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Abstract 

The paper is a survey of var~ous martingale techniques useful when studying the 

supercritical G~lton-Watson process ZO' Zl"" and its generalizations. Suppose 
n 

Zo = 1, Z 1 = L x . with the X . i.i.d. and let m 

W 
n 

n+ 1 n,~ n,1. 
n Z /m , W = lim W . Exploiting 

n n n the 

= 
L {W 1 - W } n+ n 

n=O 
L 

n=O 

similarity of 

Zn 
-n-l 

L {X m 
t;';;l n,1. 

-

EX . 
n,1. 

m} 

(1 < m < =), 

with a sum of independent r.v. with mean zero, a class of martingale ser~es 

approximating L {W 1 - W } is used to give a new and short proof of the neces-
n+ n 

sity and sufficiency of the condition EX . log X . < = for non-degeneracy of 
n, ~ n, ~ 

Wand to study convergence rates (i.e.a.s. estimates of W - W ) under related 
n 

moment conditions. E.g. if 1 < p < 2, lip + l/q = 1, then W - W = o(m-n / q) if 
n 

and only if EXP . < =. It is shown how this technique can be extended to the 
n,1. 

Bellman-Harris process, where (with some additional material) a full and self-

contained treatment of the basic limit theory is given. Also a simple approach 

to the study of the moments of W is presented. It yields explicit inequalities 

like EWP ~ 1 + EXP ./(mP - m), 1 < p < 2, and is based upon moment inequalities 
n,1. 

of the form 

ESf(S) ~ ESf(ES) + 
n 
L 

i=l 
EX.f(X.) 

1. 1. 

valid whenever f:[O,=) ~ [0,=) is concave and S 

independent r.v. X. > 0. 
1. 

Xl + ••• + Xn is a sum of 
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§ 1. Introduction. 

Consider a Galton-Watson process {Z } with offspring distribution F and offspring 
n 

mean m 
00 • 

fOx dF(x). We th~nk of the process as constructed from a double array 

{X .} of independent random variables (r. v.) .distributed according to F, such 
n, ~ 

that 

1, Z n+l 

Z 
n 

L' X . 
i=l n, ~ 

When m ~ 1, the only interesting a.s. statement on {Z } seems to be the certain­
n 

ty of extinction and all limit results as well as their proofs are essentially 

analytic in nature. The flavour of the supercritical case 1 < m < 00, which we 

consider throughout, is quite different. Here in general growth to infinity oc-

curs with positive probability, and the limit results are of strong type, de-

scribing for example the growth more precisely and more specific phenomena such 

as spatial distribution and age structure in the various generalizations of the 

model. Despite this fact, extensive use is made of analytic techniques, often 

successsfully and in a natural way, but often also in situations where the pro-

blems would suggest a different approach. 

In the present paper, we present some probabilistic methods useful when dealing 

with certain aspects of the limit theory in the supercritical case. As is well-

known, W = Z Imn is a non-negative martingale w. v. t. F = CJ(X .; i=O, 1,2, •.. ;m < n) 
n n n m,~ 

and thus W = lim W exists 1). Roughly speaking, our approach is to undertake 
n n 

a more refined study of {W } and n W in terms of the infinite series 

00 Z 
00 n 

(1.1) L {W 1 - W } L 
-n-l 

{X - m} m L 
n=O n+ n 

n=O i=l n,i 

and to exploit the structure of (1.1) as something in between a general martin-

gale series and a sum of independent r.v. with mean zero. The core of the paper 

-------------------------------------------------------------------------------

1) In such statements is frequently understood a.s. 
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lS § 2-3, where we introduce some new martingale serles approximating (1.1). 

The applications are in § 2 to give a new and short proof of the classical re-

suIt of [l3], 

1.1 THEOREM EW = EWO = 1 if and only if 

ex log x) 

while W= 0 otherwise. 

00 

J x log x dF ex) < 00 

o 

and in § 3 to study convergence rates, l.e. a.s. estimates of W-W , 
n 

1.2 THEOREM Suppose (x log x) holds. Then 

(i) Let 1 < P < 

Joo xP 
0 

dF(x) 

(ii) Let a > O. 

(1. 2) 

2, lip + l/q 1. Then W- W o (m-n / q) 
n 

< 00 

-a 
if and only if Then W- W o(n ) 

n 

00 

J x[logx -log y ] dF(x) 
Y 

-a 
o([log y] ) 

if and only if 

(iii) Let a > O. Then I::=O na- l {W - Wn } converges if and only if lla+l < 00, where 

00 

J x[log+x]S dF(x) 
o 

[to get a feeling for (1.2), note that 

00 

-a 
(1.3) 11 < 00 => J x log x dF(x) = o([log y] ) => (1.2) => 11 1 < 00 "IE > 0 a+l a+ -E 

y 

as lS easily seen upon integration by parts] 1.2 is a slight sharpening and ex-

tension of [1]. Results of similar form can be found In the theory of sums of 

-
i.i.d.r.v. Ul ,U2 ,· .. For example, letting 11 = EUl , Un 

holds that 

(1. 4) 
-
U 

n 
1) 
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(1.5) 

see [14], pg. 152-155, slightly extended. Together with 

(1. 6) 

(1. 7) 

(1. 8) 

P(inf W > 0) 
n n 

00 

EWP < 00 ~ J xP dF(x) < 00 

o 

peW > 0) > 0 

(p > 1) 

+ a EW[log W] < 00 ~ ~ < 00 

a + 1 

which holds assuming (x10gx), see 1.1 and [6], [9], (1.4) and (1.5) also pro-

vide a first motivation for 1. 2, since conditioned upon F W - W is distributed 
n n 

- n i 
as W Uz if we let P(U ~ u) = peW ~ u). To see this, let W' be the W-variable 

n n 

corresponding to the Galton-Watson process initiated by the ith individual alive 

at time n and note that 

(1. 9) W-W 
n 

Noting that z ~ mn and combining (1.4), (1.7), (1.9) leads precisely to part 
n 

(i) of 1.2, while using instead (1.5), (1.8), (1.9) one is lead to expect the 

condition for W - W = 0 (n -a) to be 11 < 00, which is only slightly stronger 
n a+l 

than (1.2), cf. (1.3). However, ~n § 2 we sketch a different point of view on 

1. 2. 

Also the technique in our proofs of 1.1, 1.2 relates to sums of independent r.v. 

As relevant background, we suggest to keep in mind Kolmogorov's three series 

criterion and the somewhat related standard proof of (1.4), (1.5), see [14], 

pg. 152-155. A common feature is here an approximation argument, which for ex-

ample for the law of large numbers consists ~n studying 

00 00 , 

(1.10) L: (if EU }/n L: {U - 11 + EU I( Iu I > n) }/n, 
n=O 

n n n=O n n , n 

'" U I( Iu I ~ n), where U 
n n n 
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rather than the (non necessarily convergent) serles I{U -~}/n. Adapting this 
n 

idea to the Galton-Watson process, we study not the serles (1.1) but instead 

a serles 

00 00 

(1.11) I {w 1 - E (W IF) } n+ n+1 n n=O 
I {W 1 - W + R } n+ n n n=O 

defined In analogy by (1.10), that is, by 

Z 

R 
n 

'" W n+1 

E(W - W 1 IF) n n+ n 

-n-1 
m 

n 
I 

i=l 
x . I(X . < c ) , 
n,l n,l=n 

00 

E (W - w IF) = m -1 W f x dF (x) . 
n+1 n+1 n n 

c 
n 

By definition, (1.11) is agaln a martingale series. As a common feature In the 

proofs enters a routine calculation of three series similar to those of Ko1mo-

gorov, 

00 

(1 .. 12) 
00 

ER , 
n 

00 

I Var{W 1 - W n+ n n=O 
+ R } 

n 

It is here where the moment conditions on F come In, but the calculations in 

(1.12) alone does not prove the results. Additional ideas varying from case to 

case are required to complete the proofs. 

There are numerous ways of varying the basic model and when developing techni-

ques for dealing with the Galton-Watson process, it lS important that these can 

be used In more general branching processes. The adaption to processes with 

several (even infinitely many) types has already been presented as part of [2] 

and we treat here in § 5 age-dependent processes. As example we have chosen the 

Bellman-Harris process ([12], Ch. 6) and give a full treatment of the limit 

theory. It turnes out that our proof of the analogue of 1.1 with some mlnor 

modifications provide one of the basic lemmas needed when treating the further 

a.s. convergence results on the distribution of the population according to 
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ages, see e.g. [12], [7]1). We have added sufficient material to make the ex-

position totally self-contained and borrow here some ideas from [4], [7] as 

well as [2]. 

Finnaly, § 4 is devoted to a remark on results of type (1.7), (1.8). The proofs 

in the literature, see e.g. [6], [9], are in part both deep and laborious and 

we sketch a different approach based on moment inequalities for sums of inde-

pendent r.v. rather than expansions of Laplace transforms. 

§ 2. The x log x condition. 

Our first example on the use of the martingales E{W 1 - W + R } defined in n+ n n 

§ 1 is to give the proof of 1.1. We let c = mn and the series in (1.12)are 
n 

then computed the following way: 

00 

'" (2.1) L: peW 1 * W 1) = 
n=O 

n+ n+ 

00 

L: EP(X . 
n 

for i=l, ... ,Z IF) > m some < n,l n n 

(2.2) 

n=O 

00 00 00 00 

J dF(x) J 
n 

L: EZ E m 
n=O n 

0 n=O n m 

00 00 00 

L: ER 
-1 

E J x dF(x) m 
n=O n n=O n 

m 

00 00 

m-l J x( E l(x > mn)) dF(x) 
o n=O 

00 

n l(x > m ) dF(x) = J O(x)dF(x) 
0 

00 

+ J x O(log x) dF(x) 
o 

1) In fact, the results of § 5 are slightly stronger than those of [7], Slnce 

we need only finite mean and not (x log x), which is used in a technical way in 

[7]. However, a short direct treatment of the case when (x log je) fails can be 

found in [3]. 
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00 00 

(2.3) 2: Var{W 1 - W + R } 2: E Var(W 1 IF) 
n=O n+ n n n=O 

n+ n 

00 

-2n-2 
var[Xl 1 l(Xl,l 

n 2: E ill Z ~ ill )] < 
n=O n , 

n 
00 ill 00 00 

-2 -n 
J 

2 
dF(x) 

-2 
J 

2 
( 

-n n 
ill 2: ill X m x 2: m l(x ~ m » dF(X) 

n=o 0 0 n=O 

00 00 

J x2 O(x- l ) dF(x) = J O(x)dF(x) 
o 0 

2 
From (2.3) and the convergence theorem for L -bounded martingales, we obtain 

2.1 LEMMA Without any moment conditions on F beyond 1 < m < 00, 2:{W - W + R } 
n+l n n 

d · Ll converges a.s. an In 

EW < 1 1S immediate form Fatous lemma. To prove the converse, assuming (x log x) 

we let N + 00 in the inequality 

N 00 

00 

which is obvious from W 1 > W 1. We then only have to prove the Ll-convergence n+ = n+ 

of 2:{W 1 - W } which in view of the lemma is equivalent to that of 2:R . Since n+ n n 

R ~ 0, it suffices that 2:ER < 00, which follows from (2.2). 
n n 

To prove that W = 0 if (x log x) fails, we first note that the existence of 

W = lim W implies the a. s. convergence of the telescoping series 2:{W 1 - W } n n n+ n 

W 1 for n large by (2.1) and n+ 

the Borel-Cantelli;lemma. Combining this with Lemma 2.1, we have a.s. conver-

gence of L: R . Now let W = inf Wand note that {W > O} n - n n {~ > O}. If (x log x) 

fails,Uoo xdF(x) = 00 as 1n (2.2) and peW > 0) = 0 follows from 
n 

m 
00 

00 > 2: 
n=O 

00 

-1 
R > n W J x dF(x) 
n= 

n 
m 

00 on {~ > O} 
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§ 3. Convergence rates. 

We next consider the proof of 1.2. To estimate W-WN we write W-WN 

where aWl - Wand use n n+ n 

3.1 LEMMA Let {a },{S } be ser~es of real numbers such that 0 < Sn t 00. Then 
n n 

(3.1) 
00 

I 
n=O 

converges ~ 
00 

I 
n=N 

a 
n 

Obviously (3.1) is analogous to Kronecker's lemma, which ~s used in the proof 

of (1.4), (1.5) and states that under the assumptions of (3.1) it holds that 

(3.2) 

00 

I 
n=O 

a Is 
n n 

N 
converges ~ I a = o(SN) 

n=O n 

Infact, both (3.1) and (3.2) are immediate from Abel's lemma, [10] pg. 54. 

We first consider part (ii) of (1.2), the proof of which is particularly well 

suited to demonstrate the ideas. We let Sn = na and instead of studying 

a a rv 

I a Sn = In {W 1 - W }, we approximate by In {W 1 - W + R } defined as in § 1 n n+ n n+ n n 

with c 
n 

n a m In . Calculations similar to (2.1), (2.3) yields 

00 00 

rv arv 

I peW 1 * W 1) ~ I Var[n {W 1 - W + R }] ~ V~ 
n+ n+ n--O n+ n n '-" n=O 

and as ~n § 2, we have immediately 

3.2 LEMMA n a a'" Let a > 0, c = m In and suppose V < 00. Then In {W l-W +R}, n a n+ n n 
a 

In {W l-W +R} converges a.s. n+ n n 

PROOF OF (ii). Suppose first V < 00 (which ~s substantially weaker than (1.2), 
a 

cf. (1.3». Combining 3.1 and 3.2 yields 

00 

I {W 1 - W + R } n+ n n n=N 

Therefore W - WN o (N-a ) ~s equivalent to 

00 00 

o (N-a ) I R I 
-1 

W m 
n=N n n=N n 

W-W + 
N 

00 

00 

I 
n=N 

f x dF(x) 

mn/na 

R 
n 



or, appealing t~ (1.6), to 

(3.3) 
-a 

o(N ) 

~8-

00 00 

r 

n=N n l a 
m n 

x dF(x) 

Define y 
n 

n a 
m In , N(x) SJlP{n:Yn ~ x}. Then (3.3) can be rewritten as 

00 

(3.4) J x(N(x) -N) dF(x) , N -+ "",: 

YN 

Apparently (3.4) is weaker than 

(3.5) 
00 

J x(N(x) - N(y» dF(x) 
y 

y -+ 00 

but if (3.4) holds, so does (3.5) Slnce for YN ~ Y < YN+l then 

00 00 

J x(N(x) - N(y» dF(x) < J x(N(x) - N) dF(x) 
y 

Now from the definition of N(x) it can be verified that 

N(x) = log x + a log log x + 0(1) • 
log m log m 

As x,y -+ ro, the meanvalue theorem for the log yields log log x - log log y 

o(log x - log y) so that the right-hand side of (3.5) lS 

00 00 

1 
J x(1og x - log y)(log m + 0(1» dF(x) + JxO(l) dF(x) . 
y Y 

since ~a < 00, the last term is o([log y]-a) and therefore conditions (3.5) and 

(1.2) are equivalent, completing the proof when ~ < 00. 

a 

Suppose next ~ = "". Then by (1.3), certainly (1.2) fails and we have to prove 
a 

that W - W 
n 

-a a (n ) must fail too. Since we assume (x log x), we can find 13 

such that 1 ~ 13 < a and that ~S < "", ~S+1/2 = "". Then from (1.3) and the first 

part of this proof it follows that W - W = a (n -13) fails and the proof is com­
n 

plete since 13 < a.D 
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(iii) . 2: n a-l 
Then PROOF OF Let S k . 

n 1 

N N co co 
a-l 

2: a Sn 2: k 2: a - SN 2: a 
n=l n k=l n=k n n=N+l n 

and from (3.1) it follows by letting N + co that 

(3.6) 

rv 

Let Wn+l ' 

co 

converges 

R be defined as above 
n 

co 

2: ~ 

with 

co 

2: 

co 

2: 
k=l 

c 
n 

n 
=m /n 

n=O 
peW 1 n+ =1= W 1) n+ 

n=O 
Var{S {W 1 n n+ 

a . 

a 
n 

Using 

converges 

a 
Sn ~n 

- W + R }} ~ ]la· n n 

one obtains 

Thus if]l < co, 2: S {W 1 - W + R } converges a.s. and from (3.6), we get the 
a n n+ n n 

a.s. convergence of 

co 

2: 
k=O 

a-l 
k 

co co co 

2: ka-l(W - Wk + 2: 

k=O n=k 

Thus the convergence of 2: ka- l {W - W } ~s equivalent to that of 
k 

or, 

co 

2: 
k=O 

appealing to 

00 

2: 
k=O 

a-l 
k 

co 

2: 
n=k 

(1.6), 

co 

k 
a-l 

2: 
n=k 

R 
n 

-1 
m 

00 

2: 
k=O 

to that of 

00 

f x dF (x) 

mn/na 

a-l 
k 

co 

2: 
n=O 

00 

2: 
n=k 

Sn 

00 

W f x dF(x) 
n 

00 

f x dF(x) 

mn/na 

R ) 
n 

a Using S ~ n ,this precisely reduces to]l 1 < 00 and the proof ~s complete 
n a+ 

when ]la < 00. 

If]l = 00, then of course]l 1 = co. Assuming (xlogx) we can choose S, l~S <a, 
a a+ 

such that ]lS < 00, ]lS+l = co. Then the first part of the proof excludes the con­

vergence of 2: n S- l {W - W } and Abel's criterion ([ 10], pg. 48) that of 
n 

a-l 
2: n {W - W }. D 

n 
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PROOF OF (i). We let Sn 
n/q 

m ,cn 
nip = m • Then 

00 00 00 

Var[mn / q{W 1 '" + R }] f xP dF(x) (3.7) L: peW 1 ::1= Wn+1) C:! L: - W C:! 
n+ n+ n n n=O n=O 

Assuming the right-hand side to be finite, we have a. s. 

L: mn/q{W - W + R }, L: mn/q{W 
n+1 n n n+1 

00 

-N/q o(m ) = W - W + 
N 

L: 
n=N 

R 
n 

But the last term is o(m-N/ q), since 

00 00 

- W + R } and (3.1) 
n n 

-1 
W-W +m 

N 

00 

00 

L: 
n=N 

W 
n 

0 

convergence 

gives 

00 

f x dF(x) 
nip 

m 

L: 
n/q m f x dF(x) f 0 (xP ) dF (x) < 00 

n=O nip 0 m 

of 

and it follows that W-WN 
-N/q = 0 (m ) , prov~ng one way of the result. 

For the converse, the method in the proofs at part (ii), (iii) and in § 2 does 

not apply, because the condition for convergence in (3.7) is not weaker than 

that for the result. Our proof is here totally different and we proceed by 

reducing the necessity problem for the Galton-Watson process to that of sums', 

of i.i.d.r.v., cf. (1.4). 

-N/q 
Suppose W - WN = 0 (m ). In particular, W 1 - W n+ n 

o(m-n / q) so that on {W~> O} 

(3.8) -l/p 
Z 

n 

Z 
n 

L: 
i=l 

{x . - m} 
n,~ 

W -l/p mn / q {W 1 - W } -+ 0 . 
n n+ n 

l/ql- I Let the r. v. U ~n (1. 4) be distributed as X . - m, let q (n, E) = P (n U '> E) 
n n,~ n 

c c 
and let U1 ,U2 ' ... be independent and follow the symmetrized distribution of Un' 

-c c 
that is, the distribution of X 1 - X 2. Define U , q (n, E) the obvious way. n, n, n 

It is then well-known that U~ has pth moment if and only if F has so, so by 

(1.4) it suffices to prove that ijc = o(n-l / q). By the conditional Bore1-Cantelli 
n 

lemma and (3.8), we have on {W > O} 

00 

L: 
n=O 

q(Z ,E) 
n 

00 

L: 
n=O 

Z 
n 

L: 
i=l 

{X .-m}1 >Elp)<oo 
n,~ I n 



-11-

and therefore also by a standard inequality 2: qC(Z ,2E:).:::..2 2: q(Z ,E:) < 00. Now 
n - n 

pick a numerical sequence {ken)} of integers of the form ken) = Z(w), where W' 
n 

c belongs to the set of positive probability where W > 0, 2: q (Z ,E:) < 00 for all 
n 

rational (and therefor all) E: > O. Then 

00 00 

(3.9) 2: P(k(n)l/q IU~(n) I > E:) 
n=O 

2: 
n=O 

c q (k(n),E:) < 00 

-c 
implying Uk(n) o(k(n)-l/q). Define 

M 
n 

k(n) -l/p Iuc uCI max 1+"'+ i 
l~i~k(n) 

By Levy's inequality and (3.7) 

00 00 

2: 
n=O 

P(M 
n 

00 -l/PI c c I >(0).:::..22: P(k(n) ul+ ... +uk(n) >(0) 2 2: 
n=O 

c q (k(n),E:)< 00 

n=O 

so that M -+ O. One checks readily that when ken) < 1 ~ ken + 1), 
n 

.l/q -c l/q -c 2(k(n+l)\l/P 
1 IUil ~ ken) IUk(n) I + \ k(n») Mn+l 

and U~ = o(i-l / q), i -+ 00, follows since k(n+l)/k(n) -+ m {in particular, the 
1 

sequence ken) is ultimately increasing).D 

We conclude by some remarks on the relation of 1.2 to sums of independent r.v. 

It is possible to exploit the motivation for 1.2 given in § 1 somewhat further 

by using (1.7), (1.9) to prove 

00 

2: 
n=O 

P (mn / q I W - wi> E: IF) < 00 

n n 
if 

00 

J xP dF(x) 
o 

< 00 

and thus one half of (i). Similarly, (1.8) and (1.9) combine to give W-W = 
N 

-a o(N ) if ~ 1 < 00. However, the full strenght of 1.2 does not seem to follow 
C/,+ 

this way and as 1S apparent from the proofs, we exploit the structure of W-W 
n 

as the tail sum of (1.1) rather than (1.9). Also, as remarked earlier not all 

results are the perfect analogous of (1.4), (1.5) to be expected from (1.7), 

(1.8), (1.9). Instead we state the following result on sums of independent r.v., 

whose form and proof is more similar. 
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3.3 THEOREM Let Ul ,U2 , ... be i.i.d. with common distribution G. Then (from 

Kolmogorov's three series criterion) I U In converges if and only if 
n 

00 

(3.10) f Ixl dG(x) < 00, 

-00 

00 

I f x I ( I x I > n) dF (x) converges 
n=O 

If this LS satisfied, then 

(i) O(N-l/q ) if and only if f:oolxlP dG(x) < 00 (1 < p < 2, lip +l/q) 

(ii) 
00 -a 

For a > 0, IN Un/n = o([log N] ) if and only if 

00 

110', f Ixl Ilog+xl a dG(x) < 00, 

-00 

(3.11) 
00 

I fxI(lxl > n/(log n)a) dG(x) 
n=N 

-1 
There are, of course, similar results for other weights than n and also part 

(iii) of 1.2 has a counterpart. The conditions (3.10), (3.11) can not be expres-

sed in terms of the 11 in the same way as in (1.3). For example, if G LS symme­
a 

tric, (3.11) reduces to 11 < 00, while if G is concentrated on [a,oo[ for some 
a 

a > -00 , then (3.11) reduces to (1.2) (with F replaced with G) and (1.3) holds. 

§ 4. A remark on the moments of W. 

We recall the results (1.7), (1.8) concerning the relation between the moments 

Ln the offspring distribution F and those of W. The aim of the present section 

LS to sketch an approach different from that of [6], [9] to results of this type. 

As set-up, we choose to consider moments of the form EWv feW), where v LS an 

integer and f a suitable function satisfying f(x) = o(x), x ~ 00, for example 

f(x) = xa , 0 < a < 1. A detailed treatment is given only for the case v = 1, 

which is of particular importance and suffices to demonstrate the ideas. 
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4.1 LEMMA Let f: [O,oo[ -+ [O,oo[beconcave and let S Xl + ... + ~ be a sum of 

N independent r.v. X. > O. Then 
---'------~ , ~ = 

(4.1 ) 
N 

ES£(S) ~ESf(ES)1 + I EX.f(X.) 
i=l ~ ~ 

PROOF: The assumptions on f imply subadditivity, f(a+b) 2 f(a) + feb), a,b ~ O. 

Thus 

:ESf (S) 
n n 
I EX . f (S ) < I 

i=l __ ~ .~ i=l 

n 

{EX.f( I X.) + EX.feX.)} 
~ j =l=i J ~ ~ ~ 

< . ESf (ES) + I EX. f (X.) , 
i=l ~ ~ 

s~nce by Jensen's inequality 

.EX.f( I X.)=EX.Ef( I X.) ~ EX.f(E I X.) < EX.f(ES).O 
~ .. J ~ ...... J- ~ •. J= ~ 

J=I=~ J .... ~ J=I=~ 

Letting N = Z X. 
n' ~ 

- u+l! -n-l Zn 
X ./m ,S = m I·1X. = W 1 yields 
n,~ ~= n,~ n+ 

Z 

E(Wn +1 I Fn) £(E(Wn+1 I Fn» + i:: E (~~~ <~~D I Fn) 

and it follows that 

N 

lim {f(l) + I {EWn+lf(Wn+l ) - EWnf(Wn )}} < 
n=O 

f(l) + f(l) + m-l 7 x ; f( n:l) dF(x) 
o n=O 'm 
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4.2 EXAMPLE Let 1 < P < 2, f(x) 
p-l n+l 

x . Computation of l: f (x/m ) and insert-

ting yields 
00 

J xP dF(x) 

(4.2) EWP ~ 1 + 
0 

1 < p < 2 
mP - m 

In particular, EWP < 00 if the pth moment ln the offspring distribution is finite. 

The converse is immediate assuming (x log x), Slnce then by convexity 

00 

J xP dF(x) 
o 

4.3 EXAMPLE In (1.8), [log+x]a does not satisfy the assumption on f(x), but so 

does 

o 
f(x) 

2 2 a 
if we chose first Xo > 1 such that d /dx (log x) < 0 when x ~ Xo and let 

c = ~ (log x)O\I =x ' 
1 dx x 0 

~ in (1.8) follows at once, 
n+l 

Slnce one easily checks l: f (x/m ) 
+ a+l 

O([log x] ). 

We shall not here further work out the approach. Some problems, in particular 

to prove ~ in (1.8) seems to require additional ideas, while others are immedi-

ate. For example, the method works in the multi type or age-dependent case with 

a mere change of notation by studying the one-dimensional martingale functionals 

of the process. Also moments of order higher than the second can be treated. 

We state here the following inequality, which is valid for v = 1,2, ... under the 

hypothesis of 4.1: 

(4.3) ~ (v\ ESv-V 
\ VI' v=l \ 

N 
l: 

i=l 

V EX.f(X. ) 
1 1 
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§ 5. The limit theory of the supercritical Bellman-Harris process. 

The model is the following. All individuals have lifelengths governed by a di-

stribution G on ]0,00[. At the time of death of the parent a random number of 

children are born according to the offspring distribution F. The lifelength and 

number of children of any particular individual are independent, and all indivi-

duals evolve independently of each other. 

For questions of existence and construction, we refer to [12]. As remarked at a 

number at occasions in the literature (going back at least to [12]), the process 

is most naturally considered as a Markovian multitype process identifying types 

with ages. Accordingly, we define the state Zt of the process at time t not as 

the number n of individuals alLve, but as the collection Zt 

their ages. By averaging Zt with various n belonging to the set B of bounded 

measurable functions on [0,00[, we obtain a number of functionals useful 1n the 

study of the process, defined by Zt[n] = ° if the population 1S extinct at time 

t and by 

For example, IZtl = Zt[l] is the total population Slze. Also, if we think of Zt 

as a (random) measure on [0,00[, then simply 

00 
f n (x) Z [dx]. 
° t 

Specific assumptions on Zo are usually not relevant but, whenever needed, pX, EX 

etc. refer to the case Zo = <x>. We throughout consider the supercritical case 

1 < m 
00 
f x dF(x) < 00 
o 

and assume as usual that G 1S non-lattice with G(O) 

(unique) root of: 

O. Define a > 0 as the 
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A[dx] 

V(x} 
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00 

-aX 
m f e dG(x} 1 

o 

00 

e-ax (1-G(X)) dxlf e-ay (l-G(yl) dy 
o 

(G(x + t) - G(x)) [ (1- G(xll 

00 00 

f y e -ay dG(y) ! f e -ay (1- G(y22 dy 
o 0 

00 

n~l fe-ay dGx(y} 
o 

EX Z [] tn, 

00 

f H n(x) ]l[dx] 
o t . 

It is then readily checked that {M} 0 ~s a semigroup acting to the right on 
t t~ 

the set B of bounded Borel-measurable functions n on [O,oo[ and to the left on 

the set of bounded measures ]l on [0,00[. Furthermore: 

at 5.1 LEMMA A,V are eigenfunctions of M corresponding to the eigenvalue e ~.e. 
t 

(5.1) M V = eat V • 
t 

Furthermore for any nEB such that e-ax (l-G(x»n(x) ~s directly Riemann inte-

grab1e (d. [l1J, pg. 361-362) 

(5.2) sup le-at-Mtn(x)i - V(x)A[nJI -+- 0, t -+- 00 

O~X<06 

The class of nls satisfying the assumptions for (5.2) is rather extensive and 

contains e.g.' for al1 O~a~b,:::,oo n(x) = I(a~x<b). Thus (5.2) states that in 

the mean the population at time t is asymptotically composed like the measure 

1} There is some ambiguity in the literature concerning the normalization of V. 
-1 

The present choice ensures A[ 1] = A[vJ = 1, VeOl = (m n1) . 
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at 
e V(x)A, where x 1S the age of the ancestor, and for this reason and (S.l), 

A 1S usually called the stable age-distribution, V the reproductive value and 

a the Malthusian parameter, cf. [12]. 

S.2 REMARK Suppose the ancestor 1S of age x and let A be the time of his death. 

Then from time A on the process evolves like the sum of N independent processes 

with ancestors of age z.ero, N chosen at random according to F. In particular, pX " 

depends only on x through GX. This explains somewhat further the role of A and 

-1 x -aA V, since Vex) = nl E e . 

PROOF OF 5.1. We first prove (S.2). Let for some fixed n satisfying the assump-

x EX rv. -a t ° rv -ax tions K (t) = Zt[n], K(t)=e K (t), dG(x)=mei dG(x). Appealing to S.2, 

(S.3) 

n(x+t) l-G(x+t) 
1 - G(x) 

t 
f KO( )dG(x+u) .. 

+ ° m t..,..u 1 - G(x) 

-at Letting x = 0 and multiplying by e gives 

t 

K(t) e-at n(t)(l- G(t» + f K'(t -ul dO(u}; . 
o 

rv 

The choice of a ensures that G 1S a probability measure so that by the renewal 

theorem 

lim K(t:) 
t-+m 

00 

fe-at n(t)(l-G(t» dt 

° 00 

ftdG(t) 

° 

A [n] 
V(O) A [n] 

Inserting 1n (S.3), (S.2) follows after some elementary estimates. 

(S.l) is an easy consequence of (S.2). For example integrating (S.2) w.r.t. A 

yields e -at AM n ~ A [n] for all n satisfying the assumptions for (S. 2) and 
t 

1) 
therefore by weak continuity for all a.e. continuous n, cf. [8]. It is not 

1) Since A has a density, continuitya.e. on the essential span of F w.r.t. A or 

w.r.t. Lebesgue measure are the same concept. 
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difficult to see, that if nEB ~s continuous, then M n ~s a.e. continuous. The­
s 

ref ore 

AM [n] 
s 

A[M n] 

lim 
t-+= 

s 

as 
e 

lim 
t-+= 

-at AM M 
e t s n 

and AM 
s 

e as A follows. M V = e as V ~s proved in a similar manner. 0 
s 

Let Ft be the a-algebra containing all relevant information on the process up to 

time t. From (5.2), we get 

Z M [V] 
t s 

as ] 
e Zt [V 

-at ] and it follows that {W} 0' where W = e Zt[V, is a non-negative martingale 
t t~ t 

w.r.t. {Ft}t~O. Thus W = limt Wt exists a.s. and the main result on the limiting 

behaviour of the process is the following, the proof of which occupies the rest 

of this section: 

5.3 THEOREM E~ 

(x log x) 

0) 

(5.4) 

Vex), x > 0, if and only if 

00 

J x log x dF (x) < 00 

° 
1, Vx ~ 0, otherwise. Furthermore, for any nEB continuous 

WA [nJ 

Compared with the Galton-Watson process, the complications occur from the fact 

that the different lines of descent still evolve independently, but no longer 

according to the same law. That is, ifY ~O is some functional of the process, 

pX(Y > y) depends on x. We work here as in [7Jwith the assumption 

(5.5) pX(Y > y) < l-H(y) 
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where H ~s some distribution on [O,oo[ independent of x. The reduction to (5.5) 

follows essentially from 5.4 below. In the proof, we adapt as everywhere ~n the 

t i following without further explanation the convention, that Y' denotes the 

corresponding functional of the line of descent initiated by the ith individual 

alive at time t. 

5.4 LEMMA Let t > e and let Y = Yt be the total number of individuals which 

ever lived up to time t. Then (5.5) holds, where H may be taken with finite mean 

and satisfying 

(5.6) 

In the proof, we need 

00 

(x log x) => J x log x dH(x) < 00 • 

o 

5.5 LEMMA Let N,Ul ,U2 , •.. be independent and non-negative withN integer-valued 

and Ul ,U2 , ... i.i.d. and let S = 1 + Ul + + UN' Define 

log*x { 
x/e 

log x x~e 

].l = E Ul 10g*Ul . Then there exist constants c(v) < 00, v ~ 0 (dependent on the 

distribution of N) such that if ].l < 00, E Ul ~ v, EN 10g*N < 00 thenE S 10g*S < 

c(v) + ].lEN. 

PROOF Since log* satisfies the assumptions of 4.1, we have 

E(S 10g*S IN) ~ E(S IN) 10g*(E(S IN» + 11og*1 + N].l 

so we have only to let c(v) 
-1 

E(l + Nv) log*(l + Nv) + e 0 

PROOF OF 5.4 Let N,Ul ,U2 ,··· be independent with peN ~ x) = F(x), 

0 
P (Y ~ u) and let S = 1 N 

+ L:l Ui' H(y) =P(S~y). Letting N be the 

children born at time A we have, appealing to 5.2, 

P(u. < u) 
~ = 

number of 
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x x 
P (Yt > y) ~ P (YA+t > y) ~ peS > y) 1 - H(y) 

and we have to prove f~ x dH(x) < "" and (5.6). We treat only the latter and more 

complicated case, which obviously is equivalent to E S 10g*S < "", or appealing to 

5.5, to "" > ° E Ul 10g*Ul = E Yt 10g*Yt = l1(t) (say). Let An (t) be the event that 

at most n deaths occur before time t. Obviously, 

(5.7) 

where for conven~ence Y 
s 

0, s < 0. Define 

Letting V 

11 (t,A) = EO(y 10g*Y l(A) I A), 11 (t) 
n t t n n ° E 11 (t,A) 

n 

EO Y where T > t ~s fixed ~n 5.5 and using (5.7) g~ves 
T 

t 

11n +l (t) ~ c(v) +m f 11 (t - A) dG(A) < c(v) +mG(t) 11 (t) 
() n = n 

If t ~s so small that mG(t) <: I, it therefore follows by iteration that 

l1(t) = lim 11 (t) < 00 But if l1(t) < "", then the 4.1 applied to the inequality 
n 

IZtl 
Y2 < Y + L: 

t = t 
i=l 

shows easily that 11(2t) < 00 and therefore l1(S) < 00 V-so 0 

The following lemma is rather standard and easily proven for example upon inte-

gration by parts: 

5.6 LEMMA (5.5)implies that for any x,y ~ ° 

(5.8) 

(5.9) 

"" x 
E Y ICy > y) 2. f x dH(x) 

x 2 
E Y I (Y 2. y) 

Y 

< j x 2 dH(x) + y(1 - H(y» 

° 
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5.7 LEMMA Define for some functional Y > 0 of the process and some fixed 0 > 0 

S 
n 

n(x) 

R 
n 

-omo 
e 

E~, E: (x) 
n 

e-ano Z )E: ] 
nu n 

00 

-ane 
e 

E(S IF) 
n n 

E ( S - 8 IF) = T - E (8 IF) 
n n no n n no 

e-ano Z [n] 
n 

Then (5.5) and JOxdH(x) < 00 implies that 

(5.10) 
00 

L: 
n=O 

peS * 8 ) 
n n 

< 00 , 
00 

L: 
n=O 

Var{8 - T 
n n 

+ R } 
n 

< 00 • 

If furthermore J~ x log x dH(x) < 00, then also L::=o E Rn < 00 

PROOF One just has to insert (5.5), (5.8), (5.9) 1n (2.1), (2.2), (2.3). For 

example, 

00 

L: 
n=O 

00 

L: 
n=O 

peS * s ) < n n 

00 

L: 
n=O 

E IZ 1(1 - H(eano » = . no 

00 

L: 
n=O 

> e ano IF) < 
n 

00 

J 
ana 

e 

dH(x) 
00 

J O(x) dH(x). 0 

o 

PROOF OF THE SUFFIENCY OF (x log x). We study the {Wt } t>O - martingale along the 

-a 
discrete subsequence {W} 0 1 2 . Let Y = Wl = e Zl[vl and 0 = 1 in 5.7. 

Then n(x) = Vex), S 
n 

00 

n n= , , , ... 

W T 
n+l' n W . Writing W 1 n n+ 

L: Var{W 1 - W + R } n+ n n 
n=O 

< 00, 

00 

s ,5.4,5.7 implies 
n 

L: E R 
n 

n=O 
< 00 

and thus the Ll-convergence of L:{Wn+l - Wn + Rn }, L:Rn' L:{Wn+l-Wn }. From this 

E W = E Wo follows exactly as in § 2. 0 

Before discussing the problem of the necessity of (x log x), we give the proof 

of (5.4). 
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5.8 LEMMA Let M -at I I sup e Zt . Then M < 00. 

t~O 

PROOF (R. Kesten, private communication. See also [3]). Since W exists, it is 

~ -1 
clear that M = SUPt~O Wt < 00 a.s. If infx~O Vex) = c > 0, then IZtl < c Zt[V] 

-1 ~ 
and thus M ~ c M < 00. In the general case, we always have Vex) ~ y > a when 

a ~ x < 1. Any individual alive at time t, n ~ t ~ n + 1, was alive and of age 

at most 1 at one of the times O,l, ... ,n,t. Thus 

IZ I < 
t 

n 

L: Zk [ I [0 1]] + : Z t [ I [0 1]] < 
k=O- -- , , 

-t n -1 n ak t - t 
( " Z [V] Z [V]) ~M(" e + ea )="'MO(ea ) Y L, k + t ~Y L, 

k=O k=O 

and the assertion follows. 0 

5.9 LEMMA 
00 

In the notation of 5.7, fOx dR(x) < 00 implies that S - T -+ 0 . 
n n 

PROOF (5.10) implies that S 
n 

~ ~ 

S for n large and that S - T + R -+ a so we only n n n n 

have to prove R -+ O. But from (5.8) 
n 

5.10 LEMMA 

(5.11) 

PROOF Let 

y 
m 

a < R < M 
= n = 

e 

00 

f Y dR (y) -+ o. 0 

ana 

If ~ E B satisfies (5.2), then for any a > a a.s. 

e -ana Z [~] -+ W A [~] 
n 

sup 
O~x<oo 

In (x) - Vex) A [~] I. 
m 

In the notation of 5.7 we get, using 5.9, 

lim e-ana Z [~] = lim S = lim T 
n n n 
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As m + 00, lim < In (5.10) follows. lim> lS similar. 0 

PROOF OF (5.4) We first remark, that (5.11) holds whenever nEB is continuous 

-at 
a.e. This follows since we have weak convergence of the (random) measure e Zt 

to WA for all realizations of the process such that (5.11) holds for n(x) = 

1(0 ~ x < a), a = 00 or a rational, cf. [8]. The same argument shows that it suf-

fices to establish (5.4) for an n of this specific form. Let then for 0> 0 

EXYo· 

Obviously 

x 
~o(x) > I(x + 0 < a) P (A > 0) 

~!(x) 

(say), using 5.2, 5.4 for the last estimate. Since ~!, ~! are a.e. continuous, 

we get from 5.9, 5.10 

--- -at -ano 
lim e Zt[n] < lim e 
t+oo n+oo 

IZno l 
2: yno, i 

i=l 

l ~m -ano [-] --. - -ano [-*] 
~ e Zno ~o < llm e Zno ~o 

t+oo n+oo 

If we take the paths right-continuous, then PX(A ~ 0) + 0, 0 -} 0, so that ~! + n. 

This proves lim ~ in (5.4) and lim ~ is similar. 0 

It remalns to prove that W = 0 if (x log x) fails. A short and self-contained 

proof of this fact is given in [5]. We present here a different proof along the 

lines of § 2 for the following reasons. First, the basic step, Lemma 5.11 below, 

seems to us to be a major step in extending the convergence rate results of § 3 

to the Bellman-Harris process, though we have not worked out the details. Second 

our proof uses not specific properties of the process quite as heavily as [5] 



-24-

and might thus be somewhat better suited for generalizations. 

5.11 LEMMA There exists a set B S [O,oo[ of positive A-measure and c l > 0, c2 < 00 

such that for all x E B, u > 0 

00 

EXWI T(WI > u) ~ c l f x dF(x) • 
c 2u 

PROOF Let Yl ,Y2 , ... denote constants with 0 < Yi < 00. We choose B such that 

(5.12) inf PX(A 2. 1) 
xEB 

inf G(x + 1) - G(x) = > 0 
1 - G(x) Yl xEB 

For example, choose first y > 0 in the support of G and next z > 0 such that 

y - 1 < z < y and that both z and z+l are continuity points of G. Then for x in 

a suitable open neighbourhood B of z (which has positive A-measure) 

G(x + 1) - G(x) 
1 - G(x) 

> 1:. _G~( z=---.,+..::;l..<..) _-...,----<G~(_z~) 
=2 l-G(z) > 0 

We next remark, that if SN = Ul + ... + UN with the Ui i.i.d., Ui ~ 0, EUi > 0, 

then for some Y2 'Y3 and all N,u 

(5.13) 

To see this, choose Y4 'Y5 such that P(SN_1/N > Y4) ~ Y5 for all N ~ 2 and note 

that a lower bound for the left-hand side of (5.13) is 

Now let N 

x E B 

inf 
O~t~J 

WA,i. Then 
t 

x x 
E Wll(Wl > u): ~ E WlI(Wl > u)I(A ~ 1) ~ 

Y6 EX[I(A ~ 1) E(SN I(Y6 SN > u) I N,A)J > 

00 

and thus for 

Y7 EX[I(A ~ 1) N I(N > Ys u)J ~ Y7 Yl f x dF(x) . 0 

YSu 
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PROOF OF THE NECESSITY OF (x log x) . Choosing W l' R as for the sufficiency, 
n+ n 

E R < 00 follows from (5.10) exactly as in § 2. Writing Z = <xl ... x >, we n n ' n 

have 

I Z I n x. 00 

-an ~ an -an 
Zn [IB] x dF(x) R e E E Wl I(Wl > e ) > e cl J n i=l an 

c;~e 

If (x log x) fails then 

00 00 

J x dF(x) 00 

-an so that on {W > O} it follows from e 

Thus peW > 0) O.D 
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