Norman Kaplan

An Extension of a Result of Seneta and Heyde to p-Dimensional Galton-Watson Processes

Norman Kaplan ${ }^{*}$

AN EXTENSION OF A RESULT OF SENETA AND HEYDE TO p-DIMENSIONAL GALTON-WATSON PROCESSES

Preprint 1975 No. 9

INSTITUTE OF MATHEMATICAL STATISTICS UNIVERSITY OF COPENHAGEN

April 1975
*

* Department of Statistics, University of California, Berkeley.

Abstract

It is proven that a supercritical p-dimensional GaltonWatson process can always be normalized to obtain a.e. convergence to a nondegenerate random vector $W v$ where $v i s$ a deterministic vector and W is a scalar random variable with the property that it is a.e. positive on the set of explosion. Additional properties of W are also investigated.

KEY WORDS: p-dimensional Galton-Watson process, supercritical

AMS C1assification 60J85.

For the one-dimensional supercritical Galton -Watson process $\left\{Z_{n}\right\}$, Seneca and Heyde [5], [2] have proven that it is always possible to find a sequence of constants $\left\{c_{n}\right\}$ such that $c_{n} \rightarrow 0$ and $c_{n} Z_{n}$ converges almost surely to a random vaviable W which is positive on the set of explosion. The parpose of this paper is to prove the p-dimensional ($\mathrm{p} \geq 2$) analog of this result. It has recently been brought to our atmention that results analogous to ours were announced by Hoppe [7]. We were however, unable to obtain details of his work and so we felt it worth while to present our proofs.

Before stating our results, it is convenient to first give some notation. Let,

$$
\begin{aligned}
\mathrm{X}= & \text { set of all p-tuples } \mathrm{i}=\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{p}}\right) \text { whose ely- } \\
& \text { mends are nonnegative integers } \\
\mathrm{C}= & \text { p-dimensional cube of points } s=\left(s_{1}, s_{2}, \ldots, s_{p}\right) \\
& \text { such that } 0 \leq s_{i} \leq 1 \\
\underset{\sim}{0}= & (0,0, \ldots, 0), \underset{\sim}{1}=(1,1, \ldots, 1) \\
\mathrm{e}^{(\alpha)}= & \left(\delta_{1 \alpha}, \delta_{2 \alpha}, \ldots, \delta_{p \alpha}\right), 1 \leq \alpha \leq p \text { and } \delta_{\alpha \beta} \text { is the usual }
\end{aligned}
$$ Kronecker delta function.

$s^{i}=\prod_{j=1}^{p} s_{j}^{i}{ }_{j}$ for $s \in C$ and $i \in X$
For any two elements s, t of either C or X we write

$$
\begin{aligned}
& \langle s, t\rangle=\sum_{j=1}^{p} s{ }_{j}{ }^{j}
\end{aligned}
$$

$$
\begin{aligned}
& ||s||=\max \left|s_{j}\right| \\
& 1 \leq j \leq p
\end{aligned}
$$

If A is any $p \times p$ matrix, then sAt is the obvious bilenear form.

Let $\left\{Z_{n}=\left(Z_{n 1}, Z_{n 2}, \ldots, Z_{n p}\right)\right\}_{n \geq 0}$ be a p-type

Galton-Watson process where a particle of type $\alpha, 1 \leq \alpha \leq p$, produces offspring according to $\left\{p^{(\alpha)}(i)\right\} i \in X$. $\operatorname{If} Z_{0}=e^{(\alpha)}$ w. p. 1, we write $\left\{\mathrm{Z}_{\mathrm{n}}^{(\alpha)}\right\}, 1 \leq \alpha \leq \mathrm{p}$.

As usual, it is more convenient to deal with probability generating functions and so we write

$$
f(s)=\left(f^{(1)}(s), f^{(2)}(s), \ldots, f^{(p)}(s)\right)
$$

where

$$
f^{(\alpha)}(s)=\sum_{i \in X} s^{i} p^{(\alpha)}(i) \quad 1 \leq \alpha \leq p, s \in C
$$

We denote the $n^{t h}$ composition of f with itself by f_{n} i.e. $f_{n}(s)=f_{n-1}(f(s)), n \geq 1\left(f_{0}(s) \equiv s, f_{1}(s) \equiv f(s)\right)$.

Let $m_{\alpha \beta}=\frac{\partial f^{(\alpha)}}{\partial s \beta}(\underset{\sim}{1}), 1 \leq \alpha, \beta \leq p$ and denote the matrix $\left(m_{\alpha \beta}\right)_{1 \leq \alpha, \beta \leq p}$ by M. As is customary we will always assume that $M^{-} s a t \bar{i} s f i e s$ the following condition.

Condition A. The elements of M are all finite and M is nonsingular and positively regular.
(The reader can consult [1, pg. 184] for the appropriate definitions).

When Condition A holds, it is well known [1, pg. 185] that M has a maximum eigenvalue ρ which is positive, simple and has associated positive right and left eigenvectors and v which are normalized so that $\langle u, \underset{\sim}{1}\rangle=1$ and $\langle u, v\rangle=1$.

In this paper we assume that $1<\rho<\infty$. This is what is meant by the process being supercritical. It is well known [1,pg. 186] that in this situation

$$
\begin{aligned}
& P\left(\lim _{n \rightarrow \infty} Z_{n}=0 \mid Z_{0}=e^{(\alpha)}\right)+P\left(\lim _{n \rightarrow \infty} Z_{n} \|=\infty \mid Z_{0}=e^{(\alpha)}\right)=1
\end{aligned}
$$

and

$$
f(q)=q \text { where } q=\left(q^{(1)}, q^{(2)}, \ldots, q^{(p)}\right)
$$

We now state our results.

Theorem 1. Let $\left\{Z_{n}\right\}_{n \geq 0}$ be a p-dimensional Galton-Watson process satisfying Condition A and $1<\rho<\infty$. Then there always exists a sequence of constants $\left\{c_{n}\right\}$ with $c_{n} \rightarrow 0$ and $c_{n} / c_{n+1} \rightarrow 0$ as $n \rightarrow \infty$, such that the sequence of random variables $\left\{W_{n}=c_{n}<u, Z_{n}>\right\}_{n>0}$ converges a.s. to a finite random variable W having the \bar{f} ollowing properties:

$$
\begin{array}{ll}
\text { i) } P\left(W=0 \mid Z_{0}=e^{(\alpha)}\right)=q^{(\alpha)} & 1 \leq \alpha \leq p \\
\text { ii) Let } \theta^{(\alpha)}(z)=E\left(e^{-i z W} \mid Z_{0}=e^{(\alpha)}\right) & \begin{array}{l}
1 \leq \alpha \leq p \\
z e a l
\end{array}
\end{array}
$$

Then

$$
\theta(z)=f\left(\theta\left(\frac{z}{\rho}\right)\right)
$$

$$
\begin{aligned}
& \text { iii) } \frac{\text { There exist nonnegative measurable functions }}{(\alpha)(x) \text { suchthat for } 0<a<b<\infty} \\
& P\left(a<W<b \not Z_{0}=e^{(\alpha)}\right)=\int_{a}^{b}(\alpha)(x) d x \quad 1 \leq \alpha \leq p \\
& \text { iv) } E\left(W \mid Z_{0}=e^{(\alpha)}\right)<\infty \text { for some } 1 \leq \alpha \leq p \text { iff } \\
& \quad \sum_{i \in X} i_{\beta} \log i_{\beta} p^{(\alpha)}(i)<\infty, 1 \leq \alpha, \beta \leq p \text { iff } \\
& \quad c_{n} \sim \frac{1}{\rho^{n}} .
\end{aligned}
$$

Theorem 2. Let the assumptions of Theorem 1 hold. Then,

$$
\lim _{n \rightarrow \infty}| | \frac{Z_{n}}{\left\langle u, Z_{n}\right\rangle}-v| |=0 \quad \text { a.e. on the set of }
$$

where v is the left eigenvector of M corresponding to p.
Combining Theorems 1 and 2 we obtain:

Theorem 3. Let the assumptions of Theorem 1 hold. Then there exists a sequence of constants $\left\{c_{n}\right\}$ with $c_{n} \rightarrow 0$ and $c_{n} / c_{n+1} \rightarrow \rho \cdot \underline{\text { such that }}$

$$
\lim _{n \rightarrow \infty} c_{n} Z_{n}=W v \quad W \cdot p \cdot 1
$$

where v is the left eigenvector of M corresponding to ρ and W is the random variable given in Theorem 1 .

2. PROOFS.

For ease of exposition, the proof of Theorem 1 will be carried out in a series of lemmas.

Lemma 1. There exists a sequence of vectors $\left\{x_{n}\right\}_{n>0}$ such that $q<x_{0}<\underset{\sim}{1}$, and $x_{n}=f\left(x_{n+1}\right), n \geq 0$.

Proof. Let R_{n} be the range of $f_{n}, n \geq 1$, and set $\hat{\hat{R}}=$ $\cap R_{n}$. Since q and $\underset{\sim}{1}$ are fixed points of f, they necessarily belong to \hat{R}. Also, since $q<\underset{\sim}{1}$ and each R_{n} is arcwisee connected, there exists an $x_{0} \in R$ such that $q<x_{0}<\underset{\sim}{1}$, and by our choice of x_{0}, there exists a sequence of vectors $\left\{y_{n}\right\}$ such that $y_{n} \in R_{n-1}$ and $x_{0}=f\left(y_{n}\right)$. By the Bolzano-Wierstraus Theorem there exists some point $x_{1} \in C, x_{1} \neq q, x_{1} \neq \underset{\sim}{1}$, and a subsequence of the $\left\{y_{n}\right\}$ say $\left\{y_{n},\right\}$ such that $\underset{n \rightarrow \infty}{\lim } y_{n}$, $=x_{1}$. By continuity, $x_{0}=f\left(x_{1}\right)$. If we can show that $x_{1} \in R$, then the proof of the lemma will follow by simple induction. Thus, we need to show $x_{1} \in R_{k}$ for all k. Pick a $k \geq 1$. Since $y_{n}, \in R_{k}$ for $n^{\prime}>k$, we can find vectors w_{n}, such that $f_{k}\left(w_{n}^{\prime}\right)=y_{n}$, , $n^{\prime}>k$. Since the $\left\{W_{n},{ }^{\prime}\right\}$ has some limit point $w \in C$, we conclude by continuity that $f_{k}(w)=x_{1}$. This implies $x_{1} \in R_{k}$ and completes the proof. \qquad

Remark. In the 1-dimensional case, it is not difficult to see that f has an inverse f^{-1} and as a consequence, $\hat{R}=$ $[q, 1]$ and $x_{n}=f_{n}^{-1}\left(x_{0}\right)$. Naturally in the higher dimensional case, it is not as easy to describe R, nor to make the evaluation of the $\left\{x_{n}\right\}$.

$$
\text { For } n \geq 0 \text { define }
$$

$$
\begin{aligned}
& z_{n}=\left(z_{n 1}, z_{n 2}, \ldots, z_{n p}\right) \text { where } z_{n \alpha}=-1 n x_{n \alpha}, 1 \leq \alpha \leq p \\
& c_{n}=\left\langle v, \underset{\sim}{1}-x_{n}\right\rangle \\
& W_{n}=\left\langle z_{n}, z_{n}\right\rangle, Y_{n}=e^{-W_{n}}
\end{aligned}
$$

$\bar{F}_{\mathrm{n}}=\sigma-a 1$ gebra generated by $\mathrm{Z}_{0}, \mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{n}}$
Our next lemma proves some properties of the $\left\{z_{n}\right\}$ and the $\left\{c_{n}\right\}$.

Lemma 2. The following properties are true.

$$
\begin{array}{ll}
\text { i) }{\underset{n}{n \rightarrow \infty}}_{\lim _{n} z_{n}=\underset{\sim}{0}} \\
\text { ii) }{\underset{n}{n \rightarrow \infty}}^{\lim _{n} \frac{z_{n} \alpha}{z_{n}+1 \alpha}=\rho} & 1 \leq \alpha \leq p .
\end{array}
$$

iii) $\begin{aligned} \lim _{n \rightarrow \infty} & \frac{Z_{n}}{c_{n}}=u, \\ & \text { of } M \text { core } u \text { is the right eigenvector }\end{aligned}$

Proof. To prove (i) it is sufficient to show that $1 \mathrm{im} \mathrm{x}_{\mathrm{n}}=$ 1. It follows from the construction of the $\left\{x_{n}\right\}$ that $x_{0}=f_{n}\left(x_{n}\right)$. Suppose now, that say $x_{n 1} \neq 1$. There then exists a subsequence say $\left\{x_{n^{\prime} 1}\right\}$ such that $\sup _{n^{\prime}} x_{n^{\prime} 1}=\delta<1$. Thus,

$$
\mathrm{q}^{(1)}<\mathrm{x}_{01}=\mathrm{f}_{\mathrm{n}^{\prime}}^{(1)}\left(\mathrm{x}_{\mathrm{n}},\right) \leq \mathrm{f}_{\mathrm{n}}(1)(\delta, 1, \ldots, 1) .
$$

But it is well known [1, pg. 186] that $f_{n^{\prime}}^{(1)}(\delta, 1, \ldots, 1) \rightarrow q^{(1)}$ and so $q^{(1)}=x_{01}$ which is a contradiction. To prove (ii) and (iii) we use arguments similar to those in [3]. It is proven in [3] that there exists a family of matrices \{E(s)\} ${ }_{s \in C}$ such that

$$
0 \leq E(s) \leq M, t \leq s \Rightarrow E(t) \geq E(s)
$$

$E(t) \rightarrow 0$ componentwise as $t \rightarrow \underset{\sim}{1}$ in C, and

$$
\begin{equation*}
\underset{\sim}{1}-f(s)=(M-E(s))(\underset{\sim}{1}-s) \cdot s \in C \tag{1}
\end{equation*}
$$

Consider now $\left\{z_{n 1}=-\log x_{n 1}\right\}$. The arguments for the other $\left\{z_{n i}\right\}$ are the same. Since $x_{n 1} \rightarrow 1$, we can find a sequence $\varepsilon_{n} \rightarrow 0$ such that

$$
\begin{equation*}
\left(1-\varepsilon_{n}\right)\left(1-x_{n 1}\right) \leq z_{n 1} \leq\left(1+\varepsilon_{n}\right)\left(1-x_{n 1}\right) \tag{2}
\end{equation*}
$$

Using Lemma 1 and (1) we can write $1-x_{n 1}$ as

$$
\begin{equation*}
1-x_{n 1}=e^{(1)}\left(\prod_{k=1}^{m} M-E\left(x_{n+k}\right)\right)\left(\underset{\sim}{1}-x_{n+m}\right) \tag{3}
\end{equation*}
$$

for any $m \geq 1$.
Let $\left.R=\left(u_{\alpha}{ }^{v}\right)^{\prime}\right)_{1 \leq \alpha, \beta<p}$. It follows from the Frobenious Theorem[1, pg. 185] that $\lim \rho^{-n} M^{n}=R$. Thus we can find a sequence $\delta_{n} \rightarrow 0$ such that

$$
\begin{equation*}
R\left(1-\delta_{n}\right) \leq \rho^{-n_{M}}{ }^{n} \leq R\left(1+\delta_{n}\right) \tag{4}
\end{equation*}
$$

Since $E(t) \rightarrow 0$ as $t \rightarrow \underset{\sim}{1}$, we can find a sequence $\eta_{n} \rightarrow 0$ such that

$$
\begin{equation*}
E\left(x_{n}\right) \leq \eta_{n} R \tag{5}
\end{equation*}
$$

Note also that since $\rho^{-1} M R=R \rho^{-1} M=R$, we have as in [3] for any real arbitrary numbers $\gamma_{1}, \ldots, \gamma_{n}$,

$$
\begin{align*}
\prod_{k=1}^{n}\left(\rho^{-1} M-\gamma_{k} R\right) & =\rho^{-n_{M} n}-\left\{1-\prod_{k=1}^{n}\left(1-\gamma_{k}\right)\right\} R \\
& \geq \rho^{-n_{M} n}-\sum_{k=1}^{n} \gamma_{k} R \tag{6}
\end{align*}
$$

Combining (2) - (6) we obtain

$$
\begin{align*}
\left(1-\delta_{m}-\sum_{k=1}^{m} \eta_{n+k}\right) e^{(1)} R\left(\underset{\sim}{1-x_{n+m}}\right) & \leq 0^{-m}\left(1-x_{n 1}\right) \leq \\
& \leq\left(1+\delta_{m}\right) e^{(1)} R\left(\underset{\sim}{1-x_{n+m}}\right) \tag{7}
\end{align*}
$$

and so for $m \geq 1$,
$\frac{\left(1-\varepsilon_{n}\right)\left(1-\delta_{m}-\sum_{k=1}^{m} n_{n+k}\right) \rho}{\left(1+\varepsilon_{n+1}\right)\left(1+\delta_{m-1}\right)} \leq \frac{z_{n 1}}{z_{n+1}} \leq \frac{\left(1+\varepsilon_{n}\right)\left(1+\delta_{m}\right) \rho}{\left(1-\varepsilon_{n+1}\right)\left(1-\delta_{m-1}-\sum_{k=1}^{m-1} n_{n+k}\right)}$
By letting first n tend to ∞ and then m, we see from (8) that (ii) is true.

To prove (iii) we use (7) to write

$$
\begin{equation*}
\frac{\left(1-\varepsilon_{n}\right)\left(1-\delta_{m}-\sum_{k=1}^{m} n_{n+k}\right) e^{\left.(1)_{R\left(1-x_{n+m}\right.}\right)}}{\left.\left(1+\varepsilon_{n}\right)\left(1+\delta_{m}\right)<v, R\left(1-x_{n+m}\right)\right\rangle} \leq \frac{z_{n 1}}{c_{n}} \tag{9}
\end{equation*}
$$

$$
\leq \frac{\left(1+\varepsilon_{n}\right)\left(1+\delta_{m}\right) e^{(1)} R\left(1-x_{n+m}\right)}{\left(1-\varepsilon_{n}\right)\left(1-\delta_{m}-\sum_{k=1}^{m} \eta_{n+k}\right)\left\langle v, R\left(1-x_{n+m}\right)\right\rangle}
$$

But because of the normalization $(u, v)=1, \frac{R w}{\langle v, R w\rangle}=u$ for any choice of w \in C, Thus (iii) follows from (9) by letting first n tend to ∞ and then m.

As an immediate consequence of Lemma 2 we have
Corollary 1. $\lim _{n \rightarrow \infty} c_{n}=0$ and $\lim _{n \rightarrow \infty} c_{n} c_{n+1}^{-1}=\rho$
Our next result proves that the $\left\{Y_{n}\right\}$ converge w.p.1.
Lemma 3. The family $\left\{Y_{n}, \bar{F}_{n}\right\}{ }_{n}>1$ is a positive martingale. Hence,

$$
\lim _{n \rightarrow \infty} Y_{n}=Y
$$

exists w.p.1, and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} E\left(Y_{n}^{r} \mid Z_{0}=e^{(\alpha)}\right)=E\left(Y^{r} \mid Z_{0}=e^{(\alpha)}\right) \text { for all r>0 } \\
& 1 \leq \alpha \leq p
\end{aligned}
$$

Proof. Since the $\left\{Y_{n}\right\}$ are positive, all we need do is verify the martingale property. Thus for $n \geq 1$,

$$
\begin{aligned}
E\left(Y_{n+1} \mid \bar{F}_{n}\right) & =E\left(e^{-\left\langle z_{n+1}, Z_{n+1}\right\rangle} \mid \bar{F}_{n}\right) \\
& =\prod_{i=1}^{p} f^{(i)}\left(e^{-z_{n+11}}, \ldots, e^{-z_{n+1} p_{p}}\right)^{Z} Z_{n i} \\
& =\prod_{i=1}^{p} e^{-z_{n i} Z_{n i}} \\
& =Y_{n}
\end{aligned}
$$

$$
\left.\begin{array}{r}
\text { since } f^{(i)}\left(e^{-z} n+11\right.
\end{array}, \ldots, e^{-z n+1 p}\right)=f^{(i)}\left(x_{n+1}\right)=x_{n i}=e^{-z} n i
$$

The convergence of the moments follows by bounded convergence.
Q.E.D.

The next lemma allows us to conclude that - log Y is finite and not degenerate at 0 .

Lemma 4. Let Y be as in Lemma 3. Then

$$
\begin{aligned}
& P\left(Y=1 \mid Z_{0}=e^{(\alpha)}\right)=q^{(\alpha)} \\
& P\left(Y>0 \mid Z_{0}=e^{(\alpha)}\right)=1
\end{aligned}
$$

$$
1 \leq \alpha \leq p
$$

Proof. Essentially the same as Lemma 3. Sec. 10 Ch .1 of [1] and so omitted.

It follows from Lemma 4 that $\lim _{\mathrm{n}}=W$ w.p.1. where
 Furthermore in view of (iii) of Lemma 2 we have that $\lim _{n \rightarrow \infty} c_{n}\left\langle Z_{n}, \dot{u}\right\rangle=W$ w.p.1.

To complete the proof of Theorem 1 it remains only to examine the random variable W. (i) has already been proven. To prove (ii) let $\theta_{n}^{(\alpha)}(z)=E\left(e^{-i z\left\langle Z_{n}, u\right\rangle} \mid Z_{0}=e^{(\alpha)}\right)$ and $\theta_{n}(z)=\left(\theta_{n}^{(1)}(z), \ldots, \theta_{n}^{(p)}(z)\right)$.

It is not hard to check that

$$
\theta_{n}(z)=f\left(\theta_{n-1}\left(\frac{c_{n}}{c_{n-1}} z\right)\right)
$$

and so by Corollary 1, we have

$$
\theta(z)=f\left(\theta\left(\frac{z}{\rho}\right)\right)
$$

This proves (ii). The proof of the absolute continuity of W follows much along the same lines as the one-dimensional case and the reader is referred to Lemmas 7-9 Sec. 10, Ch. 1 of [1] for details. Finally we note that the proof of (iv)
follows directly from Khintchin's Theorem and Theorems 1 - 5 in Sec. 6, Ch. 5 of [1]. We leave the reader to check the details. This completes the proof of Theorem 1.

Remark. We note in passing that the second part of (iv) can be proven directly without recourse to the results in [1].

We now turn to the proof of Theorem 2. Our proof is similar in spirit to that in [6]. For definiteness we assum $Z_{0}=e^{(1)}$ w.p.1. Following [1,pg.195], we have the following representation for $X_{n+m}=Z_{n+m} /<u, Z_{n+m}>$

$$
\begin{equation*}
X_{n+m}=\frac{\sum_{j=1}^{p} Z_{n j} e^{(j)} M^{m}+\sum_{j=1}^{p} \sum_{1=1}^{Z_{n} j}\left(Z_{m}^{(j) 1}(n)-e^{(j)} M^{m}\right)}{\rho^{m}<u, Z_{n}>+\sum_{j=1}^{p} \sum_{1=1}^{Z_{n}}\left(\left\langle u, Z_{m}^{(j) 1}(n)\right\rangle-\rho^{m} u_{j}\right)} \tag{10}
\end{equation*}
$$

where $Z_{\text {mi }}^{(j) l}(n)$ denotes the number of particles of type in the $(m+n)$ gheneration descending from the $1^{t h}$ particle of type j in the $n^{\text {th }}$ generation. It follows from the definition of the process that the collection of random vectors $\left\{Z_{m}^{(j) 1}(n) ; 1=1, \ldots, Z_{n}^{(j)}, j=1, \ldots, p\right\}$ are conditionally independent when given F_{n}. Dividing through in (10) by $\rho^{m}<u, Z_{n}>$ and subtracting v, we obtain

$$
X_{n+m}-v=\frac{\left(X_{n} M^{m} \rho^{-m}-v\right)-r_{n, m} v+\alpha_{n, m}}{1+r_{n, m}}
$$

where

$$
r_{n, m}=\frac{\left\langle\underset{\sim}{1}, Z_{n}\right\rangle}{\left\langle u, Z_{n}\right\rangle} \frac{1}{\left\langle{\underset{\sim}{~}}^{\prime}, Z_{n}\right\rangle} \sum_{j=1}^{p} \sum_{1=1}^{Z_{n} j}\left(\left\langle u, Z_{m}^{(j) 1}(n)\right\rangle-p^{m} u_{j}\right) \rho^{-m}
$$

and

$$
\alpha_{n, m}=\frac{\left\langle\underset{\sim}{1}, Z_{n}\right\rangle}{\left\langle u, Z_{n}\right\rangle} \frac{1}{\left\langle\underset{\sim}{1}, Z_{n}\right\rangle} \sum_{j=1}^{p} \sum_{1=1}^{Z_{n} j}\left(Z_{m}(j) 1(n)-e^{(j)_{M}}{ }_{M}\right) \rho^{-m}
$$

Let $\varepsilon>0$. It follows from Lemma 1 [1, pg. 194] that there exists an m_{0} such that for $m>m_{0}$

$$
\begin{equation*}
\sup _{\mathrm{n}}| | \mathrm{X}_{\mathrm{n}+\mathrm{m}} \mathrm{M}^{\mathrm{m}} \rho^{-\mathrm{m}}-\mathrm{v} \|<\varepsilon \tag{11}
\end{equation*}
$$

Fix m $>\mathrm{m}_{0}$. To prove that $\left|\mathrm{r}_{\mathrm{n}, \mathrm{m}}\right|$ and $\left|\left|\alpha_{\mathrm{n}, \mathrm{m}}\right|\right|$ converge to zero almost surely on the set of explosion we need the next two lemmas.

Lemma 5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables with mean zero such that
where Q is a distribution on $\{0, \infty$) with finite mean. Then for $\delta>0$.

$$
P\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right|>\delta\right) \leq C\left\{n \int_{n}^{\infty} d Q(x)+\frac{1}{n} \int_{0}^{n} x^{2} d Q(x)\right\}
$$

where C is a constant that does not depend on n.

For a proof of Lemma 5, the reader is refered to Lemma 1 of [4].

Lemma 6. Let Q be a probability measure on ($0, \infty$) with finite mean and $1 e t\left\{_{k}\right\}$ be a sequence of numbers that ultimately increase monotonically to ∞, such that $\lim _{k \rightarrow \infty} \frac{m_{k}}{m_{k-1}}>1$. Then

$$
\sum_{k=1}^{\infty}\left[m_{k} \int_{m_{k}}^{\infty} d Q(x)+\frac{1}{m_{k}} \int_{0}^{m_{k}} x^{2} d Q(x)\right]<\infty
$$

Proof. Since all terms are positive, it suffices by Fubini's Theorem to show

$$
\sum_{k=1}^{\infty} m_{k} I_{\left[m_{k}, \infty\right)}(x)+\sum_{k=1}^{\infty} \frac{x^{2}}{m_{k}} I_{\left[0, m_{k}\right.}(x)=0(x) .
$$

(For any set A, I_{A} is the indicator function of the set A).
We will only prove that the first sum is $0(x)$ since the proof for the second is similar. By omitting a finite number of terms we can assume W.L.O.G. that the $m_{k} \uparrow$. Let k_{0} be such that $\mathrm{m}_{\mathrm{k}} \leq \mathrm{x}<\mathrm{m}_{\mathrm{k}_{\mathrm{o}}+1}$.

Then

$$
\begin{aligned}
\sum_{k=1}^{\infty} m_{k} I\left(m_{k}, \infty\right)(x) & =\sum_{k=1}^{k_{0}} m_{k} \\
& \leq \frac{x}{m_{k}} \sum_{k=1}^{k_{0}} m_{k}
\end{aligned}
$$

But in view of our assumptions on the $\left\{m_{k}\right\}$ it is not difficult to show that

$$
\overline{\lim }_{k \rightarrow \infty} m_{k}^{-1} \sum_{j=1}^{k} m_{j}<\infty .
$$

We now prove that $\lim _{\mathrm{n} \rightarrow \infty}\left|\mathrm{r}_{\mathrm{n}, \mathrm{m}}\right|=0 \mathrm{w} \cdot \mathrm{p} .1$. The proof for $\left|\left|\alpha_{n, m}\right|\right|$ is similar and omitted. Let $\left\{V^{(j)}\right\}_{j=1, \ldots, p}$ be positive independent random vectors each distributed as $\left|<\mathrm{u}, \mathrm{z}_{\mathrm{m}}^{(\mathrm{j})}>-\mathrm{u}_{\mathrm{j}} \rho^{\mathrm{m}}\right|, 1 \leq \mathrm{j} \leq \mathrm{p}$, and define

$$
Q(t)=P\left(\sum_{j=1}^{p} V_{1}^{(j)} \leq t\right)
$$

It then follows that

$$
\begin{equation*}
P\left(\left|<u, z_{m}^{(j) 1}(n)>-\rho_{m_{j}}\right|>t\right) \leq \int_{t}^{\infty} d Q(x) \tag{12}
\end{equation*}
$$

for $1=1, \ldots, Z_{n}^{(j)}, j=1, \ldots, p$ and $t>0$.
Furthermore, from Theorem 1 and Lemma 2 we have for every $\mathrm{k} \geq 1$.

$$
\begin{equation*}
\frac{\lim _{n \rightarrow \infty}}{} \frac{\left\langle\underset{\sim}{1}, z_{n k}\right\rangle}{\left\langle\underset{\sim}{1}, Z_{(n-1) k}\right\rangle} \geq \rho^{k} \frac{\min u_{i}}{\max u_{i}} \tag{13}
\end{equation*}
$$

almost surely on the set of explosion. Choose k so that $\rho^{k} \frac{\min u_{i}}{\max u_{i}}>1$. It then follows from (12) and (13) that the conditions of Lemmas 5 and 6 are satisfied and so we have for any $\varepsilon>0$

$$
\sum_{n=1}^{\infty} P\left(\left|r_{n k, m}\right|>\varepsilon \mid \bar{F}_{n k}\right)<\infty
$$

almost surely on the set of explosion. Applying the extended Borel-Cantelli lemma we conclude that
$\lim _{\mathrm{n} \rightarrow \infty}\left|\mathrm{r}_{\mathrm{nk}, \mathrm{m}}\right|=0$
almost surely on the set of explosion.

In a totally analogous way we have for $1 \leq j \leq k$

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty}\left|\mathrm{r}_{\mathrm{nk}+\mathrm{j}, \mathrm{~m}}\right|=0 \tag{14}
\end{equation*}
$$

almost surely on the set of explosion.

The convergence of $\left|r_{n m}\right|$ to zero follows directly from (14). This completes the proof of Theorem 2.

ACKNOWLEDGMENT.

I would like to thank Prof. W. Bühler and S. Asmussen for discussions which led to the results of this paper.

BIBLIOGRAPHY

1] Athreya, K., and Ney, P. Branching Processes. Springer Verlag, Berlin 1972.

2] Heyde, C.C. Extension of a result of Seneta for the supercritical Galton-Watson process, AMS 41 739-742 (1970).

3] Joffe, A. and Spitzer, F. On multitype branching processes with $\rho \leq 1$. JMAA 19 409-430 (1967).

4] Kaplan, N. and Asmussen, S. On branching randon walks II. To appear.

5] Seneta, E. On recent theorems concerning the supercritical Galton-Watson process AMS 39 2098-2102 (1968).

6] Kurtz, T. Almost sure convergence in multitype GaltonWatson processes. Unpublished note. University of Wisconsin (1974).

7] Hoppe, F., Limit distributions for branching processes Abstract \# 74t-60 I.M.S. Bulletin Vol. 3 \# 5, Issue \# 16. (1974).

