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ABSTRACT 

A Bellman-Harris process is considered where the population is 

subjected to disasters which occur at random times. Each par­

ticle alive at the time of the disaster, survives it with pro­

bability p. In the situation when explosion can occur, seve­

ral limit theorems are proven. In particular, we prove that 

the age-distribution converges to the same stable distribution 

as the Bellman-Harris process and that the population size con­

tinues to be asymptotically exponential. 
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1. INTRODUCTION 

In a recent paper [3J, the following population model with dis-

asters was formulated. Assume that a population grows accor-

ding to a Bellman-Harris process. At random times (T.), dis-
1. 

asters beset the population and each particle alive at the ti­

me of the disaster survives with probability p and the survi­

val of any particle is assumed independent of the survival of 

any other particle. Let Z(t) denote the number of particles 

surviving at time t. 

In [3] some basic facts about this process were established. 

In particular, necessary and sufficient conditions were pro-

ven for extinction. Our aims in this note are to prove some 

limit theorems when extinction does not occur. A typical re-

suIt deals with the limiting behavior of the age-distribution 

of the Z process on the set of explosion. Define 

Z(x,t) = number of particles alive at time t of age < x. 

and 

A(x,t) = Zi~~~) providing Z(t) > O. 

For the Bellman~Harris process without disasters, it has re-

cently been proven [1] that a) A(x,t) converges to a determi~ 

nistic function A(x) in probability on the set of explosion with 

assumptions slightly more than finiteness of the mean and b) 

the convergence holds w.p.l if the usual 'j log j' condition 

holds. Our aim here is to prove analogs of (a) and (b) when 

disasters are present. As a consequence of this result, we 

are able to show under suitable conditions, that Z(t), proper­

ly normalized, converges a.e. on the set of explosion to a non-

degenerate limit. This result was obtained in [3] for the spe-

cial case when the (T.) formed a renewal sequence and the popu-
1. 

lation grew as a Markov branching process. 
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2. NOTATION, RESULTS AN~ PROOFS. 

We denote the growth process by X(t), t ~ 0, which as already 

noted is assumed to be a Bellman-Harris process. Let G be 
00 

its life time distribution and f(s) = ~ p.sJ its offspring 
j=O J 

p.g.f. We always assume G nonlattice, G(O+) 0, f' (1) = m > 1 

and finite. 

the equation 

In this case we can define a to be the solution of 

mJ~e-at dG(t) I 

Without loss of generality we assume that the X process has 

as its state space the collection of all family histories [see 

2, Ch. VI]. 

Let G . {g: g -ax 
is bounded, measurable and g(x)(l - G(x»e is 

directly Riemann integrable} 

There is then no difficulty of defining for a < y < 00 and 
~ 

g EG, 

X (g,t) = 
y 

X .. (t) 
' . .y .... " 
~ 

i=l 
g (x. ) 

~ 

where xl' x 2 "" ,xX (t) are the ages of the particles alive at 
y 

time t given that we started with one particle at time zero of 

age y. One can imagine that to any particle of age a, we as-

sign its 'g-value', g(a). X (g,t) is then the sum of the g­
y 

values of the particles alive at time t. 

We put M (g,t) = E(X (g,t», a < y < 00, g E G. We will always 
y y 

assume that P(X(O) < (0) = 1, and write M(t) = E(X(t». 

The (T.) process is assumed independent of the X process and 
~ 

satisfies the assumptions: 

i) TI < 1'2 < ••• and lim Ti =00 w.p.I. 
i+oo 

ii) there exists a constant AO such that lim 
i+oo 

< 00 w.p.l. 

T. 
~ 

~ 
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Let N (. ) be defined by N (t) = k iff Tk 2. t < Tk + l · Then, 

iii) For any s > 0, p {I im [N (t +8) - N(t)]< <Xl} = I 
t+<Xl 

It 1.S not difficult to check that if the (T. ) form a renewal 1. 
sequence with interarrival distribution F satisfying F(s) = 0 

for s om e S > 0, the n i ) i i ) a Ii d iii) are sat i s fie d • Condition 

iii) states that disasters cannot happen too frequently. 

In this paper we assume that p is constant from disaster to 

disaster. This is only for convenience. There would be no 

difficulty in assuming that p is random, providing some kind 

of ergodicity is required; for example the {p.} could be i.i.d. 1. 

Unless otherwise stated all the assumptions made up to now, 

will always hold. 

Let Z(t) denote the number of particles surviving at time t. 

Z(t) can be expressed as 

where 

cS.(t) 
1. 

Z (t) 
X(t) 

L 
i=l 

cS.(t) 
1. 

I if the ancestors of the i rh particle 
(including itself) alive at time t in 

(1) 

the X process survived all the disasters 
that occurred up to time t. 

o Otherwise 

~ 

Just as for the X process we write for any g E G, 

Z(t) 
Z(g,t.) = L 

i=l 
g(x.) 

1. 

., xZ(t) are the ages of the particles surv1.-

ving at time t. We also put 

A(g,t) = Z(g,t) if Z(t) * o. 
Z (t) 
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f~g(y)e-aY(I-G(y))dy 

f~e -ay (l-G (y)) dy 

f~e-aY(I-G(y))dy 

mf~ye-aYdG(Y) 

The key to the analysis of the Z process is to condition on 

the a-field F generated by the (T.) process. 
1 

By doing this 

we can assume that the times of disasters are deterministic and 

as a consequence distinct particles have independent lines of 

descent. 

~ 

To denote this conditional measure we write p(.IF). The rele-

vant expectations then are those conditioned on F~ Thus we 

put 

~ 

M(t) = E{Z(t)IF} 

~ 

U(g;t) -= E(Z(g,t)IF) g E G, t ? o. 

We will add a subscript (y,s) to all the above random variab­

les and their expectations to indicate when we start at time s 

with a particle of age y and ask what happens at some future 

time t+s. 

It was observed 1n [3] that there exists a simple relation be--tween M(t) and M(t). Indeed it is not difficult to show, u-

sing the independence assumptions of Section I that 

(2) 

Similarly, 

M( ) (g,t) y,s 
= N(t+s)-N(s)~ ( t) 

P Y g, (3) 

The following result was proven in [3]. 

Theorem A. 

Let P = AO log p + a. Then 

[-
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p < 0 ~ P{lim Z(t) 
t+oo 

p > 0 ~ P{lim Z(t) 
t+oo 

1 w.p.I. 

w.p.l. 

For the remainder of this paper we assume p > O. 

We now state our main result: 

Theorem 1. Assume p > 0 and inf V(y) > 0 (supp G = support 
.. yEsuppG 

of G). Then for each g E Gi 

1 im P ( I A ( g , t ) - A (g) I > E; 1 im Z ( t ) o w.p.l. 
t+oo 

for every E > O. 

It should be noted that the limit A(g) is independent of p. 

The assumption that inf V(y) > 0 is a technical one and 
yEsupp G 

we conjecture that it is not needed. We note in passing that 

the co~dition is satisfied if G has bounded support or if G is 

negative exponential. 

As an immediate corollary of Theorem 1, we have the convergence 

of the age distribution. Indeed let A(x,t) = A(I[ J,t) and 
O,x 

A(x) = A(I[O,xJ)' We then have: 

Corollary 1. Let the conditions of Theorem 1 hold. Then 

, 

1 im P ( I A (x, t ) - A (x) I > E; 1 im Z (t) =00 IF) = 0 w.p.I. 
t+oo t+oo 

for every E > O. 

The proof of Theorem 1. ~s very similar in structure to its 

counterpart for the Bellman-Harris process, which is given in 

detail in [IJ. So rather than repeating all the details we 

will only sketch the main ideas. Since we are conditioning on 

F, we can assume that disasters occur at the deterministic ti­

me ST., i > 1. 
~ 
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By the additive property of branching processes we can write 

Z(t) 
Z(g,t+s) L Z( t)(g,s) 

i=l xi' 
(4) 

where {x. , 1 1, •.. ,Z(t)} is the age chart of the Z process 1 
at time t and Z(x.,t)(g,s) denotes the sum of the g-values of 

1 
the particles surviving at time t +s in the line of descent 1-

nitiated by a particle of age x. at time t. Conditioned on 
1 

the age chart at time t, the {Z( )(g,s)}~~tl) are indepen-x. ,t 1-
1 

dent random variables, and for each i.~Z( ) (g,s) has the .. x. ,t 
. 1 

szrne di s t ribut ion as wa s de f ined a~fi er . 

We now rewrite (4) as 

+ 

+ 

Hence, 

- as 
e 
Z(t) Z(g,t+s) = 

1 
Z(t) 

Z (t) 
-as 

L [Z( t)(g,s)-M( t)(g,s)]e . 1 x., x., 1= 1 1 

Z (t) 
1 [M () -as lPN(t+S)-N(t)V(x1.)A(g)] 

Z(t) L (x.,t) g,s e -n 
i=l 1 

N(t+s)-N(t) nlA(g) Z(t) 
p Z(t) L V(x.) 

i= 1 1 

at (g, s) + b t (g, s) + c t A(g) 

A(g,t+s) = 
at(g,s) + bt(g,s) + ctA(g) 

at(l,s)+bt(l,s)+c t 

The idea now is to show that bt(g,s) and bt(l,s) can be made 

small uniformly with respect to t by choosing s large. This 

causes no difficulty since by (3) 

M(x. ,t) (g,s) 
1 

'~i nee gE G ,Ii m M (g , s ) e 
x. 

s~ 1 

N(t+s)-N(t)M- ( ) = p x. g,s 
1 

-ex s and so we write 
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Corollary 1 of [lJ can now be applied. We then fix s and show 

using the law of large numbers that at(g,s) and at(l,s) go to 

zero in probability as t ~ 00, and that c t is bounded below ~n 

probability. To show at(g,s) behaves properly, the arguments 

of lemma 2 [1] can be used verbatium. 

(iii) on the disaster time process ~s 

To handle ct,assumption 

needed, as well as the 

assumption that inf V(y) > O. This is the only part of 
yEsupp G 

the proof where either of those assumptions are needed. 

Remarks 1). For Theorem 1 to be of interest, we must know when 

P{lim Z(t) = oolF} > 0 with positive probability. It is proven 
t+oo 

in [3J that for fairly general (T.), (for example if the (T.) 
~ ~ 

are a renewal sequence) 

P{lim Z(t) = olF} + P{lim Z(t) 1 w.p.l. 
t+oo 

2). In view of the proof of Theorem 1 it is not surprising that 

p does not appear in the limit. The only thing that is really 

relevant is the behavior of the mean functions. 

not ed: 

Hence 

M(t) = pN(t)~(t) 

M(g,t) pN(t)~(g,t) 

lim M (g, t) 
t+oo M(t) 

''M(g,t) 
lim 
t+oo M(t) 

which ~s independent of p. 

As already 

It turns out that Theorem 1 allows us to study the asymptotic 

behavior of Z(t). Towards this end we prove the next lemma. 
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ax 
Recall Vex) me Joo -ay 

l-G(x) x e dG(y) and set 

where Set) = N(t) log p + at. Also let F denote the cr-alge­
t 

bra generated by F and the family history of the Z process up 

to time t. 

~ 

Lemma 1. Let p > O. Then {y(t~, Ft}t>O is a positive martin-

gale and hence converges w.p.l. 

dom variable Y 1S nondegenerate. 

If f" (1) < 00, the limit ran­

In fact, 

p(Y>oIF) > 0 w.p.l. (5 ) 

If in addition the (T.) form a renewal sequence, -G has a densi-
. 1 . 

ey, and inf V(y) > 0, 
yEsuppG 

.. 
p(y=oIF) P(lim Z(t) = olF) w.p.l. (6) 

t+oo 

Proof. We first establish the martingale property. Fix t,s>O. 

It follows from (3) and (4) that 

Z(t) .. 
= E( L Z( )(v,s)IF) 

. 1 x.,t t 
1= 1 

N(t+s)-N(t) Z(t) -
p L M (V, s) 

i=l Xi 

It 1S well known [2, Ch. IV] that 

M (V, s) 
x 

as e Vex), 0 < x < 00 

s > O. 

From (7) and ( 8 ) we con c 1 u de t hat 

.. 
E(Y(t+s)IF t ) = yet) 

(7) 

(8) 

Thus (Y(t),Ft)t>O is a martingale, and since the yet) are po­

sitive, it follows from the martingale convergence theorem 

that lim yet) = Y exists w.p.l. 
t+oo 
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To establish (5) it suffices (by Doob's Theorem) to prove 

that sup E(y 2 (t) IF) < 00 a.e. or equivilently, since T. + 00 

t 2 1. ~ 
a.e. and are measurable with respect to P and E(Y (t) IF) is 

increasing in t, sup E(y 2 (T.)IF) < 00 a.e •• Using the martin-
1. 

gale property, it is easy to check that 

But 

2 ~ 

E«Y(T. 1) - Y(T.)) IF) 1. + 1. 

Z (T.) 
- 2 (3 (T. 1) (L 1. V '( I ~ 

e 1.+ Ear Z( )(V,T. l-T.)) F) . 1 X.,T. 1.+ 1. 
J = J 1. 

The last equality follows S1.nce by conditioning ort the age chart 

a!T. l-T.) 
, 1. + 1. 

Z(V,T. 1) - pe . . Z(V,T.) 
1.+ 1. 

can be considered as a sum of Z(T.) independent components each 
1. 

having mean zero. We also note that when f" (1) < 00, 

2 
V8~(Z(x.'T:)(V'Ti+l-Ti)) < E(Xx.(~i+l-Ji)~ 

J 1. J . 

< Ke 2a (Ti+l- Ti) 

where K is some constant independent of i and j. There then is 

a constant K' such that 

and hence, 
2 ~ i -S(T.) ~ -S(T.) 

lim E(Y (T.)IF) < K'lim{ L [e J E(Z(T.)/F)]e J} 
1. i+oo j = 1 J i+oo 

< 00 w.p.l. 

The last inequality follows since 
-13 (T . ) ~ 

1 im e J E (Z (T . ) , F) 
J 

< 00 w.p.I. 
]+00 

and 

00 -(3(T.) 
L e J < 00 wop.I. 

j=l 
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This completes the proof of (5). 

It remains only to prove (6). Define the random variables, 

~ 

try = P (y,O) CICY=O) IF), 0 2 y < 00. 

(i.e. we start at time zero with one particle of age y). 

It is convenient to write e (w) for e , thereby indicating 
y y . 

the underlying sample point w, which can be taken to be a rea-

lization of the (T.y process. 
1 

Let ~i) denote the a-algebra generated by Tl , ..• ,T i . A simple 

conditioning argument then shows that 

~ ~ 

P(y=OIF(i» = P(Z(T.)=OIF(i» 
1 

where Yl""'YZ(T.) are the ages of the particles alive at 

time T., and W. i§ a typical sample path of the renewal process 
1 . 1 ~ 

(T .. -T.). > l' Since the (T.) form a renewal sequence, F:{i) 
J+1 1 J 1 

is independent of the a-field generated by (T .. -T.). > l' 
J +1 1 J 

Hence, 

Z (T . ) 
1 ~ 

Z (T . ) 
1 

E( TIe' (W.)IF(i» = 
. 1 y. 1 
J = ' J 

J TI e (w) dP (w) • 
j=l Yj 

where P is the measure induced by the (T.), which is clearly 
1 

the s. am e as the mea sur e in due e d by (T. . - T . ). > l' T h u S 
J+1 1 J 

Z(T.) -
1 

P(y=O) P(Z(T.)=Q) + E(f TI e (w)dP(w);Z(T.) =1= 0) 
1 . 1 y. 1 

J = J 

By Fubini's Theorem, 

. Z (T. ) 
1 

Ecf TI ~ (w)dP(w); 
j=l Yj 

Z(T.) =1= 0) 
1 

Z (T . ) 
1 

fEe TI e (w); 
j=l Yj 

Z(T.) :j: O)dP(w). 
1 
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Let f denote the density of G. It is not difficult to prove by 

looking at the time when the initial particle dies that, 

OJOOpN(U)(l - A(u»f(u + y) du 
1 -

1 - G(y) 

where A lS independent of y, and 0 ~ A(u) < 1 for all u. 

It follows from Theorem 13.24 [4] that 

JOO N (u) (1 
o p A(u»f(u+y) du lS continuous in y and so 8 

y 
lS con-

tinuous,Vith this knowledg-e it is a simple matter to verify that 
~ 

for a.e. w, 8.(w)EG. 

It follows then from Theorem 1, and dominated convergence that 

for a. e. _eJ, 

Z (T. ) 

lim E( n l e (w) ; Zhi):f:°Y o. 
i+oo i=l Yi 

Thus 
Z (T . ) 

lim JE( n le (w) ; Z(Ti):f:O)dP(W) = 0 
i+oo i:;::l Yi 

and so 

P(Y=O) lim P(Z(T.)=O) 
. l 
l+OO 

P(lim Z(t)=O) 
t+oo 

This implies (6) Slnce 

~ 

P(Y=OIF) ~ P(lim Z(t)=OIF) w.p.l. Q;E~D. 

t+oo 

Since e-S(t)Z(t) = Y(t)A(V,t), we obtain the next result as 

a direct consequence of Theorem 1 and Lemma 1. 

; ; 

: ! 
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Theorem 2. Let the conditions of Theorem 1 hold. Then 

lim e-S(t)Z(t) W exists ~n probability. 
t+oo 

If f"(l) < oo,then P(W>OIF) > ° w.p.l. If in addition the 

(T.) form a renewal sequence and G htiS a density 
~ 

~ ~ 

P(W=OIF) = P(lim Z(t)=OIF) w.p.l. 
t+oo 

We now consider the problem of whether the convergence in The­

orems 1 and 2 can be strengthened to hold wop.l. Toward this 

goal we say that the stochastic process Z grows exponentially, 

if for a.e. sample path for which the process explodes there 

exists constants y and 0 > 0, possibly depending on the sample 

path,such that Z(t) ~ ye ot for all t. Since yet) < Z(t)e-S(t), 

it follows from Lemma 1 and the properties of N(t) that if 

ff f (1) < 00 and the (T.) form a renewal sequence, 
~ 

then the Z 

process does grow exponentially. If the (T.) do not form a 
~ 

renewal sequence, then all we can conclude from Lemma 1 ~s 

that the set of sample paths for which {Z(t)} does grow expo­

nentially has positive probability. 

We then have, 

00 

Theorem 3. Let p > 0, inf V(y) ~ 01 L j log J p. < oo,and 
yEsuppG j=2 J 

assume that the Z process grows exponentially. Then for any 

bounded continuous functi6n g, 

~ 

P(limIA(g,t)-A(g)l>s; lim Z(t)=ooIF=O) w.p.l. 
t+oo t+oo 

for every E > 0. 

As an immediate consequence of Theorem 3 and Lemma 1 we have 

00 

Theorem 4. Let p > 0, inf V(y) > 0. L j log j p. < 00 and 
yEsuppG 'j=2 J 

assume that the Z process grows exponentially. Then 

lim e-S(t)Z(t) = W exists w.p.l. 
t+oo 
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Iff' , (1) < 00, P (~>o IF) > O. 

,....14-

w.p.l. If in addition the (T.) 
1 

form a renewal sequence.~nd GhaB a ~ensity, th@utheiirocess 

. ~utomaticallygrows exponentially and 

~ 

P(V-OIF) = P(lim Z(t)=OIF) w.p.l. 
t+oo 

The proof of Theorem 3 1S similar to that of Theorem B in [1] 

and the reader is refered there for details. 
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