spatial motion and 

the possible existence of several (sometimes overlapping) 

periods of the illness, for example an incubation, a latent, 

and an infectious phase. The spatial motion has been modelled 

either in discrete time, [16], or as a jump process, [15], 

[19], [20], [21], but a diffusion model seems at least as 

reasonable. 

As a simple example, suppose we want to distinguish between 

the infectious and non-~nfectious phase. In addition to po-

sition we then have to specify phase. That is, if the motion 

is modelled as a diffusion on Xo ' the set of types is 

X = X1 U X2 ' wherex1 , X2 are disjoint copies of Xo' A non

infectious particle moves on X1 • The moment it becomes in

fectious, say at x, it switches to xEX2 and continues the 

motion on X2 . When the motion here is stopped, say at y, 

the particle either disappears - through curement, isolation, 

or death - or it infects others, i.e. it creates new particles 

at yEX 1 and continues itself its motion on X2 . 

Precisely and slightly more generally, let Xo be a bounded 

real interval, let the motion on X. be a diffusion with dif-
1 

ferential generator Ai and suppose a particle at xEX i stops 



-13-

its motion with infinitesimal probability k. (x)dt and is re-
1 

. placed by n = n 1 + n 2 new particles, n 1 of them at xEX 1 and 

n 2 at xEX2 . Let pi1 (x), pi2(x) be the associated marginal 
n 1 n 2 .. 

probabilities and m .. (x) = Lnp1J(X). Write functions on X as 
1J n 

pairs (~,n) of functions on Xo. Then - with suitable smooth-

, ness assumptions - the mean semigroup has the differential 

generator 

L(~,n) = 

A1~(x) + k1 (x) (m11 (x)-1)~(x) + k1 (x)m12 (x)n(x), 

xEX1 , 

A2n (x) + k2 (x)m21 (x) ~ (x) + k2 (x) (m22 (x) -1) n (x) , 

xEX2 , 

~ED(A1)' nED(A2). As in § 2, let us first study an example 

allowing explicit calculations. 

In the two-phase epidemic outlined above, m11 (x) = 0, 

,m12 (x) = 1, m22 (x) ~ 1. Suppose in addition that both diffu

sions are absorbing Brownian motion on (O,IT) with velocities 

a 1 = a 2 = a > ° and that k1' k2' m21 , m22 all are constant. 

Then L takes the form 

a~" (x) - a~ (x) + an (x) , 

L(Cn) (x) = 

an" (x) + y~ (x) - Sn (x) , 

~,nE{gEC2: g(O+) = g(IT-) = O} 
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. with positive a, S, y. As suggested by § 2 we look for eigen-

functions of the form 

(s(x) ,n (x)) = (sin nx,s sin nx) 

Inserting into L(s,n) (x) = ~(s,n) (x) yields 

(3.1) -an 2 - a + as = ~, -asn2 + y - Ss = ~s 

Eliminating ~, we get as 2 -(a - S)s - ~ = 0, and since y > 0, 

there are two different real roots, s > s (say). Let the 
+ 

corresponding eigenvalues obtained from (3.1) be ~ +' ~ n n-

and write ¢ +(x) = (sin nx, s+sin nx) 0 It is then easy to n_ _ 

see that {¢n+' ¢n-} is complete, that the analogue of (2.1), 

( 3 .2) 

holds for all s,nEB(O,IT), and that (M), (~), (~*) are satis-

fied with ~ = ~1+' ¢ = ¢1+' ¢* = ¢1+· In fact, if 

( 3 .3) 

is the formal expansion of (s,n) in terms of ¢ +' ¢ .' we n n-

must have 
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where the c [.J are the sine series coefficients as in § 2. 
n 

Since s+ * s_, these equations have solutions of the form 

That is, ¢*+[.J has the density n_ 

2 = (r±ll sin nx, 
2 

s± IT sin nx) 

Using A + ~ n_ an 2 , we can now repeat the argument of § 2. 

The explicit expressions for ¢, ¢* have simple interpreta-

tions relative to the epidemic model~ Thus in the mean both 

the non-infectious and infectious particles are asymptoti-

cally distributed on (O,IT) as in the one-dimensional model, 

that is, when neglecting the effect of the non-infectious 

period. Similarly, the reproductive value of a particle at 

xE(O,IT) is sin x, the same as in one dimension, up to a fac~ 

tor depending only on whether it is infectious or not. 

Let us return to the general L. Then: 

PROPOSITION Suppose that A1 , A2 satisfy (D), that ki' 

o mijEC , and that k 1m12 , k 2m21 do not vanish everywhere. Then 

(M), (~), (~*) are satisfied and the statements (I), (II), 

(III) remain valid. 
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The proof of (M), (~), (~*) is contained in [9], (I) is a 

special case of [4J, and (II), (III) are covered by [6]. 

Wr i ting <p = ( <p ( 1 , . ), <p (2 , . ) ), <p * = (<p * ( 1 , . ), <p * ( 2 , . ) ), we 

have instead of (x log x) 

2 
~ Ix <p*(i,x)k. (x)~pij(x)n log n <P(j,x)dx < 00 

1. n i, j=1 0 

Similarly 

The analogues of (x log x)' and the corresponding equivalent 

of ~ < 00 are easily written down. 
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§ 4. RETARDED BRANCHING 

In a classical reactor rods or spheres of fissionable material 

are embedded in a moderating substance. A fast neutron pro-

duced through fission is slowed down to thermal velocities 

through collisions in the moderator. If a thermal neutron 

is captured by a fissionable nucleus, fission does not occur 

instantaneously, but after an approximately exponentially 

distributed time. Since a diffusion appears to be one of the, 

reasonable approximations to the motion of neu trons in a re-

actor, [22], the process may be modelled as the two-phase 

epidemic in § 3, but with A2 = 0. The particles in X1 re

present free neutrons and those in X2 captured neutrons. Of I 

course a phase in which particles are fixed may be of in-

terest also in connection with epidemics. 

The differential generator of the semigroup now takes the 

form 

L(~,n) (x) = 

~,nED(A) 

A~ (x) -k1 (x) ~ (x) +k1 (x) n (x) , 

k2(x)m(x)~(x)-k2(x)n(x) , 

Given the methods of the preceding section, this generator 

presents a serious problem. Suppose again X = (O,IT) , let A 
o 

describe absorbing Brownian motion on X with constant veo 

locitya > 0, D(A) = {gEC 2 : g(O+) = g(IT-) = O}, and let 
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k 1 , k 2 , m be constants. Proceeding as in § 3, the solutions 

of the eigenvalue problem Lf = Af, fED (A) , turns out to be 

= (sin nx, E +sin nx) , n_ 

= 2~ {k1-k2+an2±[(k1-k2+an2)2+4k1k2mJ~ 
1 

n = 1, 2, ... Notice that 

-2 = -k2 + O(n ), 

} , 

i.e. the spectrum has a finite accumulation point. This means 

that the methods of § 2-3 are no longer applicable. In fact, 

it is easily seen that in this case (M) cannot be satisfied. 

For, suppose (M) were satisfied. Then ¢ = ¢1+ and 

-A -A 
( I · I I' I ) e n+ I M1 ,j.,n+ I < e n+M1 I ,j.,n+ I Sln nx , En+ Sln nx = ~ ~ 

:s K¢¢*[I¢n+ IJ = K(sin x, E1+sin x)¢*[ l¢n+ IJ 

with K < 00 not depending on x or n. Since ¢*[ l¢n+ 1 J = O(E n+), 

this would imply 

Isin nxl ~ K'sin x, xE(O,IT), 

with K' < 00 independent of x, n. Clearly, this is false, so 

that (M) cannot be satisfied. Of course, the analogue of (3.2) 

still holds for ~,nED(A), but the argument extending (3.2) 
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to ~,nEB, in particular to ~ = n = 1, does not carryover. 

These problems can be avoided by modifying the model. We 

replace the continous set X2 with a finite set of depots 

and redefine our process as follows. For simplicity suppose 

X2 consists of just one point, denoted by y. This corresponds 

to a reactor with just one rod of fissionable material or, 

in the context of epidemics, to one infirmary. If the motion 

on X1 is terminated at xEX1 , an exponentially distributed 

time with decay constant k2 elapses until n particles are 

released with probability p , each distributed with density 
n 

f(x) on X1 . Defining m(x) = f(x)L np , the differential ge
n n 

nerator of the mean semigroup now becomes 

L(~,n) (x) = 

~ ED (A), n E R . 

A~ (x) -k1 (x) ~ (x) +k1 (x) n, 

k2f m(z)~(z)dz-k2n, 
X1 

x = y, 

From the underlying picture it is not unreasonable to work 

with functions k 1 , m which vanish outside a certain interval 

in the interior of X1 , interpreted as the vicinity of the 

depot .. 

PROPOSITION 1 Suppose that A satisfies (D), that k 1 , mEe 

with k 1 , k2m not vanishing everywhere and that k 1 (x) ~ 0, 

f(x) ~ 0 as x ~ Xo EX1,x1 . Then (M), (~), (~)* are satisfied 
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and statements (I), (II), (III) remain valid. 

As before, the result follows from [9], [4], [6]. It can be 

shown that in the present case the analogue of (x log x) 

reduces to 

I:p n log n < CXJ 
n 

while 
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§ 5. COMBINATIONS 

The considerations of the previous sections can be extended 

to more elaborate models, coupling any finite number of dif-

fusions and depots. Explicitly, suppose the set of types is 

where the X. are disjoint copies of some bounded interval 
1 

Xo and the Yj additional disjoint points. Let the diffusion 

on Xi be given by Ai' let the motion on Xi be terminated with 

density k. (x) and let a decay in y occur with decay constant 
1 v 

lV. Suppose a stopping at xEXi results in n(1)+ ... +n(r) 

+m(1)+ ... +m(s) new particles, n(j) of them at xEX. and m(v) 
J 

ij iv 
of them at Yv' and let Pn(j) (x), qm(v) (x) be the associated 

marginal probabilities. Similarly, let a decay in y yield v 

n(1)+ +n(r)+m(1)+ ... +m(s) new particles, n(i) of them 

. vi 
in Xi and m(~) at y~, with marginal probabilities Yn(i)' 

o~~~)' where the positions of the particles in Xi have mar

ginal density fvi(x). 

The generality of this model permits to give a detailed de-

scription of even quite complex phenomena. We give two exam-

plese 

Consider first a neutron reactor with X as the moderator o 

and the y. as the rods of fissionable material. If a neutron 
J . 

~ 

, 
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is captured by a nucleus in y , fission occurs after an 
\) 

exponential decay time with rate 1 . The result is a number 
\) 

of new fast neutrons, which are slowed down to thermal ener-

gies by collisions with nuclei in the moderator. Usually 

this process is modelled as a chain of diffusions A1 , ... ,Ar 

on Xo with decreasing velocities, [22], and only the slow 

neutrons in X can be captured by a nucleus. Thus when a 
r 

particle is stopped at xEX i , i = 1, ... , r-1, it switches 

to xEX j for some j = i+1, ... , r, while a stop at xEXr 

results in capture in one of the depots Yv' normally close 

to x. Finally a decay in y\) results in a collection of new 

\)1 
particles scattered over X1 according to f (x), normally 

concentrating around y\). 

Consider next a malaria epidemic. Let s = 0, write r = r 1 + r 2 

and let the particles in X, represent the ith type of infec-
1 

ted humans, i = 1, ... , r 1 , and those in X +' the jth 
r 1 J 

type of infected mosquitos. We let i = 1, ... , r 1 - 1 (j = 1, 

... , r 2 - 1) represent the phases in the non-infectious pe

riod of a human (mosquito), cf. [23], pg. 313, and i = r, 

(j = r 2 ) the infectious period. Thus a particle stopped at 

xEXi , i = 1, ... , r 1 - 1, switches to xEXi + 1 , while a stop 

at xEX results in either death or creation of one new par-
r 1 

ticle at xEX +1. Similarly a particle stopped at xEX +" 
r 1 r 1 J 

j = 1, ... , r 2 - 1, switches to XEXr1 + j +1 , while a stop at 

xEx results in either death or creation of one new par-r 1+r2 
ticle at xEX 1 " Refinements of the epidemic pattern as dis-
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cussed in [23J ch. 17 are easily incorporated in a similar 

manner. 

Returning to the abstract model, define 

Kij (x) : 2::n p!j (x) , LiV(x): 2::n iv (x) , = = gn 

ftlVi(x) : fVi (x) 2:: vi IIVjJ : 2:: oVjJ = ny , = n . n n 

The differential generator of the mean semigroup takes the 

form 

L(~·1' ••• , ~r' n1 , ... , ns)(x) = 

r.. s. 
A. I; . (x) +k. (x){ -i; . (x) +2:: K1J (x)i;. (x) +2:: L 1V (x) n }, xEX. , 

1 1 1 1 j=1 J V=1 v 1 

r. s 
1 { f V1 VjJ }. 

-n +2:: ftl (Z)l;l' (z)dz+2:: II njJ' x = yv' 
v v. 1 X 1 J= 0 jJ= 

I;.ED(A.), i = 1, ... , r, n ER,V = 1, ... , S 
1 1 V 

and we have 

PROPOSITION Suppose that the 

for iv i, j = 1 I ••• , r and L , 

A. satisfy (D), that k., KijECO 
1 --- 1 

ftliv EC 1 for i = 1, ... , r, 

v = 1, ... , s, that k. (X)L iV (x) -+ 0, lvftlVi(x) -+ 0 as 
-- 1 

x -+ x EX.'X., and that all components of X communicate in 
011 

the sense that the (r+s) x(r+s) matrix 



defined by 

-ij 
K 

-vi 
r2 

= J k. (x) K i j (x) dx, L i v 
l 

Xo 
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iv = J k. (x) L ( x) dx , 
X l 

o 

is irreducible. Then (M), (~), (~*) are satisfied and state-

ments (I), (II), (III) remain valid. 

As before, the result follows from [9J, [4J, [6J. The expli-

cit expression for ~ and analogues of (x log x) and (~ < 00) 

are easily derived from the general formulas in [6J. 
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§ 6. AGE-DEPENDENCE 

In the simplest models considered so far, with constant ter-. 

mination density k and no absorption, the particles have all 

exponential lifetimes. If k(x) is space-dependent, the pattern 

is more complex since the lifetime depends on the path fol-

lowed by the particle but still, the model is essentially 

Markovian. From the point of view of many applications it is, 

however, of interest to be able to deal with more general 

reproduction mechanisms. Some examples are already in the 

. literature. For example, a Bellman-Harris process with the 

particles performing Brownian motion on the line has been 

studied, [24], [25]. The present section gives some results 

for models of similar simple structure, age-dependent branch-

ing processes with one or several types where the particles 

move according to diffusions of type (D). The results as well 

as the models should be considered as preliminary. For exam-

ple, we do not treat the critical and subcritical case and 

it would also be of interest to study models with interaction 

of motion and branching mechanism. We hope to present such 

extensions in a future publication. 

Consider first the case of one type. That is, we study a 

Bellman-Harris process, specified by its lifelength distri-

but ion .Gand offspring distribution F, where the particles 

move on X according to a diffusion, specified by its ·tran-

sition semigroup {Tt}t~O and with differential generator 
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satisfying (D). Let K,V,A be the Malthusian parameter, resp. 

reproductive value function, resp. stable age distribution 

(cf. [11]) of the Bellman-Harris process and Ttn(x) 
-lit 

~ e t-' 

<jJ(x)<jJ*[n] the asymptotic expansion of § 2 (here 11 2: 0, with 

11 > O·if and only if absorption may occur). Let It be the set 

of particles present at time t in the Bellman-Harris process 

and let for CElt xc' ac be the position resp. age of c. If 

c or some of its ancestors has been absorbed at the boundary, 

we adapt the convention n(x) = 0 for all nEB. c 

PROPOSITION Let A = K-11. Then 

= e- At L V(a )<jJ(x ) 
cElt c c 

is a non-negative martingale. Let W = limtWt and consider the 

supercritical case A > O. Then EW = 
co 

EW o for all non-random 

I if and only if J x log x dF(x) < co while W = 0 otherwise. o 0 

Furthermore for all a.e. continuous nEB (X) , ~EB[O,co) 

( 6 • 1 ) 
-At 

lim e L ~(a )n(x ) = WA[~]<jJ*[n] a.s. 
t+co cElt C C 

Letting ~(a) = 1 we have A[~] = 1 and (6.1) specializes to 

a limit statement on the positions of the particles. The 

form is the same as in (I), only with W defined somewhat 

different. A similar remark applies, by letting n(x) = 1, 

to the ages. 
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We omit the proof, which is easily carried out along the 

lines of [25]. 

The generalization to a finite number of motions is, however, 

not immediate. We give the explicit calculations for a case 

of particular interest, a r-type Bellman-Harris process 

(1 < r < 00) i cf. [2], where the particles of type i move 

according to absorbing Brownian motion on (O,IT) with velocity 

a i > O. In the Bellman-Harris process, let G1 , ... , Gr be 

the lifetime distributions, (m .. ) the offspring mean matrix, 
1J 

It the set of particles alive at time t, jc = 1, ... , r the 

type of CElt' ac the age and Xc the position, where as be

fore we define n(xc ) = 0 for any nEB(O,IT) if c or some of 

its ancestors have been absorbed at the boundary. For no-

tational convenience, we do not include the ages in X, so 

that as in § 3-5 X is the disjoint union X = X1 U ..• U Xr 

of r copies of (O,IT). The main difficulty in treating the 

model turns out to be to determine the asymptotic behaviour 

of Mt(~1' ... , ~r)(x), xEXi , ~1' ... , ~rEB(O,IT) (it is always 

assumed that the ancestor is of age 0) and our approach is 

to describe the spatial distribution in terms of the semi-

group {Tt}t~o of absorbing Brownian motion on (O,IT) with 

velocity one. Obviously, 

r 
( 6 .2) = EX L L ~. (x )I(j = j) 

CElt j= 1 J c c 

Now consider some particular cEl(t). Then the path obtained 
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by following all ancestors of c is Brownian motion, where 

the velocity at time s, ° ~ s ~ t, is a., i being the type 
l 

of the particular ancestor of c alive at time s. Letting 

T. (c) be the total time up to t spent by c and its ancestor 
l 

in type i, T(C) = a 1T1 (c)+ ..• +arTr(C), the position Xc of c 

(given T(C)) is then simply described by TT(c) in the sense 

that if the process is initiated by some particle at xE(O,IT) 

at time t = 0, then 

( 6 .3) E(~(x ) IT(C)) = T ( )~(x) = 
C T C 

where from § 2 

~(x) = sin X, ~*[~] = 
2 IT 
IT f sin X ~(x)dx. 

o 

Let a: = min{a 1 , ... , a } > 0. Then T(C) ~ at so that as 
r 

t + 00, 6T(C)~(x) tends to zero, uniformly in cEI(t), ~EB+, 

xE(O,IT). Letting 

K~ (t) 
l 

the expectation being computed in the Bellman-Harris process 

with ancestor of type i, and inserting (6.3) into (6.2) 

yields 
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(6.4) 

where ~~(~1r ""~r) (x) + 0, uniformly in ~1' ... r~rEB+ and 

xE(O,IT). Now a standard renewal argument shows that 

( 6 .5) K~ (t) 
l 

-a i t t -a i u r k 
= 0l'ke (1-G. (t»+Ie {I: m .. K.(t-u)}dG. (u) 

l . 1 lJ J l o J= 

To deal with these equations, we need 

LEMMA Let for i, j = 1, ... , r F .. be a known bounded non
lJ 

negative measure concentrated on (0,00) such that (F .. (00» 
lJ 

is irreducible and that (F .. ) is non-lattice in the sense 
lJ 

that there is no A > ° and no c .. such that each F .. is con-
lJ lJ 

centrated on {cij+nA;n = 0, 1, 2, ... } and that c i (o)i(1)+ 

... + c i (n)i(n+1) is a multiple of A for each chain i(O) ... 

i(n+1) such that i(O) = i(n+1), F i (k)i(k+1) > ° for k = 0, 

I oo -AU ... , n. Define for some fixed A p .. = e dF .. (u), and 
lJ 0 lJ 

suppose P = (Pij) has spectral radius one. Choose v, h such 

that v. > 0, h. > 0, vP = v, Ph = h (cf. [26J) and let 
l l 

rOO_AU 
d = I: h. v . I ue dF .. (u) 

. . 1 l J . lJ 
l, J= 0 

Then the solutions of 

( 6 .6) Z . (t) 
l 

r t 
= z. (t)+I: Iz. (t-u)dF .. (u) 

l j=1 0 J lJ 
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j=1 J 0 
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-AU 
e Z . (u) du 

J 

-At 
whenever the e z. (t) are directly Riemann integrable. 

1 

Results of similar type can be found in [27J, [28], [29J, [2J. 

The present version is essentially contained in [27J when P is 

a transition matrix (i.e. h.=h) and the general case can be 
1 

reduced to this because (6.6) holds with Zi' zi' Fij replaced 

~ ~ ~ 

by Zi = zi/hi' zi = zi/hi' Fij = Fijhj/hi and because 
~ 

P = 

(p .. h./h.) is a transition matrix (with ~. = v.h.). 
1J J 1 1 1 1 

-a.u 
Now suppose that the dF .. (u) 

1J 
= m .. e 1 dG. (u) satisfy the 

1J -(~.+A)t 
assumptions of the lemma and that the e 1 (1-G. (t)) 

1 

are directly Riemann integrable. Defining 

v. 00 -(a.+A)t 
~i = d 1 Je 1 (1-Gi (t))dt 

o 

it follows by letting Z. (t) = K~(t) with k fixed that 
1 1 

e-AtK~(t) + hi~k and combining with (6.4) yields 

PROPOSITION 

Mt ( t; 1 ' .•. , t; r) (x) = eAt cp (x) cp ~ [ t; 1 ' ... , t; r J{ 1 + L1 t ( t; 1 ' ... , t; r) (x) } 

and xEX , and where cp and the Lebesgue density of cp* are 

given by 
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2~ 'V 
2v 1 (--rr sin x, ... , II r sin x) 

PROPOSITION Define 

V. (a) : 
l 

(a.+A)a 00 -(a.+A)t r 
= elf e l dG. (t) 2: m .. h . 

a l j= 1 lJ J 

[note that V. (0) = h.J. Then 
l l 

= e- At L V. (a )sin x 
CElt J c C C 

is a non-negative martingale. Let W: = limtWt and consider 

the supercritical case A > O. Then EW = EW for all non-ran-
0 

00 

dom I if and only if 6x log x dH .. (x) < 00 for all i, j, (H .. ) 
0 lJ lJ 

being the offs}2ring distributions of the Bellman-Harris }2ro-

cess, while W = 0 otherwise. Furthermore whenever 

n1 , .•. ,n EB(O,II) and ~1' ... '~ EB[O,oo) are a.e. continuous, r --- r 

(6. 7) 
-At 

I irn e L ~. ( a ) n. (x ) = 
t+oo C E I J c C J c C 

t 

W~[~1,n1' ... '~ ,n la.s r r---

where ~ is the measure given on the ith com}2onent, i = 1, 

... , r, .eY 

-(a.+A)a 
II~ vie l (1-Gi (a))· sin x dadx 

As in the case r = treated earlier in this section,(6.7) 



-32-

can be specialized to statements on the limiting distribution 

according to position, type and ages. In general, the form 

of the results are, however, somewhat more complex than when 

r = 1. Thus the limiting age-distribution is not the same in 

the Bellman-Harris process and in the branching diffusion 

. and also, A can not be expressed as a function of the a. 
1 

and the Malthusian parameter of the Bellman-Harris process 

alone. 

In applications, one would often be interested in allowing 

for reproduction during the lifespan and not only at the end. 

This could be handled approximately by dividing into a finite 

number of phases but in fact, there is no difficulty in in-

corporating more exact models as e.g. the age dependent 

birth - and death process, see [11] pg. 159-161. Consider 

as a simple example the two-phase epidemic of § 3 modified 

such that a phase i particle performs absorbing Brownian 

motion on (O,IT) with velocity a. > ° and has lifelength 
1 

distribution G., that a phase 1 particle switches to a phase 
1 

2 particle at the time of death and that a phase 2 particle 

of age u creates a new phase 1 particle with infinitesimal 

probability k(u)dt. The equations similar to (6.5) become 

K~ (t) 
1 

-a1 t t k -a1u 
= 01ke (1-G1 (t)')+JK2 (t-u)e dG1 (u) 

o 
( 6 .8) 

-a2 t t k -a2u 
= 02ke (1-G2 (t»+ JK 1 (t-u)e k(u) 

o 
(1-G2 (u»du 
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which can be handled exactly as above. For example, the 

process is supercritical, critical or subcritical according 

to whether 

00 -a1u 
f e dG1 (u) 

00 -a2u 
f e k (u) (1 - G2 (u) ) d u 

o o 

is > 1, = 1 or < 1. 
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