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1 Introduction 

An exponential type family is usually defined by its densities 

a(e)'t(x) + B(x) + c(e) 
e 

Scpren Johansen 
1976 

with respect to some measure ].l . Here aCe) ERr, e E 8 
o 

r and t(x) E R , x E X. 

Clearly the factor B(x) can be taken into].l and c(e) is just a normalizing con
o 

stant. Thus the interplay between the observation and the parameter is given by 

the bilinear form 

(1.1) a(e)'t(x). 

In this formulation the parameter aCe) and the observation t(x) have a dual role, 

Ln that t(x) can be considered a linear functional on the range of aCe) and VLce 

versa [2]. 

Of special interest are the models obtained by allowing aCe) to vary freely Ln 

the set 

D {a I Ha) f a't(x) d } e ].l < 00 
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and we then get a canonical (or full) model defined by its densities 

with respect to dV B(x) d 
e Vo' 

ex.'t(x) 
e 

¢(ex.) 
ex. E D 

The purpose of this note is to show how in any family of probability measures, 

a similar duality holds. The basic idea 1S to represent x by its likelihood 

function and e by the density and show how this represents (x,e) as a point 1n 

a pa1r of semigroups 1n duality thus giving a general formulation of (1.1). The 

idea of using semigroups and homomorphisms as tools 1n the discussion of~xpo-

nential families is due to Lauritzen [3]. 

Once this formulation is given one has the possibility of defining a general 

concept of a canonical family and to show how one can extend a given family to 

a canonical family. 

The report presents part of the work done jointly with H.D.Brunk, D.Birkes and 

J.Lee at Oregon State University, Corvallis, see also [1]. 

2 The formulation 

To avoid measure theoretic difficulties the following set up will be used: X is 

a separable topological space and P = {Pe' e E e} a family of probabilities on 

X. Let Se denote the support of Pe and V a a-finite measure on P. We assume that 

Pe has density f(x,e) with respect to V, where V 1S equivalent to P and that 

f(x,e) = 0, x ~ Se and f(x,e) is continuous on Se' This defines the density 

uniquely. 
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Let SeX) denote the semLgroup of finite ordered samples from X, L.e. the set of 

samples (xl' ... ,xn) with composition given by 

On the space SeX) we define two equivalence relations. For x 

SeX) and y = (Y1' ... 'Ym) E SeX) we define 

(2.1) 
n 

x ,...., y if n 
i=l 

f(x. ,6) 
L 

m 
n 

j=l 
f (y . ,6), 6 E 8 

J 

Thus two samples are equivalent if they have the same (strict) likelihood func-

tion. 

Similarly we define 

(2.2) x~yif3A>O 
n 
n f(x. ,6) 

i=l L 

m 
A n 
j=l 

f(y.,6), 6 E 8. 
J 

Thus x ~ y if x and y have the same likelihood function. 

We shall also write for A > 0 

(2.3) [x] A[Y] if 

and we thus have 

n 
n 

i=l 

x ~ y iff 3 A > 0 

Now we have the natural mappings 

f(x. ,8) = 
L 

m 
A n 
j=l 

[x] = A[y]. 

fey. ,6) 
J 
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J x .. S (X) 
t 

S(X)/~ ~ S(X)/~, 

where x is mapped into the one-element sample, and t2 and t3 maps elements into 

equivalence classes. 

Notice that the mapp1ng t = t3 0 t2 1S the mapp1ng that to each sample associa

tes its likelihood function. Thus t 1S minimally sufficient in the sense that 

it induces the minimal sufficient a-algebra, see Loeve [4]. 

Similarly we consider the parameter space 8 and form S(8) and define, for T 

(Tl , ••• ,Tn) E S(8) and a = (aI' •.. 'am) E S(8) the equivalence relation 

(2.4) f(x,T.) 
1 

m 
n 

j=l 
f(x,o.), x E X. 

J 

Thus 1n particular 81 and 82 (in 8) are equivalent if they correspond to the 

same density. Notice that S1nce proportional densities are equal (they integra-' 

te to 1) there is no equivalent to ~ on the parameterspace. 

Note also that a = (aI' ... ,a ), o.,E 8, i=l, ... , n corresponds to ,a measure 
n 1 

whose density is a product of densities in the family P. 

We then have the natural mapp1ng 

8 S (8) S(8)/"y 

where the parameter a2(al (8)) 1S the maximal identifiable parameter. 

We can then formulate the main result as: 
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Proposition 1 The semigroups S(X)/~ and S(e)/~ are in duality by the bihomomor-

phism 0 defined by 

(2.5) [x] 0 [a] 
n m 
n n 

.i=l j=l 
f(x.,a.). 

1 J 

Proof Note that [] denotes the equivalence class corresponding to'''', thus [x] 

Let us first remark that by the defini·tion of ~, the right hand side of (2.5) 

only depends on the equivalence class of x and a. 

It is easily seen that 0 1S a bihomomorphism, since for instance, 

n r r m 1 [xl 0 [a,] - . n n f (x i ,a. ) n f(xi"k) J 
lj=l 1 J i=l 

n m 
= n n f (x. ,cr.) 

i=l j=l 1 J 

([x] 0 [cr]) ([x] 

If 

then in particular for x E X we get 

m 
n 

j=l 

k=l 

n r 
n n 

i=l k=l 

0 h]) . 

f(x,cr.), 
J 

f(Xi"k) 

x E X 

which by definition means that, ~ cr and hence h] = [cr]. Thus the bihomomor-

phism separates points and the semigroups are in duality. 

The content of (2.5) 1S that it gen~ralizes (l.l) w.hich holds for ordinary ex-
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ponential families. The following examples will illustrate the formulation, but 

the essence of (2.5) is that the parameter can be viewed_as a homomorphism on 

the space of (strict) likelihood functions, and the observation as a homomor-

phism on the space of densities. 

3 Some examples 

Example 1 Let the densities be given by 

(3.1) f (x, 8) 
ea (8)'t(x)h(x) 

H8) 

with respect to Lebesgue measure ].l on R. Assume further that t and hare conti-

nuous and that h > O. 

In order that the essential features of the approach be apparent we will also 

assume that the functions {I, a(8), 8 E 8} are linearly independent, and that 

the functions {I, In hex), t(x), x E R} are linearly independent. 

In this case x (Yl' ... 'Ym) are equivalent, x ~ y, if 

8 E 8. 

Now s~nce In ~(8) is strictly convex as a function of a(8), we must have n m. 

By the independence of the vectors {l, a(8), 8 E 8} it follows that 

and 

n 
L 

i=l 
t(x. ) 

~ 

m 
L 

j=l 
t (y.) 

J 



n 
I: 

i=l 

- 7 -

In h(x.) = 
1 

m 
I: 

j=l 
In h(y.). 

J 

Hence the equivalence relation ~ on SeX) lS induced by the mapping 

(n, 
n 
L 

i=l 
t (x.) , 

1 

n 
I: 

i=l 
In h(x.)), 

1 

and S(X)/~ can be represented by a certain subsemigroup of 

S 
r (N,+) x (R ,+) x (R,+). 

Similarly CJ (CJ l , .•. ,CJn ) is equivalent to T 

x E X. 

By the independence of {l~ In hex), t(x), x E X} it follows, that 

n = m, 

n m 
I: a (CJ i) I: a (T.) 

i=l j=l J 

n m 
I: In cp (CJ • ) = I: In CP(T.) 

i=l 1 j=l J 

and hence that the equivalence ~ on the parameterspace is given by the function 

n n 

I: --In cP (CJ i) , I: a (CJ i)' n) 
i=l i=l 

and that the semigroup S(8)/~ can be represented by a certain subsemigroup of 
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r (R,+) x (R ,+) x (N,+) 

The parameter e can be identified with homomorphism given by the coefficients 

(- 1n ~(e), aCe), 1) 

Notice that not all homomorphisms on S can occur, since ~(e) is determined from 

aCe) by normalization and 1 occurs as the last coefficient. Notice also that the 

semlgroup S(e)/~ as well as the bihomomorphism between S(e)/~ and S(X)/~ depend 

on h, the underlying measure. 

Now consider (2.3). In a similar way we find that [x] A[y] iff 

n 
(3.2) L 

i=l 

n 
and hence x ~ y iff n = m and L 

i=l 
tion is induced by the function 

n 

t(x.) 
1 

1n A 

t(x.) 
1 

= 

= 

m 

m 
L 

j=l 

n 
L 

i=l 

m 
L 

j=l 

t(y.) 
J 

m 
1n h(x.) - L 1n h(y.) 

1 j=l J 

t(y.), thus the equivalence re1a
J 

which is known to be minimally sufficient, and which is independent of the un-

der1ying measure. 

Example 2 Let the densities be given by 
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(3.3) f(x,e) 

1 

{: 
o ;:!; x ~ e, 

e < x < co, 

where ° < e < co. Then 

° < e < co, 

which happens only if n= m and x(n) = Y(m)' Thus S(X)/~ can be identified with 

(N,+) x (R+,v) and e with the homomorphism h(n,x) = hI (n) h2 (x) where 

hI (n) e-n 

h2 (x) = 1 (x) [o,e] • 

Notice that in this case x ~ Y iff x ~ Y and this corresponds to (n, x(n)) 

being minimally sufficient. 

Example 3 Let PI and P2 be given by two positive continuous densities fl and 

f2 on R, with respect to Lebesgue measure. Then (xl' ... , xn) ~ (Yl , •.. ,Ym) 

when 

I..e. when 

m 
n fk (yJ.), 

j=l 
k 1,2 
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2 takes on the same value at x and y. Thus S(X)/~ ~s a subset of (R , .) . Further 
+ 

[xl = A[y 1 if 

which occurs if 

and then A ~s given by 

n 

nfk(xi ) 
i=l 

n 
n fl (xi) 

i=l 
n 
n f 2 (xi ) 

i=l 

A = 

m 

A n fk(Yj)' 
j=l 

m 
n fl (Yj) 

j=l 
m 
n f 2 (Yj) 

j=l 

n 
n fl (xi) 

i=l 
m 
n fl (Yj ) 

j=l 

k 1,2 

Thus the equivalence relation ~ ~s induced by the likelihood ratio 

which ~s known to be minimally sufficient. 

4.1 The canonical family 

In order to obtain the proper definition of a canonical family we shall need the 

following mathematical object: a semigroup S with scalar multipliers i.e. there 

exist an operation 0 an S such that 
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X Q (y 0 z) 

and an mapping * on R x S ~ S such that 
+ 

(x 0 y) 0 z 

A * (x 0 y) (A * x) 0 y x 0 (A * y) 

We let S* denote the set of homogeneous homomorphisms on S, 1.e. mappings 

h: S ~ (R+, .) such that 

hex 0 y) hex) hey) 

h(A * x) A hex) 

Now let (X,V) be a measure space and t: X ~ S a statistic 

Definition 4.1 A canonical family determined by (V, t, S) is glven by densities 

with respect to V of the form 

(4.1) 8(t(x» 8 E D, 
J 8(t(x» V(dx) 

where 

D fa E S* I 8(t(x)) lS measurable and-O < J 8(t(x)) V (dx) < ob}. 

The reason that we use only the homogeneous homomorphisms is that we want the 

family (4.1) to be essentially independent of V. in the following sense: 

Proposition 4.2 Let 110 be equivalent to 11 and h = dV . Let t (x) = hex) * t(x) 
dv 0 

0 
then the families <iay~xmtn,e4 by (11 , t, S) and (V o ' t 

0' 
S) are the same. 
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Proof This follows Slnce 

8(t (x» d~ = S(h(x) * t(x» d~ = hex) 8(t(x» d~ 
o 0 0 0 

8(t(x» d~. 

Thus the densities are the same and the two families are identical. 

We now want to show how the family P considered in section 2 can be extended to 

a canonical family and finally give some examples how this extension works. 

We then start with P glven by the densities f(x,8) on X with respect to ~. 

First choose S as the space of multiples of likelihood functions 

n 
S {A n 

i=l 
f(x.,·), A > 0, 

1 
1 = 1, ... ,n} 

This is a sem1group with scalar multipliers. To each x = (xl' ... ,xn ) we asso

ciate as before the (strict) likelihood function i.e. t(x) = [x]. 

Thus we are generating S from S (X) /'" by adding all multiples of elements of 

'" Now consider the family P generated by (~, t, S). The mapping 8 ~ [8] associates 

with each 8 E 8 a homogeneous homomorphism on S 

[8] 0 (A * [xl) 

n 
Slnce both sides equal A n 

i=l 
f(x.,8), x 

1 

A[8] 0 [x] 

The density corresponding to [8] 1S glven by [8] 0 [t(x)] f(x,8), x E X and 
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rv 

the familyP ~s thus imbedded into P. 

rv 

Corollary 4.3 The family P does not depend on the choice of 11. 

Proof Let 11 be another measure equivalent to P and ·let h = ddll • Likelihoods 
o 110 

from densities with respect to 11 are proportional to likelihoods from 11 and 
o 

hence the mapping 

t (x) 
o 

l.e. the likelihood with respect to 11 , sends X into S. Note, how
o 

n 
ever, that t (x) = hex) * [x] , where hex) = n h(x.) and hence t h * t and 

o 11 i=l' ~ 0 

it follows from Proposition 4.2 that the families generated by (11, t, S) and 

(" t S) are the same. "'0' 0' 

Let us conclude this section by considering again the examples. 

Example 1 The extension of this exponential type family depends on the sem~-

group generated by the statistic {n, L~ t(xi ), L~ ln h(xi )}. 

As an example consider the following special case of a normal distribution with 

positive mean and variance equal to 1. 

f(x,S) 1 

VfTf 

2 Sx _Ix 
e e 2 x E R, S > ° 

We want to extend this family and the space S of multiples of likelihood func-

tions consists of functions of the form 

as + bS 2 
c e , c > 0, a E R, b < O. 
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The semigroup operations are given by 

(a, b, c) 0 (a', b', c') (a + a', b + b', cc') 

and 

A * (a, b, c) (a, b, Ac) 

Homomorphisms of S have the form 

h(a, b, c) cY eaa + bS 

a E R, S E R, y E R. The homogeneous homomorphisms satisfy 

h(a, b, AC) 

and hence we have y = 1. 

For an element h E S* we then have 

h(t(x) ) hex, _1 
2 , 

A h(g., b, c) 

1 
= --

V27f 
ax - !S 

e 

When normalized this becomes the normal density with mean a E R. Thus the cano-

nica1 family generated by the family with positive mean is the family with arbi-

tra::ty mean. 

Example 2 The space of likelihoods and their mUltiples are of the form 

c l[O,e](a), c > 0, a > ° 
with 

(a,c) 0 (a',c') (a va' ,cc ' ) 
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and 

A * (a,c) (a,Ac) 

A homomorphism has the form 

h(a,c) 

and the homogeneous ones have a = 1. When normalized this gives the family we 

started with. Thus the uniform distributions on[O,e], ° < e < 00 form a canonical 

family. 

Example 3 In this example the space S ~s spanned by the vectors 

A > 0, x. E X, i 
~ 

1, ... ,no 

2 If we assume that any point ~s ]O,oo[ can be so represented then S 

with the operations 

(a,b) 0 (a',b') (aa',bb') 

A * (a,b) (Aa,Ab) 

A homomorphism ~s of the form 

h(a,b) 

and the homogeneous ones satisfy a + S 1. 

Thus the family generated by (fl ,f2) has densities of the form 

2 ] ° ,oo[ 
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a E D, 

D = {a I J f~(x) f~-a(x) ~(dx) < oo}. 
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