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ABSTRACT 

It is proven that a supercritical p-dimensional Galton­

Watson process can always be normalized to obtain a.e. conver­

gence to a nondegenerate random vector Wv where v is a deter­

ministic vector and W is a scalar random variable with the 

property that it is a.e. positive on the set of explosion. 

Additional properties of Ware also investigated. 

KEY WORDS: p-dimensional Galton-Watson process, 
supercritical 
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1. INTRODUCTION 

-

For the one-dimerisi~nal super~ritical Galt.on-Watson pro-

cess {Z }, Seneta and Heyde [sJ, [2J have proven that it is 
n 

always possible to find a sequence of constants {c } such 
n 

that c + 0 and c Z converges almost surely to a random va-
n n n 

riable W which is positive on the set of explosion. The pur-

pose of this paper is to prove the p-dimensional (p>2) ana-
;.;...,.,; 

'log of this result. It has recently been brought to our at-

tention that resu~ts Bnalogous to ours were announced by Hop~ 

pe [ 7 J. We were however, 'unable to ()btai ll details of his 

work and 80 we felt it wo~th while to present our proofs. 

Before stating our results, it 1S convenient to first 

give some notation. Let, 

x 

C 

set of all p - t u pIe s i = ( iI' i 2 ' .0 • , i p ) who s e 'e 1 e­

ments are nonnegative integers 

p-dimensional cube of points s 

such that a < s. < 1 
1 -

o (O,O, ••• ,O),~ = (1,1, ... ,1) 

e 
(a) 

1 
S 

(Ola,02a, ••• ,opa)' 1 < a < p and 0aS is 

Kronecker delta function. 

p i-
n s.] for sEC and iEX 

j = 1 ] 

the usual 

For any two elements s, t of either C or X we write 

<s,t> = 

(n 
s < t 

(~) 

IIsil 

P 
L: s.t. 

j=l J J 

« ) 
iff s. < t. 

] (» ] 

max 1 s·1 
] 

l<j<p 

1 < j < P 

If A is any p x p matrix, then sAt is the obvious bili­

near form. 

Let·{Z 
n (Z l'Z 2""'Z )} >0 be a p-type n n np n_ 

I 

I ~ 

l 

: r 
, . 

i • 
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Galton-Watson process where a particle of type a, 1 < a ~ p, 

produces offspring according to {p(a)(i)}iEX' If Z -= eTa) 
. (a) 0 

w. p. 1, we wr it e {Z }, 1 < a < p. 
n 

As usual, it is more convenient to deal with probabili­

ty generating functions and so we write 

f ( s) = (f (1) (s) , f ( 2) (s) , .•• , f( p) (s) ) 

where 

i (a) ( . ) s p ~ 1 < ex < p, sEC 

th We denote the n composition of f with itself by f ~.e. 
n 

fn(s) = fn_l(f(s», n ~ 1 (fO(s) - s, fl (s) = f(s». 

df(a) 
Let m Q = -~-- (1), 1 2 a,S ~ p and denote the matrix 

afJ aSS 
(m ) by M As is customary we will always assume as l<a,S<p • 
that M-satisfies the following condition. 

Condition A. The elements of M are all finite and M ~s 

nonsingular and positively regular. 

(The reader can consult [1, pg. 184] for the appropriate 

definitions). 

When Condition A holds, it ~s well known [1,pg.185] that 

M has a maximum eigenvalue p which is positive, simple a.nd 

has associated positive right and left eigenvecto~ u and v 

which are normalized so that <u,~> = 1 and <u,v> = 1. 

In this paper we assume that 1 < P < 00. This ~s what is 

meant by the process being supercritical. 

[1,pg.186] that in this situation 

It is well known 

and 

P ( 1 im Z = 0 I Z = e (a») + P ( 1 imll Z 11=00 I Z = e (a) ) 1 
n '" G· n 0 n+oo n+oo 

(a) 
q 

f (q) 

P (lim Z 
n 

q where q 

1 < a < p 

(1) (2) . (p) = (q •. EJ. , ••• ,q ). 
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We now state our results. 

Theorem 1. Let'{Z } >0 be a p-dimensiona1 Galton-Watson 
-- n n 

process satisfying Condition A and 1 < P < 00. Then there a1-

ways exists 

c /c 1 -+ r n n+ 

a sequence of constants{c} with c -+ 0 and 
n n 

as n -+ 00, such that the sequente of random variab-

1es{Wn = cn<u,Zn>}n>O converges a.s. to ~ firiit~ ~andom va-

riab1e W having the 7011owing properties: 

Then 

i) p(w=olzo","e(a» = q 
(a) 

1 < a < p 

ii) Let e(a)(z) = E(e-izWIz o 
e(a» 1 < a < p 

z rea1:-

z 
8(z) = f(8(-». 

. p 

iii ) The r e ex i s t 'no 'n 'ne ga t i ve tneas uTa b Ie' f u nc t fo 'n s 

w(a)(x) such that for O<a<b<oo 

1 < a < p 

iv) E(wlzo=e(a» < 00 for some 1 < a < p iff 

L i log iQ p(a)(i) 
iEX S f-J 

1 
c 

n n 
p 

< 00 , 1 < a,S < p iff 

Theorem 2. Let the assumptions of Theorem 1 hold. Then, 

z 
lim II <u ~ > - v II 

, n n-+oo 
o a. e. on the set of 

explosion 

where v is the left eigenvector of M corresponding to ~. 

Combining Theorems I and 2 we obtain: 

Theorem 3. Let the assumptions of Theorem 1 hold. Then 

there exists a sequence of constants{c} with c -+ 0 and 
n --- n 

c /c 1 -+ p,such that 
n n+ -.---

lim c Z 
n n 

n-+oo 
Wv w.p.l. 
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where v is the left eigenvector of M corresponding to p and 

W is the random variable given in Theorem 1. 

2. PROOFS. 

For ease of exposition, the proof of Theorem 1 will be 

carried out in a series of lemmas. 

Lemma 1. There exists a sequence of vectors . {x } 
n>O ----- n 

such that q < Xo < 2, and x = f(x 1)' n > O. -- n n+ 
A 

Proof. Let R be the range of f n > 1 , and set it 
n n' 

nR . Since q and 1 are fixed points of f, they necessarily 
n 

n A 

belong to R. Also, since q < 1 and each R is arcwtse 
n 

con-

nected, there exists an Xo E R such that q < x < 1, and by o ~ 

our choice of xo' there exists a sequence of vectors {Yn} 

such that y E R 1 and Xo = f(y). By the Bolzano-Wi~rslilHtllSS n n- n . 
Theorem there exists some point xIEC,xl*q, xI*2' and a sub-

sequence of the'{y } say {y ,}such that lim~n' xl' By 
n n n-+oo A 

continuity, Xo = f(x l )· If we can show that xl E R, then the 

proof of the lemma will follow by simple induction. Thus, we 

need to show xl E Rk for ~ll k. Pick a k > 1. Since Yn,ERk 

for n l > k, we can find vectors wnl such that fk(w~) = Yn" 

n I > k. Sin c e the' {w I} has s Q,m eli mit poi n t w E C, wee 0 n -
n 

elude by continuity that fk(w) = xl" 

and completes the proof. 

This implies Xl E Rk 

Q.E± 

Remark. In the I-dimensional case, 

to see that f has an inverse f- l and as a 

it ~s not difficult 
A 

consequence, R = 
-1 

[g,1] and xn = fn (x o )· Naturally in the higher dimensional 
A 

case, it is not as easy to describe R, nor to make the evalu­

ation of the {x }. 
n 

For n > 0 define 

z (z l'z 2""'z ) where z = - In x ,1 < a < p n n n np na na . 

c 
n 

W n 

<v, 1 x > 
n 

<z ,Z >, y 
n n n 

-Wr, 
e n 
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Fn = a-algebra generated by 2 0 ,2 1 ,.,. ,2n 

Our next lemma proves some properties of the {z } and 
n 

the {c }. 
n 

Lemma 2. The followirig ~rdp~rtie~ ai~ tiue. 

i) lim Z 0 
n-+oo 

n 

Z 

ii) lim 
"nO', 

1 < < = p a p. 
n-+oo 

Z n+lO', 

Z 

iii) lim 
n where is the right eigenvector u, u 

c n-+OO n 
of M corresponding to p. 

Proof. To prove (i) it is sufficient to show that lim 

1. 
. n-+oo 

It follows from the construction of the {x } that 
n 

x = 
n 

Xo = f (x ). 
n n 

Suppose now, that say xnl f 1. 

say'{x 'I} such that sup x 'I = 

There then exists 

a subsequence o < 1. Thus, 
n n' n 

q (1 ) < (1) ( )' (1) (x: 1) x Ol = f, X I < f, u,l, ... , . 
n n - n 

. . [86] (1) (.t' ) -+ n", (1) But lt lS well known l,pg.l that f, u,l, ••• ,l ~ 

and so q(l) = x Ol which is a contradic~ion. To prove (ii) and 

(iii) we use arguments similar to those in [3]. It is proven 

in [3] that there exists a family of matrices {E(s)}sEC such 

that 

o 2 E(s) 2 M, t < s ~ E(t) ~ E(s) 

E(t) -+ 0 componentwise as t -+ 1 in C, and 

1 - f ( s) = ( M - E ( s »(1 - s). sEC (1) -
Consider now {znl = - log x nl }. The arguments for the 

other {z .} are the same. 
nl 

Since xnl -+ 1, we can find a se-

quence E -+ 0 such that 
n 

(l-E )(l-x 1) < z 1 < (l+E )(l-x 1) 
n n - n - n n 

Using Lemma 1 and (1) we can write 1 - xnl as 

(2) 



1 - x 
nI 

for any m .:. 1. 
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e(l)( ; M - E(x k~(\1 - x }\ 
k=l n+ 1 ~ n+m 

(3) 

Let R = (u VQ)l< Q It follows from the Frobenious 
a IJ a,IJ<p. 

The 0 rem [ 1 , P g. 1 85 J t hat 1 imp - nM n = R . T h u s we can fin d a s e -
n-+oo 

quence 0 ~ 0 such that 
n 

R(l-o ) < p-nMn < R(l+o ) 
n - - n 

(4) 

Since E(t) ~ 0 as t ~ 1, we can find a sequence nn ~ 0 such 

that 

E (x ) < n R 
n - n 

(5 ) 

. -1 
Note also that Slnce p M R R P-lM = R, we have as in 

[3J for any real arbitrary numbers YI, ••• ,Yn , 

n -1 n (p M-ykR) 
k=I 

n 
-n n '{ } P M - 1- n (I-yk ) R 

k=I 

n 
> p-nMn - '<""" R 

' L Yk 
k=l 

Combining (2) - (6) we obtain 

m (1) -m 
(1-0 - L n )e R(I-x )<p (I-x 1) < 

m k=I n+k n+m - n 

(6) 

<(1+0 )e(1)R(l-x) (7) 
- m ' ~ n+m 

and so for m > 1, 

m 
(1-£ ) (1-8 - L n )p 

n m 1<,=1 n+k (1+£ )(1+0 )p 
n m 

( 1 + E' 1) (1 +-8 1) n+ m-
(8) 

By letting first n tend to 00 and then m, we see from (8) that 

(ii) 1S true. 

To prove (iii) we use (7) to write 
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m (1) 
(1-8 )(1-0 - L n )e R(l-x ) 

n m .k~l n+k n+m 

(1+8 )(1+8 )<v,R{l-x » 
nlll '" n"'IIl ___ _ 

znl 
< -­

c 
n 

(1+8 )(1+0 )e(l)R(l-x) 
n tn ... ·n+m 

< 
m 

(1-8 )(1-0 - L n k)<v,R(l-x » 
n m. 1 n+ - n+m k= 

(9) 

Rw 
But because of the normalization (u,v) = 1, = u for <v,Rw> 
any choice of wEC~ Thus (iii) follows from (9) by letting 

first n tend to 00 and then m. 

As an immediate consequence of Lemma 2 we have 

Corollary 1. lim p 
n+oo 

Our next result proves that the {Y} converge w.p.l. 
n 

Lemma 3. The tam i 1 y { Y n ' F n} n > 1 i s a p 0 sit i v e . mar t i n gal e . 

Hence, 

exists w.p.l, and 

lim Y Y 
n 

n+oo 

E(yr/zo=e(a» for all r > 0 

1 < CJ, < p. 

Proof. Since the{Y } are positive, all we need do 1S 
n 

verify the martingale property. Thus for n > 1, 

~ -<z ,Z ~ ~ 
E(Y llF) = E(e n+l n+l IF) 

n+ n n 
p -z 
n f (i)(e n+ll 

i=l 

p z. Z • n e- n1 n1 

i=l 

Y 
n 

, . " . , e 
-z Z 

n+ lp) ni 
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since f(i)(X ) = 
n+l x . = e 

n1 

-z . 
n1 

1 < i < p. 

The convergence of the moments follows by bounded convergence. 

The next lemma allows us to conclude that - log Y is 

finite and not degenerate at O. 

Lemma 4. Let Y be as in Lemma 3. Then 

p(y>olzo=e(a» 1 

Proo~ Essentially the same as Lemma 3. 

of [1] and so omitted. 

1 < a ..2. p. 

Sec. 10 Ch. 1 

It follows from Lemma 4 that lim W = W w.p.l. where 
n n-:+oo 

p(w<oolzo=e(a» = 1 and P(w=o/zo=e(a) = I(a), 1 < a < p. 

Furthermore in view of (iii) of Lemma 2 we have that 

lim c <Z ,u> = W w.p.l. 
n-rOO n n 

To complete the proof of Theorem 1 it remains only to 

examine the random variable W. (i) has already been proven. 
. . (a) -iz<z u> / (a) To prove (11) let 8n (z) = E(e n' ZO=e ) and 

(1) (p) 
8 ( z) = (8 ( z) , ••• , 8 ( z») . 

n n n 

It is not hard to check that 

c 
8 (z) = f(8 1 (_n_z» 

n n- c n - l 

and so by Corollary 1, we have 

z 
8(z) = f(8(-» 

p 

This proves (ii). The proof of the absolute continuity 

of W follows much along the same lines as the.one-dimensional 

case and the reader is referred to Lemmas 7-9 Sec. 10, Ch. 1 

of [1] for details. Finally we note that the proof of (iv) 
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follows directly from Khintchin's Theorem and Theorems 1 - 5 

in Sec. 6, Ch. 5 of [1]. We leave the reader to check the 

details. This completes the proof of Theorem 1. 

Remark. We note in passing that the second part of 

(iv) can be proven directly without recourse to the restilts 

ln [1]. 

We now turn to the proof of Theorem 2. Our proof lS 

similar in spirit to that in [6]. For definiteness we 
(1) 

assum Zo = e wop.l. Following [1,pg.195]; We have the 

following representation for X = Z I.· <u Z > n+m n+m· 'n+m 

X 
n+m 

~ Z ,e(j)Mm + 
j =1 n] 

P 
L 

j=l 

P 
L 

j=l 
z , 
~J«u,z(j)l(n» 

1=1 m 

(10) 

where Z(~)l(n) denotes the number of particles of type i ln 
ml th th 

the (m+n) generation descending from the 1 particle of 

type j in the nth generation. It follows from the definition 

of the process that the collection of random vectors 

'{z(j)l( ). 1-1 (j) '-I } d" 11 'd n l - , ••• ,Z ,]- , ..• ,p are con ltl0na y ln epen-
m ; ... n 

dent when given F. Dividing through in (10) by pm<u,Z > and 
n n 

subtracting v, we obtain 

X - v = 
n+m 

(X Mmp-m - v) - r v + a 
n n,m n,m 

1 + r 
n,m 

where 

<l,Z > 
Z 

n j ( (~)l m) -m 1 
p .., n 

r 
<u,Z > L L <u,Z J (n»-r:> u. p 

n,m <l,Z >. 1 1=1 m ] n - n]= 

and 
<l,Z > 

Z 
~j(z(j)l(n)_e(j)Mm)p-m 1 p .., n 

L a <u,Z > <l,Z > n,m 
n .., n j=l 1=1\ m . 

Let E: > O. It follows from Lemma 1 [1,pg.194] that there 

exists an rna such that for m > rna 
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sup I I X Mmp-m - v I I < E 
n+m 

(11) 
n 

Fix m > mO' To prove that I rn,m l and II cxn,m ll converge to 

zero almost surely on the set of explosion we need the next 

two lemmas. 

Lemm~i. Let Xl 'X 2 ' .• o ,Xn be independent randomvariab­

les with mean zero such that 

p(lx.l>t) < fOdQ(x) for all t > 0 and i=l, ... ,n 
1. - t 

where Q is a distribution on fO,oo) with finite mean. 

for 0 > o. 
n 

p(ll L x.l>o) < C{nf~dQ(x)+lf~x2dQ(x)} 
n i=l 1. .. - n n 

where C is a constant that does not depend on n. 

Then 

For a proof of Lemma 5, the reader is refered to Lemma 

1 of [4]. 

Lemma 6. Let Q be a probability measure on (O.~) with 

finite mean and let' {m0-be. a se.9,uence of numbers that ulti­

mately increase monotonically 'to 00, such that lim mk 
--- > 1. 

k+oo m~~l 

Then 

00 
00 

L [m, f dQ(x) 
k,=l k mk 

1 mk 2 
+ -- fo x dQ(x)] < 00 mk 

Proof. Since all terms are positive, it suffices by Fu­

bini's Theorem to show 

00 00 2 

~:lmf/[mk'oo) (x) + K:l :k I[0,m1/ x ) 
O(x). 

(For any set A, IA is the indicator function of the set A). 

We will only prove that the first sum is O(x) since the 

I. proof for the second is similar. By omitting a finite number 

of terms we can assume W.L.O.G. that the mk +. 
that mk~ < x < mk~+l' 

o 0 

Let kO be such 
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00 

Then 
kO 
L m 

k=l k 

<~ 
mk 

o 
But Ln view of our assumptions on the'{mk } it is not diffi-

cult to show that 

k 
-- -1 
lim mk L m. 

j=l J 
< 00. Q.E.D. 

k+oo 

We now prove that lim I r I = 0 w. p. 1. 
n,m 

The proof for 
n+oo 

! I a !! iss i mil a ran d om itt e d . Let' {V (j ) } . b e 
n,m J=l, ... ,p 

positive independent random vectors each distributed as 

! (j) m! <u,Z >~u.p , 1 < j < p, and define 
m J 

Q(t) = P( ~ V(j) < t~. 
. 1 1 J= 

It then follows that 

P(!<U,z~j)l(n» - pmij!>t) ~ f~dQ(x) 

(') 
for 1 = 1, ••. ,Z J , j = l, .•. ,p and t > O. 

n 

(12) 

Furthermore, from Theorem 1 and Lemma 2 we have for every 

k > 1. 

lim 
n+oo 

min u. 
L 

max u. 
(13) 

L 

almost surely on the set of explosion. Choose k so that 
k min u. 

p L > 1. It then follows from (12) and (13) that the 
max u. 

L 

conditions of Lemmas 5 and 6 are satisfied and so we have for 

any S > 0 

00 
~ 

n:1P(Irnk,m!>S!Fnk) < 00 

almost surely on the set of explosion. 

Borel-Cantelli lemma we conclude that 

Applying the extended 
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lim /r k I = 0 n m 
n+oo ' 

almost surely on the set of explosion. 

In a totally analogous way we have for 1 < J < k 

lim Irk. I = 0 
~ n +J,m n-,-oo 

(14) 

almost surely on the set of explosion. 

The convergence of I r I nm 
to zero follows directly from 

(14) • This completes the proof of Theorem 2. 
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