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Abstract. 

The distribution of the average n01se power from a Poisson stream of vehicles is, 

properly normalised, shown to converge to a normal distribution although the 

corresponding stationary process is deterministic. The speed of convergence is 

estimated. Finally the asymptotic efficiency of a sampling procedure is discussed. 

Keywords: central limit theorem, deterministic process, filtered Poisson Process, 

stationary process, traffic noise. 
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1. Introduction and Summary. 

As a measure of traffic noise from highways one frequently uses, e.g. Kragh and 

Astrup (1973), the equivalent constant sound level defined as 

L eq 
1 T 2 2 

10 10glO T J p (t)/PO dt, 
o 

where p(t)/PO denotes the ratio between the sound pressure measured and a refe
ljlO L 

rence pressure and [O,T] is the time interval of observation. 10 eq is the 

average power pro surface unit in the period of observation. 

In this connection one would like to give an estimate of the precision of such 

measurements. The variation due to the measuring instruments 1S negligible com-

pared to the wild fluctuations in the actual n01se level due to vehicles passing. 

To describe the relevant uncertainty we therefore need a probabilistic model for 

the n01se from a stream of vehicles on a highway. Such a model has recently been 

developed by Weiss (1970), Kurze (197la), (197lb) and Marcus (1973), (1975). 

The assumptions of this model in a simple form are 

i) vehicles travel independently of each other with a constant velocity v so that 

the arrivals of vehicles to the point of observation form a Poisson process with 

constant intensity ~ (average number of vehicles pro time unit); 

ii) the relative power emitted by each vehicle is given by independent identically 

distributed random variables Z. tnat are independent of the above Poisson process 
1 

and have finite second order moments: 

iii) if the observer is placed in the point (O,a) of the plane and the vehicles 

travel along the x-axis, then the impact on the observer due to a vehicle loca-

ted in (x,O) and emitting a relative power Z is given as 
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z 
2 2 a + x 

The assumption of constant velocity glves a one-to-one correspondance between 

time and position of a vehicle. Let X(t) denote the relative power observed at 

time t. On the basis of the assumptions one can now derive the following 

a) X(t) has a distribution with characteristic function ~(s) given as 

log ~(s) 2~ 7 r~( 2 . s2 2)\ - lJ dt, 
o - a + v t 

(1) 

where ~ is the characteristic function of Z, the relative power emitted by a 

single vehicle. This has been derived by Marcus (1975); 

b) the process X(t) is strictly stationary with covariance function given as 

Cov eX (t), X (t + T) ) 

and hence spectral density 

f(A) 
2a 

exp(-
v 

1 

(2) 

This result was given by Blumenfeld and Weiss (1975) for the case where Z has a 

degenerate distribution but the above generalisation is in this connection ele-

mentary. 

Using the same argument as Marcus (1975) one can derive that the characteristic 

function YT of 

lS given by 

1 T 
2T J X(t) dt 

-T 

t+T \ J 
J du 2) - 1 dt. 

t-T a 2 + v2 u 
(3) 
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As demonstrated by Marcus (1975), (1) can be greatly simplified by an appropriate 

choice of ~. This does not seem to be the case with (3). 

Instead one could hope that the averag,ing procedure would make the distribution 

of YT approximately normal for large T. We have however that 

00 

I log f(A) dA 

-00 1 + A 2 

00 c -c IAI 
II l2dA = 

2 
- -00 1 + A 

- 00 

where f is the spectral density of the process. This implies that the process 

is deterministic (Rozanov (1967»). Thus none of the usual central limit theorems 

apply, cf. Ibragimov and Linnik (1971). 

In the first place it seems rather surpr1s1ng that a process with so much ran-

domness can be deterministic, but the following heuristic argument for the re-

suIt can be given: Suppose one has observed X(t) from -00 and up to, say, s. It 

is then possible from the signal to identify the position of all vehicles. Since 

the velocity is constant one can then predict the future position of all vehicles 

exactly and hence all future values of X(t). 

Because of the relatively explicit expression for the characteristic function 

it isipossible to prove asymptotic normality of YT directly and this 1S done 1n 

theorem 1. 

Since one has the impression that much of the information obtained by continuous 

recording of the n01se 1S redundant, it 1S convenient to consider a sampling 

procedure, 1.e. 

where k ~ h > O. 

Y* 
N 

N-l 
.lI 
Nh . 0 J= 

jk+h 
I X(t)dt, 

jk 
(4) 

If h/k is small the computational work involved to get Y~ is considerably smaller 

than that to YNk , whereas the precision of Y~ is not reduced that drastically. 
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Theorem 2 states that also Y~ has an asymptotic normal distribution and the 

efficiency problem above is discussed in the final section. 

2. Limit Theorems. 

Let FT denote the distribution function of the normalised variable 

Let YT have the characteristic function YT given by (3). 

Let <I> denote the normal distribution function 

2 
u 

<I> (x) 
00 1 -2 
J -- e duo 

-00 \j2Tf 

Then the following result holds: 

Theorem 1 

uniformly ~n x for T -+ 00 

Proof: The method of proof does not depend on the values of ~, a and v and for 

the sake of simplicity we shall therefore assume that ~ = v = a 1. 

The characteristic function for the normalised variable UT ~s given by 

If we introduce 

we get 

- ~ 

1 t+T du 
2T J 2 ' 

crT t-T 1 + u 

00 

2 J [E exp{i Z s AT(t)} - 1] dt - ~ 
o 
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Taylor expansion yields 

3 00 

- ! s2 - i ~ f A (t)3 E Z3 p(Z) dt 
2 3 0 T 

1 2 3 
- 2 s - i ~ R(s,t) 

where 

for some 0 < 81 , 82 < 1, and 

R(s,T) 
00 

f AT(t)3 E z3 p(Z) dt. 
o 

R(s,T) can be estimated by 

2T 00 

IR(s,T)1 < If I + If I 
o 2T 

and 

2T 
1111 ~ V2 E/z1 3 f AT(t)3 dt 

0 

3 2T 
(t? Vi EIZ I f 

1 
dU) 

ST3 O'~ 0 \t-T l+u 2 

< Vi E/Z/ 3 
2T 

3 1 

= ST3 O'~ 
7f c1 ~ O'T 

3 
dt 

It can be proved by elementary methods, but it also follows from theorem lS.3.1. 

p. 331 1n Ibragimov and Linnik (1971) that 

-1 _1 
T 2 <0' < c T 2 , 

C 2 = T = 3 

which implies that 
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Further, Slnce for t > 2T we have 

t+T du 1 2T 
f 2 ~ 2T 2 < ---2"'"" 

t-Tl+u l+(t-T) (t-T) 

we get 

From the smoothing lemma, Feller (1971) 

2 s 

p. 

V2 Elzl 3 

cri 5 T5 

538, we then 

3 

get 

K i~R(s,T) 
IFT(x) - ([l(x) I 

1 
f e 

2 
I 

1 - e 
IdS + 

24 
< =1T 

-K s KV21T 1T 

Taylor expansion yields 

and thus 

3 
-i s3 R(s, T) 

e I; V2 2 I I s ~ 3 s R(s, T) , 

K T-l/2 + v 'r-7/ 2 + 24 
~ 3 L'-4 ---

1T Ky21T 

1 2 
2 -ZS 

s e 
24 

ds + ---
1T K1./2 

Since K can be chosen arbitrarily and dependent on T, we have the desired result.D 

The characteristic function Y~ for y~ defined by (4) can easily be derived as 

log Y~(s) 

Let now F~ denote the distribution function of the normalised variable u~, where 

We have the following 

u* 
N 

Y* - E Y* N N 

V(Y*)1/2 
N 
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Theorem 2 If ElzI 3 < 00, then 

IF~(x) - <I> (x) I O(N-1/2 ) 

uniformly In x for N -+ 00. 

Proof: The proof is analogous to the preceding one. The crucial step lS to get 

an estimate of the remainder term 

00 

R*(s,N) J A~(t)3 E Z3 p*(Z) dt , 
-00 

where 

p*(Z) = sin(81 ~(t) s Z) - l cos(8 2 ~(t) s Z) 

for some 0 < 81 , 82 < 1, and 

We get 

and 

-2kN 
I R * (s, N) I < I J I + 

- co 

1 
cr* hN 

N 

2kN 

N-1 t-jk 
L: J 

j =0 t-jk-h 1 

00 

I J I + 
-2k:N 

I J I 
2kN 

du 
2 

+ u 

-2kN 
1111 ~ VI ElzI3 J IA~(t)13 dt . 

-00 

Using that for t < -2kN we have 

I t~jk du I < 

t-jk-h 1 + u2 

we get 

II I < VI ElzI3 
1 = 3 cr* 

N 

t 
J 

t-h 1 

du 
2 

+ U 

< h <l 
2 = 2 ' 

1 + t t 

Again it can be proved directly but it follows from lemma 1 in the next section 

and theorem 18.2.1. on p. 322 in Ibragimov and Linnik (1971) that there exists 
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constants c and C so that 

Hence it follows that 

Further 

Using that 

we get 

c N- l / 2 < 0* < C N-l / 2 . 
N 

2kN 
1121 ~ VZ Elzl3 f IA~(t) 13 dt . 

-2kN 

I N~l tJjk 

j=O t-jk-h 1 
du 21 < 

+ u 

00 

du f---:::-
-00 1 + u 2 

'IT , 

By arguments completely analogous to those used for estimating 11 we get 

and therefore 

IR*(s,N) I 

The rest of the proof ~s a word by word repetition of the preceding proof.o 

3. Asymptotic efficiency of sampling. 

Since we have now proved that both YT and Y~ are asymptotically normally distri-

buted it ~s reasonable to compare the asymptotic efficiency of the procedures 

by means of their second order properties. 
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It is clear that YT and Y~ have the same mean so we can concentrate on their 

asymptotic variances. 

If we define for j a,±l, ... 

1 (j-l)k+h 
X~ = h f X(t) dt 

J (j-l)k 
(5) 

we have 

N 
Y* 1 1: X~ 

N N. 1 J J= 

The process (X~, j = a,±l, ... ) ~s a strictly stationary process ~n discrete time 
J 

and we shall need its spectral density: 

Lemma 1 

then X~ 
J 

where 

If X(t) , -00 < t < 00 has spectral density f g~ven by 

J 

f(A) 

a,±l, ... defined by (5) has continuous spectral density f* g~ven 

f*(A) 1 00 (A + 2p TI\ 

k p:-oo g h, k ) 

g(x,y) 

, -TI < A < TI 

Proof: We have 

1 
h jk+h 

cov(X!,Xj+l) = - f f Cov(X(sl,X(t)) ds dt 
h 2 0 jk 

h jk+h 00 

-i(s-t)A 1 
f f f(A) dA ds dt = - f e 

h 2 0 jk -00 

; f(A) e-ijkA It ~ e itA dtl2 dA 
-00 0 

-00 



where ~ is the characteristic function of the uniform distribution on the unit 

interval: 

Define now 

substitute u kA and we get 

Cov(Xr,Xj+l) 

Since we have 

Hs) = 
e~s - 1 

~ s 

g(x,y) 

00 

1 
J 

-iju u 
du 

k 
e g (h'i() 

-00 

00 'IT+2p'IT 
1 -~JU u 
k 

2: J e g (h'i() du 
p=-oo -'IT+2p'IT 

'IT 00 

J 
-iju 1 

2: (h u + 2p'IT ) du e - g , k k 
-'IT p=-oo 

_Bl u+2p 'ITl 
= A e -- k 

(6) 

(7) 

. 

the ser~es under the integral is absolutely convergent with a continuous limit. 

This must then be f* and the lennna follows by inserting (6) into (7) ,D 

We now define the relative asymptotic efficiency of the sampling procedure as the 

limit of the ratio between the reciprocal variances of resp. 

and 

¥* 
N 

YNk 

1 N-l jk+h 
- 2: J X(t) dt 
kN j=O jk 

1 N-l 
- 2: 
kN . 0 J= 

(j+l)k 
J X(t) dt 

jk 

1 kN 
kN J X(t) dt , 

o 



i.e. 

eff (h,k) 

2 
0 Nk 

= 1im-
N-+oo 0~2 

From theorems 18.2.1. and 18.3.1. on resp. p. 322 and 331 in Ibragimov and Linnik 

(1971) we have 

eff (h,k) l' (2Tr f(O) N \ f(O) 
~\ Nk 2Tr £*(0) } k f*(O) 

Inserting the expression for f* from lemma 1 we get 

_~ 2a 2pTr .2phTr 

k2 
~--

112)-1 (1 00 

/e 
k 

eff (h,k) L 'v k + 
2Tr2 h2 

e 
p=l p 

(8) 

Formula (8) ~s suitable for direct numerical computation. 

One should notice that the only traffic parameter entering into the express~on 

for the sampling efficiency is 2a/v. 

As an exa~le we have tabulated the efficiency for a 15 m and v 60 km/h 

16 2/3 m/sec (table 1). 

Table 1 

Efficiency of Interval Sampling 

2a/v = 1.8 sec 

Observation time 
break in.. seconds 
in seconds (h) 1 5 
(k-h) 

10 15 20 30 

10 0.494 0.580 0.676 0.738 0.780 0.833 
20 0.189 0.265 0.357 0.430 0.487 0.574 
40 0.144 0.207 0.287 0.354 0.409 0.495 
50 0.116 0.170 0.240 0.300 0.352 0.434 
60 0.097 0.144 0.206 0.261 0.308 0.387 
90 0.065 0.099 0.145 0.187 0.225 0.291 

120 0.049 0.075 0.112 0.146 0.177 0.233 
180 0.033 0.051 0.076 0.101 0.124 0.161 
240 0.025 0.038 0.058 0.077 0.096 0.l30 
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