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Homomorphisms and general exponential families

1 Introduction

An exponential type family is usually defined by its densities

L2 (0)'E(x) + B(x) + C(0)

with respect to some measure o Here a(6) ERr, €O and t(x) € Rr, x € X.
Clearly the factor B(x) can be taken into My and C(6) is just a normalizing con-—

stant. Thus the interplay between the observation and the parameter is given by

the bilinear form
(1.1) 0 (0)"t(x).

In this formulation the parameter o(0) and the observation t(x) have a dual role,

in that t(x) can be considered a linear functional on the range of a(8) and vice

versa [2].

Of special interest are the models obtained by allowing a(6) to vary freely in

the set

a't(x)

D={a| ¢(a) =17se du < oo}



and we then get a canonical (or full) model defined by its densities

S0t (x)

, 0 €D
¢ (a)

with respect to du = eB(X) duo.

The purpose of this note is to show how in any family of probability measures,

a similar duality holds. The basic idea is to represent x by its likelihood

function and 6 by the density and show how this represents (x,0) as a point in

a pair of semigroups in duality thus giving a general formulation of (1.1). The

idea of using semigroups and homomorphisms as tools in the discussion of expo-

nential families is due to Lauritzen [3].

Once this formulation is given one has the possibility of defining a general

concept of a canonical family and to show how one can extend a given family to

a canonical family.

The report presents part of the work done jointly with H.D.Brunk, D.Birkes and

J.Lee at Oregon State University, Corvallis, see also [1].

2 The formulation

To avoid measure theoretic difficulties the following set up will be used: X is

a separable topological space and P = {PG’ 9 € 0} a family of probabilities on

X. Let S_ denote the support of Pe and y a o-finite measure on P. We assume that

0
Pe has density f£(x,0) with respect to u, where p is equivalent to P- and that

and f£(x,6) is continuous on S.. This defines the density

f(x,0) =0, x & Se 5

uniquely.




Let S(X) denote the semigroup of finite ordered samples from X, i.e. the set of
samples (Xl’ cee ,xn) with composition given by
(Xl’ oo ’Xn)(yl’ oo ,ym) = (X]_’ oo ’Xn’yl’ e :Ym)-

On the space S(X) we define two equivalence relations. For x = (Xl’ cen ’Xn) €

S(X) and y = (yl, e ,ym) € S(X) we define

n m
(2.1) x~yif T f£(x.,6) = T £(y.,0), 6 €0

. i . j

i=1 1=1

Thus two samples are equivalent if they have the same (strict) likelihood func-

tion.

Similarly we define

m
f(x, ,6) =21 f(yj,e), 6 € 0O.
1 .

(2.2) x~yif 3 A >0 :
3=1

i

L =1

1

Thus x 8 y if x and y have the same likelihood function.

We shall also write for A > 0

n m
(2.3) [x] = Aly] 4if 1 f(xi,e) =T £(y.,0)
i=1 j=1 3
and we thus have
xmsy iff 3 A >0 : [x] = Aly].

Now we have the natural mappings




t t t
I = s@ -3 s/~ 3 s/,

where x is mapped into the one—element sample, and t2 and t3 maps elements into

equivalence classes.

Notice that the mapping t = ty o t, is the mapping that to each sample associa-

tes its likelihood function. Thus t is minimally sufficient in the sense that

it induces the minimal sufficient o-algebra, see Loéve [4].

Similarly we consider the parameter space © and form S(©) and define, for t

(Tl, .o ,Tn) € S(0) and o = (01, cee ,Um) € S(0) the equivalence relation

: n
(2.4) T~0s T f(X,Ti) =

f(x,0.), x € X.
i=1 j ]

a8

1

Thus in particular 61 and 62 (in ©) are equivalent if they correspond to the
same density. Notice that since proportional densities are equal (they integra-

te to 1) there is no equivalent to ™ on the parameterspace.

Note also that ¢ = (01, cee ,on), oii€ 0, i=1, ... , n corresponds to .a measure

whose density is a product of densities in the family P.
We then have the natural mapping
o o,

0 3 S(0) —= s(0)/~

where the parameter az(ul(e)) is the maximal identifiable parameter.

We can then formulate the main result as:




Proposition 1 The semigroups S(X)/~ and S(0)/~ are in duality by the bihomomor-

phism o defined by

n m
(2.5) [x] o [6] = T T f(x.,0.).
: i=1 j=1 * 3

Proof Note that [] denotes the equivalence class corresponding to-~, thus [x] =

tz(x) and [o] = az(o).

Let us first remark that by the definition of ~, the right hand side of (2.5)

only depends on the equivalence class of x and 0.

It is easily seen that o is a bihomomorphism, since for instance,

: ]
f(x.,0.) M £f(x.,t,)
1 1° ] k=1 1’ 'k J

[

173

I
as
[ =]

[x] o [oT]

i

n m n r
T nm f£f(x.,0.) T T f(x.,T,)
i=1 j=1  + 3 qjop k=1 P K

([x] o [oD) ([x] o [t]).

1f
[x] o [t] = [x] o [0], x € S(X)

then in particular for x € X we get

T
m f(x,t,) =
k=1 i

L=

f(x,0.), x €X
1 J

which by definition means that T ~ o and hence [t] = [0]. Thus the bihomomor-

phism separates points and the semigroups are in duality.

The content of (2.5) is that it generalizes (1.1) which holds for ordinary ex-



ponential families. The following examples will illustrate the formulation, but
the essence of (2.5) is that the parameter can be viewed as a homomorphism on
the space of (strict) likelihood functions, and the observation as a homomor-

phism on the space of densities.

3 Some examples

Example 1 Let the densities be given by

ea(e)'t(x)h(x)
$(6)

(3.1) f(x,0) =

with respect to Lebesgue measure p on R. Assume further that t and h are conti-

nuous and that h > 0.

In order that the essential features of the approach be apparent we will also

assume that the functions {1, a(8), 6 € 0} are linearly independent, and that

the functions {1, In h(x), t(x), x € R} are linearly independent.

In this case x = (Xl’ - ,xn) and y = (yl, ce ,ym) are equivalent, x ~ vy, if

n m \ n . m
by t(xi) - .Z t(yj)} +_'Z 1n h(Xi) - .Z In h(yj) - (n-m)ln ¢(6) = 0,

u(@)'(
1 j=1 j=1

i 1

6 € o.

Now since 1n ¢(8) is strictly convex as a function of a(8), we must have n = m.

By the independence of the vectors {1, a(8), 6 € 0} it follows :that

t(yj)

and




m
1n h(xi) = X 1n h(y.).
1 j=1 ]

I MB

i
Hence the equivalence relation ~ on S(X) is induced by the mapping

n

tz((xl’ see aXn)) = (n, .Z t(Xi):

1n h(x.)),
. i
i=1 i

Mg

1

and S(X)/~ can be represented by a certain subsemigroup of

S = (W,+) x (R',+) x (B,+).

Similarly ¢ = (ol, ce ,gn) is equivalent to 1 = (Tl, ces ,Tm) if

n m

a(r.)\'t(x) + (n-m)ln h(x) - £ 1In¢(.) + £ 1n ¢(r.) = 0,
i’ i=1 B T J

™~
M B
Q
~
Q
N~
1
™M

\i;1 & 44

By the independence of {1, 1ln h(x), t(x), x € X} it follows, that

n=m,
n m
Y alo:) = ¥ a(r.)
i=1 Y =1 3
n m
> In ¢(0i) = 3 1n ¢(1.)
i=1 j=1 ]

and hence that the equivalence ~ on the parameterspace is given by the function

. n n
uz(ol, ce ,on) = (- x “1n ¢(oi), R: u(ci), n)
i=1 i=1

and that the semigroup S(©)/~ can be represented by a certain subsemigroup of:



(Ry#) x (R',4) x (,4)
The parameter 6 can be identified with homomorphism given by the coefficients
(= 1In ¢(6), a(6), 1)
Notice that not all homomorphisms on S can occur, since ¢(6) is determined from

a(6) by normalization and 1 occurs as the last coefficient. Notice also that the

semigroup S(0)/~ as well as the bihomomorphism between S(8)/~ and S(X)/~ depend

on h, the underlying measure.

Now consider (2.3). In a similar way we find that [x] = Alyl iff

n=m
n m
(3.2) z t(xi) = X t(y.)
i=1 j=1
n m
In A = X 1n h(xi) - 2 1n h(y.)
i=1 j=1 J
n m
and hence x ® y iff n = m and X t(xi) = X t(yj), thus the equivalence rela-
i=1 j=1

tion is induced by the function
n

n
S(Xl’ cee 4X ) = (n, z t(x.))

which is known to be minimally sufficient, and which is independent of the un-

derlying measure.

Example 2 Let the densities be given by



@ |
o
I\
bl
13N
g

(3.3) £(x,6)
0 »y 0 < x <o,

where 0 < 6 < o, Then

(Xl, ces ,Xn) ﬂ'(yl, ces ,ym) iff

1 1

gﬁ'l[o,e](x(m)) = ga 1[0’9](Y(m)), 0 <6 <o,

which happens only if n.= m and Xy = y(m). Thus S(X)/~ can be identified with

W,+) x (R+,v) and 6 with the homomorphism h(n,x) = hl(n) hZ(X) where

-n

1l
@

h, (n)

Notice that in this case x ® y iff x ~ y and this corresponds to (n, X(n))
being minimally sufficient.

Example 3 Let P1 and P2 be given by two positive continuous densities f1 and

f2 on R, with respect to Lebesgue measure. Then (Xl’ cee Xn) ~ (yl, ves ,ym)

when

i.e. when

tl(xl, cee ,Xn) =

|
/™~
s
Fh
=
~
sl
=
N
s
H
~
s}
S
N——
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takes on the same value at x and y. Thus S(X)/~ is a subset of (E;, ')2. Further
[x] = Aly] if

n m

m £ (x.) =AT £ (y.), k=1,2

i=1 K j=1 K7J
which occurs if

n m

m f (x,) m £ (y.)

o R = N

and then X is given by

Thus the equivalence relation ® is induced by the likelihood ratio

which is known to be minimally sufficient.

4.1 The canonical family

In order to obtain the proper definition of a canonical family we shall need the
following mathematical object: a semigroup S with scalar multipliers i.e. there

exist an operation o an S such that
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x0 (yoz)=(x0y)oz
and an mapping * on R+ x § = § such that
A*% (xoy)=(A*x)oy=x0 (A *y)

We let S* denote the set of homogeneous homomorphisms on S, i.e. mappings

h: § = (R+, *) such that

h(x) h(y)

h(x o y)

h(} * x) A h(x)

Now let (X,u) be a measure space and t: X - S a statistic

Definition 4.1 A canonical family determined by (p, t, S) is given by densities

with respect to u of the form

B(t(x)) . o €D,
S 6(t(x)) u(dx)

(4.1)
where
D = {p € S* [ a(t(x))-is méasurable-and;b gff 8(t(x)) u(dx) < o}.

The reason that we use only the homogeneous homomorphisms is that we want the

family (4.1) to be essentially independent of u, in the following sense:

Proposition 4.2 Let My be equivalent to u and h = %ﬁ— . Let to(x) = h(x) * t(x)
o

then the families determined by (u, t, S) and (uo, to’ S) are the same.
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Proof This follows since
G(tO(X)) du, = B(h(x) * t(x)) dug = h(x) 6(t(x)) duo = 6(t(x)) du.
Thus the densities are the same and the tﬁo families are identical.

We now want to show how the family P considered in section 2 can be extended to

a canonical family and finally give some examples how this extension works.
We then start with P given by the densities f(x,8) on X with respect to .

First choose S as the space of multiples of likelihood functions

n
s={ T £(x,,7), x>0, i=1, ... ,n}
i=1

This is a semigroup with scalar multipliers. To each x = (X;, ... ,X_) We asso-—
1’ n

vciate as before the (strict) likelihood function i.e. t(x) = [x].

Thus we are generating S from S(X)/~ by adding all multiplesof elements of

S(0) /~.

Now consider the family P generated by (¢, t, S). The mapping 6 - [6] associates
with each 6 € 0 a homogeneous homomorphism on S
[6]1 o (A * [x]) = Al6] o [x]

n
since both sides equal A TT £(x.,08), X = (X;5 eos sX ).
=1 i 1 n

The density corresponding to [6] is given>by [6] o [t(x)] = £(x,0), x € X¥ and
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the family P is thus imbedded into P.

Coroiléry 4.3 The family P does not depend on the choice of u.

Proof Let My be another measure equivalent to P and -let h = %%— . Likelihoods
o

from densities with respect to M, are proportional to likelihoods from p and

hence the mapping

to(x) = [X]uo

i.e. the likelihood with respect to Mo sends X into S. Note, how-
n

ever, that to(x) = h(x) =* [X]u’ where h(x) = T h(xi) and hence t = h x t and
. i=1
it follows from Proposition 4.2 that the families generated by (u, t, S) and

t S) are the same.
(]JO’ o’ )
Let us conclude this section by considering again the examples.

Example 1 The extension of this exponential type family depends on the semi-

group generated by the statistic {n, ZT t(xi), ZT 1n h(xi)}.

As an example consider the following special case of a normal distribution with

positive mean and variance equal to 1.

=1 -1
£(x,0) = X 72X 720 x €ER, 6 >0

1
V2r
We want to extend this family and the space S of multiples of likelihood func-

tions consists of functions of the form

2
c eae + b ,c>0, a€RrR, b<O.



The semigroup operations are given by

(a +a', b+b', cc")

(a, b’ c) 0 (a" b', c')

and

A % (a, b, c) (a, b, Ac)

Homomorphisms of S have the form

h(a, b, c) ¥ 2 + DB

o € R, B €R, y €RR. The homogeneous homomorphisms satisfy
h(a, b, Ac) = X h(a, b, ¢)

and hence we have y = 1.

For an element h € S* we then have

12
h(t(x)) = h(x, -}, VIT e 2¥ ) =

“1x% ox -}
e 2 e 2

1
V2T
When normalized this becomes the normal density with mean o € RE. Thus the cano-

nical family generated by the family with positive mean is the family with arbi-

trary mean.

Example 2 The space of likelihoods and their multiples are of the form

c 1[0,6](8)’ c>0,a>0

with

(a,c) o (a',c'") = (a vy a',cc'")
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and

A ¥ (a,c) = (a,Ac)

A homomorphism has the form
a
h(a,c) = 1[0 e](a) c
b

and the homogeneous ones have o = 1. When normalized this gives the family we

started with. Thus the uniform distributions on [0,0], 0 < 6 < ® form a canonical

family.
Exampie 3 1In this example the space S is spanned by the vectors

(, o o \
AT of (), AT £.(x.)}, A2>0, x. €X,1=1, ... ,n.
Ve 1R g ) 1

. . 2
If we assume that any point is ]0,°C>[2 can be so represented then S = ]0,[

with the operations

(a,b) o (a',b") (aa',bb")

(Aa,Ab)

A x (a,b)

A homomorphism is of the form

h(a,b) = a% bP

]
|

and the homogeneous ones satisfy a + B

Thus the family generated by (fl’fz) has densities of the form
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(%)

(x) u(dx)

£ () f;’“
, o €D,

o 1-a
J fl(x) f2

D={o | /£ £ %) ulax) <=l
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