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Abstract

The paper is a survey of various martingale techniques useful when studying the

supercritical Gglton-Watson process ZO’ Zl,... and its generalizations. Suppose
n
= = . wi . i.i.d. = . <m <
Z0 1, Zn+1 % Xn,l with the Xn,l i.i.d. and let m EXn,l (1 <m < ),
W =2 /mn, W = 1lim W . Exploiting the similarity of
n n nn
oo =) Zn
: -n-1
z {wn+1 - wn} = X m z {xX i m}
n=0 n=0 i=1 ™

with a sum of independent r.v. with mean zero, a class of martingale series

approximating {wn+l - Wn} is used to give a new and short proof of the neces-

log Xn : < o for non-degeneracy of

sity and sufficiency of the condition EXn i
b

s
W and to study convergence rates (i.e.a.s. estimates of W - Wn) under related
moment conditions. E.g. if 1 <p <2, 1/p + 1/q = 1, then W - Wn = o(m—n/q) if
and only if EXE’i < o, It is shown how this technique can be extended to the
Bellman-Harris process, where (with some additional material) a full and self-
contained treatment of the basic limit theory is given. Also a simple approach

to the study of the moments of W is presented. It yields explicit inequalities

like EWP S 1 + EXE i/(mp -m), 1 <p <2, and is based upon moment inequalities
b

of the form

n
ESf(S) S ESf(ES) + X EX, £(X,)
i=1
valid whenever f:[0,o) - [0,®) is concave and S = X1 + ...+ Xn is a sum of

independent r.v. Xi 2 0.



§ 1. Introduction.

Consider a Galton-Watson process {Zn} with offspring distribution F and offspring
mean m = f;)(dF(X). We think of the process as constructed from a double array

{X .} of independent random variables (r.v.) distributed according to F, such

b

that

N

I

-

-

|
I~ N
>

When m < 1, the only interesting a.s. statement on {Zn} seems to be the certain-
ty of extinction aﬁd all limit results as well as their proofs are essentially
analytic in nature. The flavour of the supercritical case 1 < m < «, which we
consider throughout, is quite different. Here in general growth to infinity oc-
curs with positive probability,band the limit results are of strong type, de-
scribing for example the growth more precisely and more specific phenomena such
as spatial distribution and age structure in the various generalizations of the
model. Despite this fact, extensive use is made of analytic techniques, often

successsfully and in a natural way, but often also in situations where the pro-

blems would suggest a different approach.

In the present paper, we present some probabilistic methods useful when dealing
with certain aspects of the limit theory in the supercritical case. As is well-

n . . . .
known, Wn = Zn/m is a non-negative martingale w.v.t. €n= O(Xm i;1=O,1,2,...;m<n)
bl

and thus w==1imn Wn exists 1). Roughly speaking, our approach is to undertake

a more refined study of {Wn} and W in terms of the infinite series

Z
_ A | n
Wn} = I m .Z {Xn i m}

b

(L.1) r {w
n=0 atl n=0 i=1

and to exploit the structure of (l.1) as something in between a general martin-

gale series and a sum of independent r.v. with mean zero. The core of the paper

1) In such statements is frequently understood a.s.



is § 2-3, where we introduce some new martingale series approximating (1.1).

The applications are in § 2 to give a new and short proof of the classical re-

sult of [13],

1.1 THEOREM EW=EW

0=].if and only if

o

(x log %) S xlogxdF(x) < »
0

while W= 0 otherwise.

‘and in § 3 to study convergence rates, i.e. a.s. estimates of w-—wn,

1.2 THEOREM Suppose (x logx) holds. Then

(i) Let 1 <p < 2, 1/p + 1/q = 1. Then w-—wn = o(m—n/q) if and only if

f; xP dF(x) < o

(ii) Let o > 0. Then W-—Wh = o(n_q) if and only if

(1.2) / x[logx -logy ] dF(x) = o([log y]—a)
y

& o-1 ' . .
(iii) Let o > 0. Then Zn=0 n {w wn} converges if and only if Mol < ©, where

Mg = I x[log+x]B dF (x)
0

[to get a feeling for (1.2), note that

< w= [ xlogxdF(x) = o([logy]_u)=>(1.2) = Mytlmg < o Ve >0
y

(1.3) Mol

as is easily seen upon integration by parts] 1.2 is a slight sharpening and ex-—
tension of [1]. Results of similar form can be found in the theory of sums of
i.d.dir.v, Ul’UZ"'° For example, letting u = EUl’ U = (U1+...+Un)/n-u, it

n

holds that

-1/q P ;
(1.4) U = o(n ) a»E|U1| <o (L<p<2,1/p+tl/q=1)



(1.5) ﬁn = o([log n]™ %) @>E]U1l [log+|U1|]u <o (a>0)

see [14], pg. 152-155, slightly extended. Together with

(1.6) sup_ Wn < oo, P(1nfn Wn >0) =PW>0) >0
(1.7) EWP < we [ xP dF(x) <o (p > 1)
0
+ -0
5(1.8) EW[log W]~ < « & My +1 5@

which holds assuming (x logx), see 1.1 and [6], [9], (1.4) and (1.5) also pro-

vide a first motivation for 1.2, since conditioned upon Fn w*-Wh is distributed

P(W < u). To see this, let W™ " be the W-variable

]

as wnUZn if we let P(U < u)

. e .th . .. . .
corresponding to the Galton-Watson process initiated by the 1 individual alive

at time n and note that

N

Zn n
(1.9) W-w =L ¢ whlony-w &= 3 whton
n . nizZ ._
=1 n i=1

=]
H

Noting that Zn ~ n" and combining (1.4), (1.7), (1.9) leads precisely to part
(i) of 1.2, while using instead (1.5), (1.8), (1.9) one is lead to expect the
condition for W-Wn = o(n_u) to be Hyp1 < which is only slightly stronger

than (1.2), cf. (1.3). However, in § 2 we sketch a different point of view on

1.2.

Also the technique in our proofs of 1.1, 1.2 relates to sums of independent r.v.
As relevant background, we suggest to keep in mind Kolmogorov's three series
criterion and the somewhat related standard proof of (1.4), (1.5), see [14],

pg. 152-155. A common feature is here an approximation argument, which for ex-

ample for the law of large numbers consists in studying
(o]

(1.10) r {U -EU}n= 3z {U -u+ EUﬂ;(lUnl > n)}/n,
n=0 n=0

where U = Un I(lUnl < n),



rather than the (non necessarily convergent) series Z{Un-u}/n. Adapting this

idea to the Galton-Watson process, we study not the series (l.1) but instead

a series

[ee]

(1.11) nzo w .- E(Wn+1] F)}Y = nio W, ~—W +RJ

defined in analogy by (1.10), that is, by

-n—-1 n
X . IX .
n,i n,i

I
0
p—

-

Wn+]_ -m

™M N

i=1

_ _N _ —N _ —1

R =EW -W |E£) =EW_,4~W ,|F)=m WS x dF(x) .
“n

By definition, (1.11) is again a martingale series. As a common feature in the

proofs enters a routine calculation of three series similar to those of Kolmo-

gorov,

[o0) o

. ~ ~ _ +
(1.12) pX P(wn+1 % wn+1), I ER, I Var{wn+1 W Rn}
n=0 n=0 n=0
It is here where the moment conditions on F come in, but the calculations in

(1.12) alone does not prove the results. Additional ideas varying from case to

case are required to complete the proofs.

There are numerous ways of varying the basic model and when developing techni-
ques for dealing with the Galton-Watson process, it is important that these can
be used in more general branching processes. The adaption to processes with
several (even infinitely many) types has already been presented as part of [2]
and we treat here in § 5 age—-dependent processes. As example we have chosen the
Bellman-Harris process ([12], Ch. 6) and give a full treatment of the limit
theory. It turnes out that our proof of the analogue of 1.1 with some minor
modifications provide one of the basic lemmas needed when treating the further

a.s. convergence results on the distribution of the population according to



ages, see e.g. [12], [7]1). We have added sufficient material to make the ex-

position totally self-contained and borrow here some ideas from [41, [7] as

well as [2].

Finnaly, § 4 is devoted to a remark on results of type (1.7), (1.8). The proofs
in the literature, see e.g. [6], [9], are in part both deep and laborious and
we sketch a different approach based on moment inequalities for sums of inde-

pendent r.v. rather than expansions of Laplace transforms.

§ 2. The x log x condition.

Our first example on the use of the martingales Z{ﬁn+1 W+ Rh} defined in
§ 1 is to give the proof of 1.1. We let c = m” and the series in (1.12) are

then computed the following way:

foo)

(2.1) I PG, +W ) =

n=0 1 n+l

r EP(X . > m” for some i=1,...,2 IF ) <
n=0 n,i n' n’ =

T EZn JAdF(x) = J T " I(x > mn)dF(X)= S 0(x) dF (x)
n=0 n 0 n=0 0

m
[ee] —1 [ee] [ee]
(2.2) Y ER =m T [ xdF(x) =
n
n=0 n=0 n
m
m [ x(Z I(x>m)) dF(x) = fx0(log x) dF(x)
0 n=0 0

1) In fact, the results of § 5 are slightly stronger than those of [7], since
we need only finite mean and not (x logx), which is used in a technical way in

[7]. However, a short direct treatment of the case when (xlogx) fails can be

found in [3].



(o] (o)

(2.3) b) Var{Wh+l - Wn + Rh} = ¥ E Var(wn+1 IFn) =

n=0 n=0

> -2n-2 n

E Em zZ Var[Xl’l I(Xl;l <m)] < |
n=0 _ ‘
n 2 L m P/ X2 dFGx) =m 2 S x2 (I om P I(x <m)dF(X) =

n=Q 0 0 n=0
S x7 0(x 7)dF(x) = f 0(x) dF (x)
0 0

2 . .
‘From (2.3) and the convergence theorem for L -bounded martingales, we obtain

2.1 LEMMA Without any moment conditions on F beyond 1 <m < «, Z{ﬁ;+l-Wﬁ-+Rn}

converges a.s. and in L

EW < 1 is immediate form Fatous lemma. To prove the converse, assuming (x log x)

we let N +~ «» in the inequality

N oo
EW=EW,. + ¢ {W .-W}+ ¥ {W .-W1H
0 =0 n+1l n n=N+1 n+1l n

(o]

1+0+E( ¢ {W
n=N+1 n+l

v

W 1

which is obvious from Wn+1 ;:W;+1. We then only have to prove the Ll—convergence

1-Wh} which in view of the lemma is equivalent to that of ZRh’ Since

Rn > 0, it suffices that ZERn < o, which follows from (2.2).

of Z{Wn+

To prove that W = 0 if (xlogx) fails, we first note that the existence of

W= 11mn wn implies the a.s. convergence of the telescoping series z{wn+1-wn}
and therefore that‘of Z{Wn+l-.wﬁ}’ since wn+1 = wn+1 for n large by (2.1) and
the Borel—Cantelliflemma. Combining this with Lemma 2.1, we have a.s. conver-
gence of - ZRh' Now let W = infn Wn and note that {W > 0} = {W > 0}. If (x log x)

fails,wan:<dF(x) = o as in (2.2) and P(W > 0) = 0 follows from

o > ¥ R ;:n_l W/ xdF(x) =« on {W > 0}

n=0 n
m



§ 3. Convergence rates.

We next consider the proof of 1.2. To estimate W-WN we write W-—WN = Z; o

where o =W -W and use
n n+l n

3.1 LEMMA Let {an},{Bn} be series of real numbers such that 0 < Bn 4 «. Then

(3.1) b) o Bn converges = I o = o(l/BN)
n=0 n=N
Obviously (3.1) is analogous to Kronecker's lemma, which is used in the proof
of (1.4), (1.5) and states that under the assumptions of (3.1) it holds that
o N
(3.2) z OLn/Bn converges = I a = o(BN)

n=0 n=0

In fact, both (3.1) and (3.2) are immediate from Abel's lemma, [10] pg. 54.

We first consider part (ii) of (1.2), the proof of which is particularly well
suited to demonstrate the ideas. We let Bn = n® and instead of studying

a . o . N
T a_ B —~Zn.{Wh+ wn}, we approximate by In {wn+1 Wh-+Rh} defined as in §1

n n 1

with c = mn/nu. Calculations similar to (2.1), (2.3) yields
~ ' « o~
b P(Wn+1 £ Wn+ ) =2 ¥ Var[n {Wn+1 Wn + Rn}] =
n=0 n=0

and as in § 2, we have immediately

_ n, o " apy
3.2 LEMMA Let o > 0, c, =m /n~ and suppose m, < e Then Zn.{wn+1 WH-FRn},

a
- + .S.
In {Wn+ Wn Rn} converges a.s

1

PROOF OF (ii). Suppose first My, < o (which is substantially weaker than (1.2),

cf. (1.3)). Combining 3.1 and 3.2 yields

=0
o(N ) = & {wn+1 wn+Rn}—w wN+ T R

n=N n=N n
Therefore W-WN = o(N_a) is equivalent to
[oe) o] 0]
—-a -1
o(N )= 2 R = ¥ m W S xdF(x)
n n
n=N n= n, o



or, appealing to (1.6), to

(3.3) o™ = I S xdF(x)
n=N n, a
m /n

Define v, = mn/na, N(x) = SUP{n:yn < x}. Then (3.3) can be rewritten as

o]

(3.4) o([1log v ] % = ;7 x(N(x) -N) dF(x) , N + .
N
Apparently (3.4) is weaker than

[o0]

(3.5) o([log y1™) = / x(N(x) ~N(y)) dF(x) , y >«
y

but if (3.4) holds, so does (3.5) since for Yy S5 < Yy then

[o0) [o0]

[ x(N(x) ~N(y) dF(x) </ x((x) -N) dF(x) = o([log y,1 ") = o([log yI™)
y N ' ’

Now from the definition of N(x) it can be verified that

_ log x o
NG = log m * log m.lOg log x + 0(1)

As x,y + », the meanvalue theorem for the log yields log log x - log log y

o(log x - log vy) so that the right—-hand side of (3.5) is

(o] (o]

f x(log x - log y)(loé — + 0(1)) dF(x) + [x0(1) dF(x) .
y y

Since My, < o, the last term is o([log y]_u) and therefore conditions (3.5) and

(1.2) are equivalent, completing the proof when B, <

Suppose next u, = Then by (1.3), certainly (1.2) fails and we have to prove

that W-Wh = o(n—a) must fail too. Since we assume (xlogx), we can find B

such that 1 < B < a and that UB < oo, UB+1/2 = o, Then from (1.3) and the first

part of this proof it follows that W-Wn = o(n_B) fails and the proof is com—

plete since B < a.O



PROOF OF (iii). Let B_ = z? K Then
N N a-1 >
z an Bn = Tk X an - BN z o
n=1 k=1 n=k n=N+1 °

and from (3.1) it follows by letting N -+ « that
(3.6) b) a Bn converges = b) ka—l by o converges .

n=1 k=1 n=k
Let W;+l’ R be defined as above with cn==mn/nu. Using Bn ~ n” one obtains

E P(Wn+1 *+ Wn+1) ~ 3 Var{Bn{Wn+1 - Wn + Rn}} o uu.

n=0 n=0

Thus if n, <@ b Bn{wn+1 - wn + Rn} converges a.s. and from (3.6), we get the

a.s. convergence of

(oo

k“_l(w -W + I R).
0 n=k =

r kL g W, -W +R}=
k=0 n=k Kk

I ™ 8

Thus the convergence of I k“_l{w-wk} is equivalent to that of

oo oo o] (o] [oo]

: T 5 R o=nt oz TN row s xdRx)
k=0 n=k n k=0 n=k " n,a
m /n
or, appealing to (1.6), to that of
T ok ) S xdF(x) = I B S xdF(x)
n
k=0 n=k n, a n=0 n, o
m /n m /n

Using Bn ~ " , this precisely reduces to Hypp <° and the proof is complete

when y < o,
o

If 4 = «, then of course Hysl = Assuming (x logx) we can choose B, 1<B<a,

< o, = o, Then the first part of the proof excludes the con-

B B+1
vergence of X nB-l{w-wn} and Abel's criterion ([10], pg. 48) that of

such that u

s 2% T w-w }.o
n
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PROOF OF (i). We let Bn = mn/q’ c, = mp/P. Then

[o o]

~ . 0 n/q -~ ) . ©o P
(3.7) = P(Wn+1 * wn+1) ~ ¥ Var[m {wn+1 wn + Rn}] ~ [ x° dF(x)

n=0 n=0 , 0
‘Assuming the right-hand side to be finite, we have a.s. convergence of

: n/q.~ _ n/q _ .
I m {Wﬁ+1 W+ Rn}, I m {Wn+1 W+ Rn} and (3.1) gives

(o] (o] [e0)
o(m—'N/q) SW-W.+ I R =W-W_+m " £ W / xdF(x) .
N n N n
n=N n=N mp/p

But the last term is o(m_N/q), since

[oo] oo [ee]

: o™ xdF(x) = f 0(xP) dF(x) < »
n=0 mp/p 0

and it follows that W-WN = o(m_N/q), proving one way of the result.

For the converse, the method in the proofs at part (ii), (iii) and in § 2 does
not apply, because the condition for convergence in (3.7) is not weaker than
that for the result. Our proof is here totally different and we proceed by
reducing the necessity pqulem for the Galton-Watson processigo t@g;wqfﬁsumsy

1
~of i.i.d.r.v., cf. (1.4).7J

—N/q). In particular, wn+1-wn = o(m_n/q) so that on {W > 0}

n
(3.8) 7P s x cmbew Py —wyso.
n i1 n,1 n n+l n

Let the r.v. Un in (1.4) be distributed as Xn ;M let q(n,e) = P(nl/q|ﬁnfc»s)

b

and let U;,Uc,... be independent and follow the symmetrized distribution of Un’
that is, the distribution of X -X . Define ac’ qc(n,e) the obvious way.
n,l n,2 n

It is then well-known that Uﬁ has pth moment if and only if F has so, so by

(1.4) it suffices to prove that ﬁ; = o(n_l/q). By the conditional Borel-Cantelli

lemma and (3.8), we have on {W > 0}

z
L q(Z ,e) = 2 P(lzn r AX

i—mH >e!FJ < o
n=0 n=0 i=1

b
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and therefore also by a standard inequality X qC(Zn,Ze);;ZZ q(Zn,e) < o, Now
pick a numerical sequence {k(n)} of integers of the form k(n) = Zn(w), where w

belongs to the set of positive probability where W > 0, I qC(Zn,e) < o for all

rational (and therefor all) € > 0. Then

® 1/q |=c T e
(3.9) r P(k(n) ]U [ >¢g) = I q (k(n),e) <
n=0 k(n) n=0

n 1

1<i<k(n)

By Levy's inequality and (3.7)

(o8]

5OPQL > <2 3 Pk VP[CH.. 40, | > = 2 1 qS(k(n),e)< =
n = 1 k(n) ’
n=0 n=0 n=0

so that Mh + 0. One checks readily that when k(n) < i < k(n+1),
1/p
.1/q |=c 1/q |zc (k(n+1))
i [U.] < k(n) IUk(n)' +'2\ () Mh+1

/

1

and ﬁ; = o(i_l/q), i > o, follows since k(n+1)/k(n) -+ m {in particular, the

sequence k(n) is ultimately increasing).O

We conclude by some remarks on the relation of 1.2 to sums of independent r.v.

It is possible to exploit the motivation for 1.2 given in § 1 somewhat further

by using (1.7), (1.9) to prove
5 p@™9 W-W | >e| F) <o if [ xP dF(x) < =
n n
n=0 0

and thus one half of (i). Similarly, (1.8) and (1.9) combine to give W-WN =
o(N_a) if Mol < ®, However, the full strenght of 1.2 does not seem to follow
this way and as is apparent from the proofs, we exploit the structure of W-—Wﬁ
as the tail sum of (1.1) rather than (1.9). Also, as remarked earlier not all

results are the perfect analogous of (1.4), (1.5) to be expected from (1.7),

(1.8), (1.9). Instead we state the following result on sums of independent r.v.,

whose form and proof is more similar.
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3.3 THEOREM Let Ul’UZ"" be i.i.d. with common distribution G. Then (from

Kolmogorov's three series criterion) I Un/n converges if and only if

(3.10) S |x| dG(x) < o, ) f}(I(|x] > n) dF(x) converges
-0 n= O

If this is satisfied, then

(i) z; U /n = o MYy if ang only if /7 |x|P d6(x) <= (1 <p <2, 1/p +1/q)

(o]

N Un/n = o([log N]_a) if and only if

(ii) For a > 0, =

o

wo= |x| |log+x[u dG(x) < o,

(3.11)

 fxI(|x| > n/(log n)*) dG(x) = o([log NI %)
n=N

There are, of course, similar resultslfor other weights than n_1 and also part
(iii) of 1.2 has a counterpart. The conditions (3.10), (3.11) can not be expres-
sed in terms of the M, in the same way as in (1.3). For example, if G is symme-—
tric, (3.11) reduces to n, < while if G is concentrated on [a,~[ for some

a > -» . then (3.11) reduces to (1.2) (with F replaced with G) and (1.3) holds.

§ 4. A remark on the moments of W.

We recall the results (1.7), (1.8) concerning the relation between the moments
in the offspring distribution F and those of W. The aim of the present section

is to sketch an approach different from that of [6], [9] to results of this type.

As set-up, we choose to consider moments of the form va f(W), where v is an
integer and f a suitable function satisfying f(x) = o(x), x + «, for example
f(x) = xa, 0 < a < 1. A detailed treatment is given only for the case v = 1,

which is of particular importance and suffices to demonstrate the ideas.
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4.1 LEMMA Let f: [0,o[ - [0,»[ be concave and let S = X1 + ...+ XN be a sum of

N independent r.v. Xi > 0. Then

(4.1) ESE(S) < ESF(ES) +

_ E Xif (Xi)
i

1

N~ =

PROOF: The assumptions on f imply subadditivity, f(a+b) < f£(a) + £(b), a,b > O.

Thus

n |

¥ EX.f(S) <

. 1 =,
i=1 ] i

{EX.£( = X.) + EX.f(X.)}
1 t j#1L ot

'ESE(S)

N~ s

A

n
ESf(ES) + I EX.f(X.) ,
_ i=]_ 1 1

since by Jensen's inequality

:EXif( z X.)=EXiEf( I X.) ;zEXif(E T X.) ézEXif(ES).D

j*i j*i j*i
. _ e n+l| _ -n-1 _Z, _ .
Letting N = Z , X, = Xn’i/m > S =m Ziﬁlxn,i =W_,, vields

EW

n+l f(Wn+1) an) =

EW ., | F) £EM@ . [F)) +

Ly rxel X )
an(wn) + m wn é'X f\mn+l/ dF(X)

and it follows that

EWEW) < LimEW (W ) =

N

lim {£(1) + T {(EwW

n=0 n+1f(W

o) - BWE(W )Y <

f(1) + ¥ m  EW f}(f-————> dF(x) = £f(1) +m ~ fx = £ ————> dF (x)
n=0 nog \ptl 0 n=0 ‘mo*l
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4.2 EXAMPLE Let 1 < p < 2, f(x) = xp—l. Computation of Zf(x/mp+l) and insert-—

ting yields

(o]

s %P aF(x)
(4.2) WP <14+ —+«—, 1<pc<2

In particular, EW’ < ® if the pth moment in the offspring distribution is finite.

The converse is immediate assuming (x logx), since then by convexity

s =P aF(x) = of Wb = of EGEW | 7,)P € P EwP
0 "1

4.3 EXAMPLE 1In (1.8), [1og+x]a does not satisfy the assumption on f(x), but so

does

cqX 0

A
M
A
M
o

f(X) = + L0
[1og x] +c2 Xo_x<oo

if we chose first Xy > 1 such that dz/dx2 (log X)a < 0 when x 2 %, and let

-4 o = - a
O (log X)‘&=xo » €y = ¢y Xy (log xo)

]u+1).

< in (1.8) follows at once, since one easily checks Zif(x/mp 1) = O([log+x

We shall not here further work out the approach. Some problems, in particular

to prove = in (1.8) seems to require additional ideas, while others are immedi-
ate. For example, the method works in the multitype or age—dependent case with
a mere change of notation by studying the one-dimensional martingale functionals
of the process. Also moments of order higher than the second can be treated.

We state here the following inequality, which is valid for v = 1,2,... under the

hypothesis of 4.1:

(4.3) EsV£(S) < ES £(ES) +

e
|—-A
/TN
=
S
=
92
<
]
=
i
&
>
=
h
~
b
[l
o
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§ 5. The limit theory of the supercritical Bellman-Harris process.

The model is the following. All individuals have lifelengths governed by a di-
stribution G on ]0,»[. At the time of death of the parent a random number of
children are born according to the offspring distribution F. The lifelength and

number of children of any particular individual are independent, and all indivi-

duals evolve independently of each other.

For questions of existence and construction, we refer to [12]. As remarked at a

number at occasions in the literature (going back at least to [12]), the process
is most naturally considered as a Markovian multitype process identifying types
with ages. Accordingly, we define the state Zt of the process at time t not as

the number n of individuals alive, but as the collection Zt = <KpseesX > of

their ages. By averaging Zt with various n belonging to the set B of bounded

measurable functions on [0,[, we obtain a number of functionals useful in the
study of the process, defined by Zt[n] = 0 if the population is extinct at time

t and by
Zt[n] = n(Xl) + ... + n(xn) if Zt = <x1,...,xn>

For example, |Zt[ = Zt[l] is the total population size. Also, if we think of zZ,

as a (random) measure on [0,~[, then simply

(o]

Zt[n] = é n(x) Zt[dX]-
X

Specific assumptions on ZO are usually not relevant but, whenever needed, PX, E
etc. refer to the case Zo = <x>. We throughout consider the supercritical case
[ee)
1l <m= [fxdF(x) <
0

and assume as usual that G is non-lattice with G(0) = 0. Define o > 0 as the

(unique) root of
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m [ e_OLX dG(x) =1
0

and let

e ¥ (1-G(x) dx/ s e ¥ (1-G(y)) dy
0

Al[dx]

(G(x+t) - G(x)) / (1-G(x))

GF(t)

oo

n, = Jsye ¥ aey) /1™ (1-6(n) dy
0 0

-1 1)

V(x) = n, e dGX(y)

O 8

(o]

MG = Bz D] wIn = S anGo wlax]

It is then readily checked that {Mt}t>0 is a semigroup acting to the right on

the set B of bounded Borel-measurable functions n on [0,»[ and to the left on

the set of bounded measures u on [0,~[. Furthermore:

5.1 LEMMA A,V are eigenfunctions of Mt corresponding to the eigenvalue e ', i.e.

(5.1) AM_t=e°‘tA , Mv=e2ty.

Furthermore for any n € B such that e 0% (1-6(x))n(x) 1is directly Riemann inte-

grable (cf. [11], pg. 361 - 362)

(5.2) sup e ot

M n(x) = V() A[nl] 0, t >
Oéx<oo t I

The class of n's satisfying the assumptions for (5.2) is rather extensive and
contains e.g. for all 0<a<b<» n(x) = I(a<x<b). Thus (5.2) states that in

the mean the population at time t is asymptotically composed like the measure

1) There is some ambiguity in the literature concerning the normalization of V.

The present choice ensures A[1] = A[V] = 1, V(0) = (m nl)—l.
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eOtt V(x) A, where x is the age of the ancestor, and for this reason and (5.1),

A is usually called the stable age-distribution, V the reproductive value and

o the Malthusian parameter, cf. [12].

5.2 REMARK Suppose the ancestor is of age x and let X be the time of his death.

Then from time XA on the process evolves like the sum of N independent processes

L

with ancestors of age zero, N chosen at random according to F. In particular, P

depends only on x through G*. This explains somewhat further the role of ) and

V, since V(x) = nIl EX e_ak

PROOF OF 5.1. We first prove (5.2). Let for some fixed n satisfying the assump-—

tions Kx(t) = g* Zt[n], 'I\<'(t)=ewoct Ko(t), &E(X)==me7ax dG(x). Appealing to 5.2,

(5.3) K*(0) = E¥z_[n] 10 > ©) + B¥(Jz, | &%Ce-2) 100 < 0)
[

_ 1-G(x+t) 0 dG(x +u)

= n(x+t) ']_——_—G-(—X')_ + émK (t—u)'—"""—"""l_G(X)
Letting x=0 and multiplying by e Ot gives

~ —at t |

K(t) = e n(t) (1-6(t)) + J R(t-u) dG(u) .

0

The choice of o ensures that G is a probability measure so that by the renewal

theorem o
S e % n(e)(1-c(t)) dt
lim R(t) = 0 - = ‘?n[g] = V(0) A [n]
te S tdeee) 1

0

Inserting in (5.3), (5.2) follows after some elementary estimates.

(5.1) is an easy consequence of (5.2). For example integrating (5.2) w.r.t. A

yields e_utAXMtn + A[n] for all n satisfying the assumptions for (5.2) and

)

therefore by weak continuity for all a.e. continuous n, cf. [8]. It is not |

1) Since A has a density, continuity a.e. on the essential span of F w.r.t. A or

w.r.t. Lebesgue measure are the same concept.
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difficult to see, that if n € B is continuous, then Msn is a.e. continuous. The-

refore

A[M n] = 1im e %tAM M n
s foroo t's

AM [n]

. o =0 (t+
lim e s e (t+s)
£t

_as
AM  n=e A[n]

and AMS = A follows. MSV= e®% v is proved in a similar manner. O

Let Ft be the o-algebra containing all relevant information on the process up to

time t. From (5.2), we get

Bz, [VI|F) =z M [V]=e" z [V]

t+ t
and it follows that {wt}t>0’ where W, = e Ot Zt[V]’ is a non-negative martingale
w.r.t. {Ft}t>0' Thus W = limt Wt exists a.s. and the main result on the limiting

behaviour of the process is the following, the proof of which occupies the rest

of this section:

5.3 THEOREM E'W = V(x), x > 0, if and only if

oo

(x log x) S xlogx dF(x) < =
0

while P*(W = 0) = 1,Vx > 0, otherwise. Furthermore, for any n € B continuous

a.e.,

(5.4) 1lim e_at Z [n] =WAIn]
troo t

Compared with the Galton-Watson process, the complications occur from the fact
that the different lines of descent still evolve independently, but no longer
according to the same law. That is,if Y>(Q is some functional of the process,

PX(Y > y) depends on x. We work here as in [7] with the assumption

(5.5) PE(Y > y) < 1-H(y)
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where H is some distribution on [O,@[ independent of x. The reduction to (5.5)
follows essentially from 5.4 below. In the proof, we adapt as everywhere in the

. . . . t
following without further explanation the convention, that Y >% denotes the

“corresponding functional of the line of descent initiated by the ith individual

alive at time t.

5.4 LEMMA Let t > 0 and let Y = Yt be the total number of individuals which

ever lived up to time t. Then (5.5) holds, where H may be taken with finite mean

and satisfying

o]

(5.6) (xlogx) = J xlogx dH(X) < = .
0

In the proof, we need

5.5 LEMMA Let N’Ul’UZ"" be independent and non-negative with N integer—valued
and Ul’UZ"" i.i.d. and let S =1 + Ul + ...+ UN. Define
x/e 0<x=<e
log*x =
log x X > e s

u = EU, log*U,. Then there exist constants c(v) < @, v > 0 (dependent on the

1 1’
distribution of N) such that if p < o, EUlé v, EN log*N < » then E S log*S <

c(v) + nEN.
PROOF Since log* satisfies the assumptions of 4.1, we have

E(S log*S | N) < E(S | N) log*(E(S|N)) + 1log*l+ Nu

A

so we have only to let c(v) E(1 + Nv) log*(1l + Nv) + e_l. o

PROOF OF 5.4 Let N’Ul’UZ"" be independent with P(N < x) = F(x), P(Ui <u) =

PO(Y < u) and let S =1 + ZT Ui’ H(y) = P(S < y). Letting N be the number of

children born at time A we have, appealing to 5.2,
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PR(Y, > y) <PU(Y,, > ¥) <B(S>y) = 1-H()

and we have to prove fg)cdH(x) < o and (5.6). We treat only the latter and more

complicated case, which obviously is equivalent to ES log*S < «, or appealing to

5.5, to ® > EUllog*U1 = EO Yt log*Yt = u(t) (say). Let An(t) be the event that
at most n deaths occur before time t. Obviously,
|z, | -
b
(5.7) Y, I(An+1(t)) <1+ iil Yt—xI(An(t))

where for convenience Ys =0, s < 0. Define
w(t,0) = EO(Y, log*y, T(A) | ), w (8) = EO u_(t,2)
n t t n ? n n

Letting v = EO YT where T > t is fixed in 5.5 and using (5.7) gives

un+1(t,k) < c(v) +Inun(t-A) I(x < t),

t

B (8) <e(v) +m (f) u (£=2) d6(1) < c(v) +mG(t) wu (t)

If t is so small that mG(t) < 1, it therefore follows by iteration that
p(t) = lim un(t) < o, But if u(t) < ~, then the 4.1 applied to the inequality

2|
t t,1

Topp £Ye v 2Ty
1=1

shows easily that p(2t) < « and therefore p(s) < » ¥.s. O

The following lemma is rather standard and easily proven for example upon inte-—

gration by parts:

5.6 LEMMA (5.5) implies that for any x,y > 0

(5.8) EXY'I(Y > y) < J x dH(x)
y

2

2 2 dH(x) + y(1-H(y))

(5.9) EX Y™ I(Y < y) <

A
[ I
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5.7 LEMMA Define for some functional Y > 0 of the process and some fixed § > O

nd,1i

nd,1 <e

n . , n
S = e oné 5 YnG,l’ T - ond sy

n

I(Y uné)

b
_ X ongd _ _—ond
n(x) = EYY, e (x) =E(YI(Y>e 1)), T =ES_|F )=e z [nl,
_ —ond _ v _ (3
R =e z (e 1 =E(s -5 | F o) =T -E(S |F o

n nd

Then (5.5) and fgzcdH(X) < » implies that

(5.10) T P(S #S ) <eo, I Var{S -T + R} <o .
n n n n n
n=0 n=0

If furthermore f: x logx dH(x) < », then also Z:=OIERH <

PROOF One just has to insert (5.5), (5.8), (5.9) in (2.1), (2.2), (2.3). For

example,
i ~ o 7] nd, i 5
pops #%) 2z EC 3z PO¥T ™R ) <
n=0 n=0  i=1 n
DBz (- HE™) = 3 0™ s aEx) =/ 0(x) dB). o
n=0 n=0 eund 0

PROOF OF THE SUFFIENCY OF (xlogx). We study the {wt}t>0 - martingale along the

. 3 _ o Zq s
discrete subsequence {wn}n=0,1,2,... cLet Y =W, =e Zl[V] and § = 1 in 5.7.
Then n(x) = V(x), Sn = wn+1, Tn =W_. Writing wn+1 = Sn’ 5.4,5.7 implies

f VariW . -W +R} <e, £ ER < =
n+l n n _ n
n=0 n=0

and thus the Ll-convergence of (W - W +R}, IR, oW -W }. From this
n+l n n n n+l n

EW=EWO follows exactly as in §2. @O

Before discussing the problem of the necessity of (xlogx), we give the proof

of (5.4).
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5.8 LEMMA Let M = sup e °" |Z_|. Then M < =,
t>0

PROOF (H. Kesten, private communication. See also [3]). Since W exists, it is

clear that M = SUp_ . Wt < o g.s. If infx>o V(x) = ¢ > 0, then IZt[ é:c_l Zt[V]

and thus M c--1 M < o. In the general case, we always have V(x) > y > 0 when

A

0 < x < 1. Any individual alive at time t, n < t < n+1, was alive and of age

at most 1 at one of the times 0,1,...,n;t. Thus

n
]Zt! =z Zk[I[Q,l]]*"Zt[I[O,l]] =
k=0
- n _Nn P
% i( z zk[v] + zt[v]) <y 1 M( z ™ 4 %%y = Mo (%%
k=0 k=0

and the assertion follows. O

5.9 LEMMA 1In the notation of 5.7, fg)cdH(x) < o implies that Sn--Tn -0 .

PROOF (5.10) implies that Sn =S forn large and that g;-—Tn-PRn -+ 0 so we only

have to prove Rn ~ 0. But from (5.8)

R <M /J ydH(y) ~ 0. O

n
ond
e

0

A

5.10 LEMMA 1If ¢ € B satisfies (5.2), then for any 6 > 0 a.s.

(5.11) e ond z (€] > WA €]

PROOF Let

Ym = e—umS st[n], nm(x) = EXYm, c, = sup Inm(x) - V(X)A.[E]l.

0<x<oo
In the notation of 5.7 we get, using 5.9,
Tme ™ 2 (6] =Tims =TmT =<
n n n =
ongd

lim e {z_vIale]l +z ([[1] c } <WALE] +Mc
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As m > », 1im < in (5.10) follows. lim > is similar. O

PROOF OF (5.4) We first remark, that (5.11) holds whenever n € B is continuous
a.e. This follows since we have weak convergence of the (random) measure e Zt
to WA for all realizations of the process such that (5.11) holds for n(x) =

I(0 < x < a), a=®or arational, cf. [8]. The same argument shows that it suf-

fices to establish (5.4) for an n of this specific form. Let then for §>0

Y. = inf Z _[n], Y. = sup 7 [ﬁ], £.(x) = EXX , £E.(x) = Y. .
5 " petes 6 perst Y =8 57 56 5

Obviously

Eg(x) 2 I(x + 6§ < a) P*(A > §) = E*(x)

Eg(x) £ I(x < a) P°(A > 8) + c P"(A £ t) = E%(x)

(say), using 5.2, 5.4 for the last estimate. Since £¥, Eg are a.e. continuous,

we get from 5.9, 5.10

-ot ond

lim e z [nl < 1lim e
too > i

Tm e ™ z_[E,] < Tim ™ z_ [E%] = wa[E%]

> n-—>ew

If we take the paths right-continuous, then P* () < 8) ~0, §+40, so that €§ > 1.
This proves Tim < in (5.4) and lim > is similar. o

It remains to prove that W = 0 if (xlogx) fails. A short and self-contained
proof of ghis fact is given in [5]. We present here a different proof along the
lines of § 2 for the following reasons. First, the basic step, Lemma 5.11 below,
seems to us to be a major step in extending the convergence rate results of §3

to the Bellman-Harris process, though we have not worked out the details. Second

our proof uses not specific properties of the process quite as heavily as [5]
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and might thus be somewhat better suited for generalizations.

5.11 LEMMA There exists a set B < [0,»[ of positive A-measure and ey > 0, cy <

such that for all x € B, u > 0

[o0)

EW I(Wl > u) 2 ¢ J xdF(x) .

1 c,yu
PROOF Let LCEACTERE denote constants with 0 < Y; < o, We choose B such that
(5.12) inf PO 1) = ng SOED SO g
' x€B x€EB X

For example, choose first y > 0 in the support of G and next z > 0 such that
y-1 < z <y and that both z and z+l are continuity points of G. Then for x in

a suitable open neighbourhood B of z (which has positive A-measure)

G(x+1) - G(x) >_l G(z+1) - G(z) 50
1-G(x) =2 1-G(z)
We next remark, that if S_=U, + ... + U_ with the U. i.i.d., U. > 0, EU. > O,
N 1 N i 1= 1
then for some Y953 and all N,u
(5.13) ESgI(Sy > u) 2 v, NI(N > yyu)

To see this, choose Yo Ys such that P(SN_l/N > y4) 2 Vs for all N > 2 and note

that a lower bound for the left-hand side of (5.13) is

NEU P(U, + ... + U > u) > NEU, I(N > u/y4) Y -
Now let N = ’Z I, U. = inf wk’l. Then W, > vy, S on {A <1} and thus for
A 0<t<1 1="6 "N =

X € B

. “ .
ETW I(W, > w)l 2 ETW I(Wy > w)I(A £ 1) >

Ye EX[I()

A

1) E(Sy I(vg Sy > w [ N,0] 2

(o)

DNI(N > vg u)] >y, v, [ xdF(x) . @
Y8u

A

Y5 EX[I(A
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PROOF OF THE NECESSITY OF (x logx). Choosing ﬁ;+l’ Rn as for the sufficiency,

b Rn < » follows from (5.10) exactly as in § 2 . Writing Zn = <X ... X >, we

have

[o0)

i an —-on
E w11§w1>e ) oze Tzl le S oxdF(x) .

n .
i=1 . an
coe

If (xlogx) fails then

by S xdF(x) = o«
n=0 an
c, e

so that on {W > 0} it follows from e 0 Zn[IB]'+-wz&[IB]ﬁ>O that EIRn = ® a.s.

Thus P(W > 0) = 0.0
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