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ABSTRACT 

Results are glven on estimation theory for some continu~ 

ous-time branching processes assumed observed continuously in 

a fixed time interval [O,t]. Maximum likelihood theory works 

without problems for Markov branching processes. For Bellman-

Harris (age-dependent) processes only the offspring distribu

tion is easily estimable. 

An "asymptotic Markovian property" of Bellman-Harris pro-

cesses is observed. This property, which may have some inde-

pendent interest, 1S then used as motivation for a study of a 

simple occurrence/exposure estimator for the Malthusian para

me ter. 

Some remarks are also given on previous results, 1n par

ticular concerning cell growth studies. 
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1. INTR0DUCTION 

This paper presents some results on estimation theory 

for continuous-time branching processes, cf. Harris (1963, 

chap. V and VI) or Athreya and Ney (1972, chap. III-V), as

suming that a full record of the population size X in some 
, u 

fixed interval [O,t] is available. This sampling situation 

was also assumed in the basic work on estimation in Markov 

chains with continuous time by Albert (1962) and Billingsley 

(1961 a,b). In fact, the present work may be seen as a par-

tial answer to the request made by Billingsley (196la) in his 

closing remarks for a systematic investigation of statistical 

inference for non-recurrent processes. 

ons. 

The ma1n part of the paper is divided into three Secti

Section 2 reports results for the one-dimensional Mar-

kov branching process, where explicit maximum likelihood e

stimators are derived and their limiting sampling properties 

studied for large t as well as for large initial population 

sizes. Similar results hold for the multitype Markov bran-

ching process, assum1ng that the vector X of different ty-_u 
pes is observed continuously in [O,t]. These results are 

presented in Section 3. It is a common feature that the a-

symptotic behaviour for large t follows the extinction/explo~ 

sion dichotomy of the process. Also the asymptotic normali-

ty requires a random normalising factor. The results may be 

transformed into statements with deterministic normalising 

factors, but then the asymptotic distributions are no longer 

normal, but mixtures of normals with zero means and random 
-at 

variances inversely proportional to W = lim a.s. Xte . 
t-+oo 

For the Bellman-Harris (or age-dependent) branching pro

cess that we study 1n Section 4, explicit maximum likelihood 

results exist only as regards the offspring distribution. A 

_ simple_ example in_dicates the difficulties of maximum Ij.ke1iho()d 

methods for estimating the Malthusian parameter a. We then show 

that the sample functions of the population size of any Bellman

Harris process are asymptotically much like those of a correspond

ing Markov branching process in the sense that any finite number 



-3-

of times between adjacent discontinuities multiplied by the 

current population sizes are asymptotically independent, i

dentically distributed exponentials, just as is the case ~n 

the Markov branching process. This observation, which may 

have some independent interest, leads us to the study of the 

simple~ccu~rence-exposure estimator a = (x - x )lftX du for 
tOO u 

a, a being the maximum likelihood estimator in the Markovian 

case. 

Previous work on estimation theory for branching proces~ 

ses in continuous time under the proposed observation scheme 

is rather limited. Keiding (1974,1975) and Beyer, Keiding and 

Simonsen (1975) considered the simple (linear) birth-and-

death process and gave further references. Keiding also con~ 

sidered estimation theory in the situation where only a dis

crete skeleton {X. , i = 1, ••• ,n} is observed, and discussed 
~T 

the random variation "due to W" as mentioned above and its 

implication for principles of statistical inference as appli

ed to this particular problem. 

Hoel and Crump (1974) proposed some estimators for the 

parameters of a multiphase birth process, that is a binary 

splitting Bellman-Harris process with gamma distributed life 

lengths. These estimators were also based on observation of 

only a few values of the process, and we give somecompari

sons with complete record in Section 4. 

Estimation of the offspring distribution of a Bellman

Harris process has been considered by Jagers (1973b), who ga

ve the maximum likelihood estimators based on observation of 

the full family tree without assumptions on the form of the 

offspring distribution. Jagers applied the results to 

pr ob lems of tumour cell growth. Becker (1974) assumed that 

observation is continued until extinction and gave results 

for 0 n e - par am e t ere x p 0 n e n t i al f am i 1 y 0 f f s p r in g dis t rib uti 0 n s 

with application to smallpoi epidemics. 

The mathematical tools used in this paper are heavily 

based on the recent monograph by Athreya and Ney (1972) and a-
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recent result by Athreya and Kaplan (1975) on the almost sure 

convergence of the relative age distribution for supercriti

cal Bellman-Harris processes. 

2. ONE-DIMENSIONAL MARKOV BRANCHING PROCESSES 

Let {Xt , t ~ O} be a Markov branching process with split 

intensity A > 0 and offspring distribution {p., 1 ~ O} where 
1 

without loss of generality we assume PI = O. The process was 

discussed by Harris (1963, Chapter V) and Athreya and Ney 

(1972, Chapter III) and is a time-homogeneous Markov process 

with state space {0,1,2, ... } and infinitesimal transition 

probabilities 

i-I, i+l, i+2, •.. 

1 - iAh + o(h), J i 

o(h) otherwise. 

We shall assume Xo Xo degenerate throughout. 

a. The likelihood function and maX1mum likelihood estimators. 

Assume that the process has been observed continuously 

over a fixed time interval [O,t]. Albert (1962) constructed 

for the case of a continuous-time, finite state Markov process 

a measure dominating the probabilities of realizations of the 

process in [O,t] and obtained the likelihood function as the 

Radon-Nikodym derivative with respect to this measure. It is 

readily seen that Albert's derivation of the likelihood 

function may be generalised to countable-state Markov pro

cesses which with probability one have only finitely many 

transitions in any finite interval. A sufficient condition 

for this to hold for a Markov branching process 1S (Harris 

1963, p. 107) that the mean m Lip. of the offspring distri-
1 

bution be finite, which will be assumed throughout. The fo1-

lowing Theorem is now an easy consequence of Albert's results 
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cf. also Billingsley (196lb). 

Theorem 2.1 There exists a measure on the space of 

realizations {X 10 < u < t} such that the Radon-Nikodym de
u 

rivative, that is, the likelihood function~ 

N -AS 00 N (i) 
= A te t IT p. t 

i=O 2 ~ , 

{u E [o,t]lx -X = i-I} is the number of 
u u-

is the total number of splits, and 

t 

St = Ix du o u 

is the total time lived by the population in [O,t]. 

Further, St~p.d'{Nt(i)li = 0,2,3, •.• } are jointly suffi-

c i en t, and i f the mod eli spa r am e t e r iz e d by ( A , PO' P 2 ' . . . ) , 

A > 0, 0 ~ Pi < 1, LPi = 1, they are minimally sufficient. 

In the latter case the maximum likelihood estimators are gi

~n when Nt > 0 as 

Whe~ Nt = 0 they are undefined, although a natural extension 

is A = O. 

For use in the following study we need the expectations 

of the sufficient statistics, which are given in the Lemma 

below. 

Lemma 2.1 Ass~me Xo Xo and let CI. =). (m-l) be the Mal-

t h u. s i (i n .p a r ani ~ t e r • Then: 

if CI. =1= 0, 

if CI. 0, 

{xo(eCl.t-l)/(m-l) if m 

lXOAt if m 

=1= 1, 

1 
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and 

Proof. The expectation E(Xt ) 1S well-known arid E(St) = 

E(J~Xudu) = J~E(Xu)du. Finally E(N t ) and ~{Nt(i)} may be ob~ 
tained from the integral equations that they satisfy (Athrey~ 

and Karlin (1967, p. 270». Alternatively, a Wald-identity 

E(X t ) - Xo = E(Nt)(m-l) may be derived by using the optional 

sampling theorem on the martingale X(T ) -
n 

stopped at the random time Nt' where Tn is 

time. However, this only gives the result 

x - n(m-l), o 
the n'th split 

for m =1= 1. 

b. Asymptotic results for l~rge populations. 

We shall in this paper be concerned mainly with the a-

sympt.otic properties of the estimators as t -+ 00, However, 

for the sake of completeness it may be remarked that since a 

branching process with _XO = Xo may be interpreted as the 

sum of Xo independent processes with the same parameters and 

Xo = 1, the following asymptotic results for large Xo and 

fixed t may be obtained from standard maximum likelihood the

ory. 

A A A 

Theorem 2.2 As Xo -+ 00, (A,PO,P2"") -+ (A,PO,P2"") 

a.s. Let ~i = XPi' then 0i = ~~i' The joint distribution of 

- ]12' ]13 

converges towards independent normals with means 0 and var1-

ances ]10' ]12' ]13"" (All results have to be modified in the 

obvious way when a = 0). 

Proof. By the strong law of large numbers and Lemma 2.1 

it follows that as Xo -+OO~ Nt(i)/xO -+ Pi(eat - l)/(m-l), 

I at / at Nt Xo -+ (e -l)/(m-l) and St Xo -+ (e -l)/a almost surely, 

thus proving the consistency. The asymptotic normality fol-

lows from standard theory by considering an arbitrary finite 

subset of ]1. 's and computing the information matrix. 
1 

Now we 
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may write 

log L log 11. - 2:11·S 
~ ~ t 

so that 

o for i =1= j, 

and thus the information matrix has O's outside the diagonal 

and diagonal elements 

I 

-E(D Z• log L) = 
11· 

- - ~ 

c. Asymptotic resultsforla~geperiods of observation. 

In the subcritical and ,critical cases (m < 1), it is 

well known that X + 0 a.s. as t + 00. In the supercritical c~-
t Xo 

se this ~appens with probability q < 1, where q is the 
i smallest nonnegative solution of the equation q 2:p.q. Then 

~ 

the estimators will have almost sure, nondegenerate limits, 

because in effect only a finite sample was ever taken. It is 

possible to spell out various aspects of the distribution of 

these variables but it is not essential to our present purpo-

se and we omit the details here. We finally notice that the-

se remarks are also relevant for the conditional supercriti

cal process given ultimate ~xtinction (cf. Keiding (1975, 

Section 5». It is obvious that accurate inferences in these 

cases will have to be based on large initial population s~zes, 

that is, replicated experiments, cf. Becker (1974). 

In the supercritical case m > 1, Xt + 00 with probability 
Xo 

1 - q ~ The following consistency results then hold. We 

assume Xo = 1 in the rest of this S~bsection. 

Theorem 2.3., As t + 00, with probability one on the set 

{X t + oo} , ~ +\ and ;. + p., i = 0,2,3, ••• -- ~ ~ 

Proof. Let 0 = TO' T l , T 2' .•• be the split times and 

define y. X- (T. - T '1) , y' = Xt _ (t TN ) . Then 
~ 

I t 'T •. ~ ~-
~'- t 
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(1972, p. 
N 

t 
2: 

i == 1 

127), 

Y + y' 
i t 

where Yl' Y 2 "" are independent and exponential with inten

sity A. It follows from Lemma 2.2 below that Y~/Nt ~ 0 a.s. 

on {Xt ~ oo}. By the strong law of large numbers 

1 n 
2: Y. 

n i==l l 

~ A-I 

almost sur ely , and it foIl ow s t h at 0 nth e set { X ~oo }, w her e 
A-I -1 t 

N ~ 00 

t 
a.s., StiNt == A ~ A a.s. 

To show the second result we use the representation 

Nt 

NtCi) == L: 
j==l 

z . C i) , 
J 

where Z. Ci) lS the indicator random variable for the event that 
J 

the j 'th split resulted in a jump of size i-I. Clearly, Zl (i) ,Z2(i) 

are independent and identical Iv distributed with P{Zj (i) == l}== Pi' 

Then use the st~onE law of large numbers once more. 

Lemma 2.2 X (t - Tn ) 
T 1\ 

Nt t 

proof 0 f The 0 rem 2. 3. The n y' IN l/2 ~ 0 
t t 

Proof. Obviously, 

y' .:::. X ( ) t - T TN +1 - TN . 
Nt t t 

as defined In the 

a.s. on {X ~ oo}. 
t 

Now Y 
n 

X (T - T 1) is exponential with mean A-I, and 
Tn-l n n-

so 

p{Y n- l / 2 > s} 
n 

p{Y 
n 

By the Borel-Cantelli lemma Y /nl/2~ 0 
n 

y' /N l / 2 < 
t t 

YN + 1 / N 1 / 2 ~ 0 
t t 

a. s . Hence also 
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a.s. on {Nt + ro}, that is, a.s. on {X t + oo}. 

A 

Theorem 2.4. Let again 1-1. = Ap., then 1-1. = N (i)/St' 
-------- ~ ~ -- ~ t 

As t + ro, the donditional distribution, gi~ {X t + oo} (.£E. 

.. {Xt > O}) of 

- 1-1 o 

1-1 - 1-12 , 2 
·A 

converges to a set of independent mormals with parameters 

(0,1-1.), i 0,2,3, ••• 
~ 

Proof. We study an arbitrary finite subset of random 

variables 

First notice that by Lemma 2.2, the last term goes to 0 a.s. 

on {Xt + ro}. 

i 
Th 2 (.) th in th~. proof of Theorem 2.3 abbve, and _ e j ~ are e same as ~ 

o = TO < Tl < • are the split times. The representation 

is obvious from the minimal construction of the process, cf. 

Athreya and Ney (1972, p. 119 and 127). Generalising their 

analysis, it is now seen that the random infinite d4mensio-

nal vectors U. = {U.(O}, U.(i) = 2.(i) - 1-I. X (T.-T. l ), 
-J J . J J ~ T j _ l J J-

j = 1,2, .•• are independent and identically distributed. In 

fact, let for each j F.denote the cr-algebra associ-
J 

ated with the stopping time T .. Then the conditional distri-
, J 

bution of U. 1 given F. is that of A - B, where A and Bare 
-J + J 
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independent, ~ = {A(i)} is a vector of indicators with proba~ 

bilities Pi and ~ = (~OC, ~2C, ~3C, •.. ) where C is exponenti

al with mean ~-l Hence U. 1 is independent of F., and the 
~J+ J 

independence of all U. follows by induction. We also notice 
-J .. 2 2 

that E{U.(i)} = p. - p. = 0, VadU.(i)} = p.(l-p.) + ]l./A 
J ~ ~ J ~ ~ ~ 

p., and Cov{U.(i),U.(k)} = E{U.(i)U.(k)}= E{A(i)A(k)} -
~ J J J J 

E{A(i)]lkC} - E{A(k)]li C} + E(]li]lk C2 ) = 0 - PiPk - PkPi + 

J -2 -2 
~'~k(~ + A) O. It then follows by the central limit 
~ ; 

theor-em that as n -7 00, the distribution of 

-1/2 
n 

n 
L U. 

j=l -J 

converges to that of a vector of independent normals (O,p.). 
.._-- .. - _ .. -- . __ .... _- .~ 

Now it ~skno1;Vn_~~Atb.reya and Ney-Ci-972, j? 113)) that as 

t -7 00, it is always possible to find a set{cJ of normalising 

constants such that Xt/c t -7 W a.s., where p{W > O} = 

Since 

Y. 
~ 

where Yl + 1, Y2 +1, ••• are independent and all distributed 

according to {p.}, it is concluded, using the strong law of 
J 

large numbers, that Xt/N t -7 m - 1 a.s. on'{Xt -7 oo}, which ~s 

a.s. the same set as {Nt -700}. Therefore Nt/c t -7 W!(m-l) a. 

s. on {Nt -7 oo}. We may now use an analogue of the central 

limit theorem for sums of a random number of independent ran~ 

dom variables as stated by Billingsley (1968, Theorem 17.2) and 

modified by Dion (1972,1974) and Jagers (1973a) to conclude 

the as ym p tot i c norm ali t y 0 f S tNt -1 12 (~-~), 1: = (]l 0' ]l2 ' ~ 3" .. ) .• 

The Theorem follows by Slutsky's theorem since NtlS t -7 A a.s. 

on {Nt -7 oo} by Theorem 2.3. 

Remark. It also follows from the above mentioned theorem 

on random sums that the asymptotic normal distribution is in~ 

dependent of W. This may be used to modify the Theorem to 

. d'" 1" f 1/2 y~eld results on the eterm~n~st~c norma ~s~ng actors c t ' 
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cf. Keiding's (1974§1975) analysis of the birth process and 

birth-and-death process. As an example, if Lp. J log j < 00, 

at J 
c t = e ,(Athreya and Ney (1972, p. 111-112» and then the 

conditional distribution of 

\ 
A. 

~O - II 
0 

ll2 - ll2 

given {X + oo} (or {Xt > a}) ~s asymptotically that of 
1/2 t 

~/W ,where ~ is the set of independent normals referred 

to ~n the Theorem and T and W are independent. 

at 1 12 A 

Any individual componen~{(e -l)/a} (ll.-ll.) thus has 
~ ~ 

the asymptotic distribution function 

00 

J <P (x(w Ill. //Z)F (dw) 
~ . 

o 

where F ~s the conditional distribution function of W, given 

W > O. The Laplace transform of this distribution may ~n 

principle be determined from the offspring distribution, cf. 

Athreya and Ney (1972, Theorem III. 8.3). 

However, only in the ca~e of the birth-and-death process 

does the distribution of W take the particular simple expo

nential form (Athreya and Ney (1972, p. 136, Problem 2» 

discussed by Keiding (1974,1975) and leading to the asymptotic 

Student-distribution~ 

d. Estimators of part icularfurictiona1s. 

By the theorem on transformation of maximum likelihood 

estimators it follows that the maximum likelihood estimator 

of the offspring mean m = ri p. ~s 
~ 

A. 

m r ~ 
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as also pointed out by Jagers (1973b). Therefore the maX1mum 

likelihood estimator of the Malthusian parameter a = A(m-l) 
A A 

is A(m-l) = (Xt-xO)/S t , From the previous results we thus 

deduce that all of these estimators are strongly consistent 

both for Xo -+ 00 and t -+ 00, and that the following results on 

asymptotic distribution hold. 

Theorem 2.5 As x -+ 00 for fixed t, o ----

2 and if the offspring variance a L (i-m) 2p. < 00, 
1 

at 1/2 AD- 2 
(xO(e -l)/a) (m-m) -+ normal (O,a IA) 

and 

at ·1 12 A D 2 2 
(xO(e -l)/a) (a-a) -+ normal (O,A(a +(m-l) ». 

A A 

Furthermore A and m are~.§.1!.l!.Etotically indeE,erident and the 
"-

asymptotic correlations with a are 

p(~,;) - a 2 /[a 2 (a 2+(m_l)2)]1/2, 

p (~ , ~ ) - (m - 1 ) I [-a 2 + (m _ 1 ) 2 ] 1 I 2 • 

As t -+ 00 for Xo = 1, the conditionaldistribtitions g1ven 

'{X t -+ oo} (or {X t > O}) .££nverge22..-show.£: 

Without further conditions on the offipiing distributions 

and if a2 

and 

< 00, 

S 1 I 2 (; -m ) 1l norm a 1 ( 0 , a 2 I A) 
t 

Pa~allel to above 
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are asymptotically independent and the asymptotic correlati

ons are again the same. 

Remark. The analysis leading to the above Theorem shows ---- "'-

that in fact {po 1i=O,2,3, •.• } is asymptotically independent 
A ~ 

of ~, both as t + 00 and as ~O + 00 

I 

Remark. The results for t + 00 may be transformed into 

statements with deterministic normalising factors as discus

sed in the Remark of the end of the last Subsection. 

3. MULTITYPE MARKOV BRANCHING PROCESSES 

Let {~t = (X t (1),·.·,xt (k»It..::: O} be a k-type Markov 

branching process with split intensities A (AI"'" Ak ) and 

offspring distributions E (~) = (PI (~), ••• , Pk (~», 

k k 
~ E NO = {O,1,2, ••• } • A survey of the definition and ma~n 

properties of such processes was given by Athreya and Ney 

(1972, V. 7-8). We assume all offspring means finite,i.~. 

00 00 

m .. 
~J 

This assumption guarantees non-explosion ~n finite time with 

probability one. 

a. The likelihood function and maximum likelihood estimators. 

As in Section 2, we may now exhibit the likelihood func

tion and the maximum likelihood estimators under freely vary

in g par am e t e r s • 

Theorem 3.1 There exists a measure on the space of re

alizations of {X IO<u<t} such that the Radon-Nikodym deriva-
... u --

tive, or the likelihood futictidn, ~s 
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L(~,p(s» 

00 00 Nt(j,~) 

11 p.(s) 
s =0 J ~ 

k 

wh ere ~ = ( s 1 ' ••• , s k)' N ( t , j • s) is the n um be r 0 f s p 1 its 0 f 

particles of type j that produce sl part£cles of type 1, ..• 
00 

sk particles of type k, Nt(j) ~ ... ~ Nt(j,~) the total 
sl=O sk=O t 

number of splits of particles of type j and St(j) = Ix (j)du 
o u 

the total time lived by particles of type j, all in [O~t]. 

Sufficient statistics are given by the quantities above~ 

If the statistical model is that all intensities vary freely 

~ (0,00) and all probabilities vary freely over [0,1], 

sub j e c t to L p. (s) = 1, j = 1 , .•.. , k, the nth e s e are a 1 so min im a I
s J '" 

ly sufficient and the max~mum likelihood estimators are given 

by 
A '" Nt (j) Nt(j,~) 
A. = St (j ) , p. (s) 

Nt (j) J J ~ 

We shall prove consistency on the set of nonextinction 

below. For this we need a simple lemma. 

Let ~t = (St(1)"",St(k»'and ~t 

be as ~n Theorem 3.1 and de~ine 

k 
L S (i) and N = 

i=l t t 

(Nt (1), ••• ,Nt (k»' 

Let further (following Athreya and Ney (1972,pp.202 ff.» A 
"" 

be the matrix with elements a .. = A.b .. , where b.. m .. -8 ... 
~J ~ ~J ~J ~J ~J 

Then A generates the semigroup ~t of means of ~t' It is 

known that A has a positive real eigenvalue a which strictly 

dominates the real parts of all other eigenvalues. The cor-

responding left eigenvector is called v, 
"" 

Then if 

(*) ~ p.(s)s. log s. 
~ '" J' J 

< 00 
s 

and assume LV. = 1. 
~ 
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for all 1., 

~t e-at -+ vW 

almost surely as t -+ 00, where the random variable W 1.S poS1.

tive with probability 1 - q, q being the extinction probabi

lity. 

Lemma 3.1 Assume (*) 0. Then, as t-+oo , the following hold 

with probability one: 

and 

where 

;: = (A IV 1 ' ••• ,A k v k) , • 

-at Proof. iThe convergence of St(i)e follows easily for 

almost all w by choosing to large enough that~fXt(i)e-at -

viW(w) I < E for t > to. 

Then 

St(i)e-at -at 
e 

to 
f X (i)du + 
o u 

In the last integral, the integrand 

v . W ( w) e au, sot hat the 1 a s t 't e rm i s 
1. 

t -at 
e f X (i)du. 

t u 
o 

may be approximated by 

less than E/a different 

from v.W(w) (l_e-a(t-t o ». 
1. Let then t -+ 00. 

-at 
To prove convergence of ~te we write 

N (k) 

+ ••• + ~ u~l) 
i=l 

(i) 
w her e U h j + 0 h j 1. S the n um b e r 0 f par tic 1 e s 0 f t Y P e j c rea ted 

.t, the i'th split of particles of type h. Obviously 

u~1), 1. = 1,2, ••• are independent and identically distributed, 

so by the strong law of large numbers 
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Furthermore it follows from Athreya and Ney (1972, Theorem 

V. 7.3) that as t -+ 00, and supposing (*) to hold, 

Nt (j) l.v. 
-+ J J 

Nt LA.v. 
1. 1. 

j l, ••• ,k 

a.s. on {Nt -+ oo},_where Nt LNt(j). Hence as t -+ 00, remem-

bering that v is left eigenvector of A corresponding to the 

eigenvalue a, 

Xt (j) k Nt (h) 

(Nt~h) 
Nt (h) 

u~~)) 
k Ahvhb hj ---- L L -.+ L LA .v. Nt h=l Nt i=l h=l 1. 1. 

1 
k avo 
L 

.J 
vhahj = LA.v. h=l LA.v. 

1. 1. 1. 1. 

a. s . on - {Nt -+ oo}. It follows that, again a. s • on {Nt -+ oo}, 

-at -1 
Nt e -+ a LA.v.W. 

1. 1. 

Applying the known results about lim Nt(j)/Nt once more the 

Lemma is proved since W = 0 a.s. on {Nt f oo}. 

Theorem 3.2 As t -+ 00, 

A. 

p.(s) -+ p.(s), i 1. ..... 1. _ l, ••. ,k, 

and assuming (*) 

A 

A. -+ A., i = l, ••• ,k, 
1. 1. 

where the conve..r.gence is a.s. on- {Xt -+ oo}. 

Proof. As in the proof of Theorem 2.3, the result con-

c e r in g p. (8) f 0 11 ow s from are pre 8 en t at ion 1. _ 

N (i,s) 
t ... -

N (i) 
t 
L z .. (8) 

. -1 1. J ..... 
J= 
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where Z'l(s), Z'2~s), .•• are independent indicators with 
1. '" 1. .... 

p{Z .. (s) = 1} = p.(s). Since Nt(i) -+ 00 a.s. on {Nt -+ Do} (be-;-
1.J ~ 1. ~ 

cause all elements v. of the eigenvector y. are positive), the 
,~ 1. --

strong law of large numbers may again be invoked. 

A 

The consistency of A. 1S 
1. 

a corollary of Lemma 3.1. 

Remark. Results on asymptotic normality analogous to 

those of Theorems 2.2 and 2.4 may be proved along similar 

lines as in Section 2. Notice that the maximum likelihood 

estimator of the Malthusian parameter a may be obtained as 
A A h A 

the largest eigenvalue of the matrix A = (a .. ) = CA. (m .. -0 .. ». 
~ 1.J 1. 1.J 1.J' 

4. BELLMAN-HARRIS PROCESSES. 

Let {Xt , t l o} be a Bellman-Harris process (or age

dependent branching process) specified by the life-length 

distribution function G and offspring distribution {p., i 
1. 

0,1,2, •.• }, see Harris (1963, chapter VI) or Athreya and Ney 

(1972, chapter IV). 

a. Estimation of the offspring probabilities 

Assume as usual that the process X has been observed in 
u 

some interval [O,t]. Since the event of death of one indivi-

dual and birth of one offspring is not directly observable 

(the sample function will have no discontinuity), the infe

rence on PI will be confounded with that on G. In the state~ 

ment of the following Theorem we shall therefore assume PI = 
0, but the results are easily interpretable for the conditio

nal probabilities Pi/(l-Pl) in the general case. 

Theorem 4.1 Let PI = 0. The estimators Nt(i)/Nt of Pi 

are consistent and aSY!!!:Eotically normal as t ':7'.00: 

Nt(i)/Nt -+ Pi a.s. on{Xt -+ 00 } 

and the conditionaldi~t~ibtit'i6riof 
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given {Xt -+ oo} (~ {Xt > oJ) is asymptotically normal 

(O,p.(1-p.») and with asyniptotic covariances -p.p .• 
1 1 1 J 

1ft h epa r am e t r i z at ion is t hat the p.' s va r y f r e e lz 
1 

subject to PI = 0, ~Pi = 1 ~nd Gis param~trized independent-

ly of' {p . } , then the s e are theniaxinitini likelihood est imat or s .: 
1 

Proof. Jagers (1973b) studied estimation in Bellman-Har-

ris processes where the whole family tree is observed. Since 

the estimators here considered only depend on the observed 

trajectory {X , 0 < u < t}, the results follow from his ana
u 

lysis, except that Jagers assumes finite reproduction varian-

ce in the consistency proof. We notice, however, that the 

proof of the second part of Theorem 2.3 is equally applicable 

here. 

Remark. As mentioned in the introduction, Becker (1974) 

discussed estimation of one-parameter exponential family off

spring distributions given extinction of the process. 

b • Est irtra t ion-or t b e -M a-11 h u s i an p a r,_a_m_e_t_e_r_: __ K_e_n_d_a_l_l_'_s_m_u_l_t_i_

phase process. 

The Malthusian parameter a is g1ven as the solution, if 

there is any, of the equatiqn 

00 

m J e-axG(dx) 1, 
o 

where m = ~ip. is the offspring mean. 
1. 

We shall illustrate 

the difficulties of estimating a by the maximum likelihood 

method by choosing as G a gamma distribution with parameters 
-1 

(k,A ) where k is an integer and for simplicity of discussi-

on we also choose P2 = 1, (binary splitting), so that m = 2. 

The process is then the 'multip'hcl's'e'b'it"th'pro't'ess proposed by 

Kendall (1948) and it is useful to observe that if Y is a 
""t 

k-type Markov branching pro~ess with A. = A for 
1 

all i, 

p.(e. 1) 
1 ... 1+ = 1 for i = 1, ••• ,k-l and Pk(2~1) = 1, where ~i is 

the i'th unit vector, then Xt = ~Yt(i). The Malthusian para~ 
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meter is a = A(2 l / k _l). 

The likelihood function given thatiy }is observed 1n 
, -u:, 

[O,t] 1S obtained as 

M -AS 
Ate t 

where Mt = LMt(i) 1S the total number of splits of all types 

of particles in the Y-process and 
~ 

t 

St = J[Y (1) + o u 
+ Y (k)]du 

u 

Thus the likelihood equation is 

Mt - AS t = 0 

t 

= JX o u 
duo 

and it follows from general exponential family theory (see 

~.~. Sundberg (1974)) that the likelihood equation, given 

that only {XuIO ~ u ~ t} is observed, is 

E (M t - AS t I Xu' 0 < u < t) = o. 

In the present case St depends only on 
A 

tain A as the solution of 

fx } so that we ob
u 

As an example let k = 2, t 2 and assume that the pro-

cess 1S known to start with one individual in the first phase 

(! ° =' (1'0) )a n d t hat Xu = 1 for 0 < U < 1, Xu = 2 for 1 .::. u ~ 

2. Then St = 3 and the conditional expectation E(MtIXu' 

o < u < t) is computed as follows. The initial particle 

changes phase once and then splits at time 1. Each of the 

two offspring may change phase once but none of them splits. 

The probability that a particle in phase 1 changes, g1-
/" 

ven that it does not split in an interval of length x is 

where Ul and U2 are independent and exponentially distributed 

with intensity A. In the present case 



2 + 1., 1. 
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w.pr. 

w.pr. 

w.pr. 

[1../(1+1..)]2 

21../(1+1..)2 

1/(1+1..)2 

and thus the likelihood equation is 

which for St = 3 has A = 1 as its only positive solution. I~ 

general the likelihood equation will be an (Xt+l)st order 

equation. We have not succeeded in finding a general formu-

la for the solution even in the present simple case and we 

therefore think that explicit derivation of maximum likeli

hood estimators is unfeasible here and much more so in more 

general circumstances. 

c. The asymptotic exponent{aldistribution of the inter

s p 1 it....E. ime s .. 

"-

It is well-known that the relative age distribution in a 

Bellman-Harris process converges towards the (deterministic) 

stable age distribution. More specifically,let x: be the num

ber of individuals alive and of age at most a at time t in a 

Bellman-Harris with non-latticeli£~-length distribution G, 

offspring distribution {p.} and positive Malthusian parameter 
l. 

a. Then Harris (1963, p. 154), Jagers (1968) showed that if the 

offspring variance is finite, 

as t + 00 for all a, with probability one on {Xt + oo}, where 

a 
Ie-axG(dx) 
o A(a) 

a 
a m -ax 
m-l Ie G(dx), 

o 

m as usual denoting the offspring mean. 

This result was recently sharpened by Athreya and Kaplan. 

(1975) to hold without any other conditions than r~.jlog j <~; 
J 
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and the convergence in probability (conditional on {X t + oo}) 

was shown to hold as soon as m < 00 and a mild ~ondition on G 1S 
imposed. 

As we shall see presently, it follows from the above re

sult that the split time process, defined as the point process 

of dis con tin u i tie s 0 f {X t}' i s a s ym p tot i call y, a s t + 00, 0 f 

the same form as for a Markov branching process with split 

time intensity a/(m-l). It is thus intrinsically impossible 

to draw inferences on any other functionals of G than a from 

the later stages of a sample path of a Bellman-Harris process 

without further hypotheses or employing a different sampling 

scheme. 

For ease of exposition we as sume PO = 0 so that Xt + 00 

" ~ 
a. s. We also assume PI = 0 as above since the events of 

birth of one individual do not imply a discontinuity in{ XJ. 

. Theorem 4.2 Let Xt be .~ Bellman~Harris process with 

Po = PI = 0, so that m = I:jPj > 1, and assume LP j j log j < 00 

Then 1n particular m < 00, the Malthusian parameter a exists 

and 0 < a < 00. Assume that H 

'continuous density h. Let '0 .. 0, 

discontinuity of {X t }. 

log (I-G) has a bounded 'and 

T C the time of the n'th 
n 

(a) Let F be the a-algebra spanned by the knowledge of the 
n i 

whole family tree up to (the! random) time T and let Y 
n n 

X (T I-T). T.! n+ n 
n 

Then 

, 

p{Y > ylF } + exp{-ay/(m-l)} 
n n 

a.s. ~ n -+ 00. 

(b) Let Gt be the a-algebra spanned by the knowledge of the 

full family tree in [O,t] and let Zt = Xt(TN +l-t). 
t 

p{Zt > zlGt } + exp{-az/(m-l)} 

Then 
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Remark. If G has a continuous density g, the density 

h is g/(l-G), which is known as the hazard rate corresponding 

toG. Thus the hypothesis on G states that the hazard rate 

should be bounded, which is satisfied ~.~. for gamma distri

butions (h(x) = 0(1) for x + 00) and for Pareto distributions 

(h(x) = O(x- l )). 

!.E.oof. 1;ve only give the proof of (a), s~nce the proof 

of (b) is analogous. Let G ( Y ) = { G ( x + Y ) - G ( x )} j{ 1 - G ( x) } 
x 

be the conditional distribution of the residual life-length 

given that the particle has survived to age x. 

When F 
n 

~s given, the ages a., J 
J 

1, ... ,X T of the 
n 

XT particles alive at T are g~ven. 
n n 

Denote the empirical di-

Now T 1 - T is the time 
n+ n stribution of these by ATn (x). 

til the first death among the X particles, 
T 

and hence 
n 

. ~ 

p{y > ylF } 
n n 

and the logarithm becomes 

where 0 y/X 
T n 

00 

-y f ~ H(x+O)-H(x)}A T (dx) 
o n 

= -y fh(x)A (dx) + R 
1:' n 

n 

and the residual R is discussed below. 
n 

un-

Since P{T + oo} = 1, it follows from the above mentioned 
n 

result of Athreya and Kaplan (1975) that A + A vaguely, al
T 

n 
most surely as n + 00 Therefore, a.s. as n + 00, 

f h(x)A (dx) + fh(x)A(dx) 
T 

n 

00 

am f g(x){ } -ax 
m-l l-G(x) _l-G(x) e dx 

o 
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To discuss the residual term R , choose) to an arbitrary 
n 

K large enough to ensure that 1 - A(K) < E. On the set 

[O,K], h is uniformly continuous so that we may choose y to 

ensure that 

sup 
Ix-vi 

° ~ x 

Ih(x) - h(v) I 
< y 

< K. 

< E. 

It follows from the mean value theorem that 

sup 
1 . 

I-{H(x + u) - H(x)} - hex) I 
u 

I u I < y 

< sup Ih(v) - hex) I 
v: Ix-vl<y 

which we denote by ¢(x,y). By the results a,bove, ¢(x,y) < E for 

o ~ x < K and obviously ¢(x,y) < 2 sup h everywhere. 

Therefore, on {y/X < y}, 
T 

n 

K 00 

IR I < 
n 

J ¢(X,y)A T (dx) + J¢(X,y)A (dx) ° 'n K Tn 
< E + 2 (1 - A (K» sup h 

T 
n 

-+ E + 2E sup h 

as n -+ 00 by the vague convergence, s~nce A ~s continuous and 

A(ro) 1. 

In conclusion, we have 

lim sup!p{Y > y!i} - exp{-ay/(m-l)}! 
n-+oo n n 

< lim sup!p{Y > y!; }I{-/X < }-exp{-ay/(m-l)}!+lim sup I{ } 
~ n -+00 n n y T Y n -+00 y / X T > Y . 

n n 

The last term is zero a. s. and the first term is bounded by 

EO + 2 sup h). 

For fixedk and n -+ 00, the distribution of 

(Y 1"'" Y k) converges to that of k independent exponent i-n+ n+ 
ally distributed random variables with common intensity 

a/(m-l). 
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Proof. \,Je study the Laplace transform: 

e8l, ... , 8 k ) E Rk 

A (8) 
nk ~ 

k 
E{exp(- L S.y .)} 

i=l ~ n+~ 

k ~ 

E[E{exp(- L S.y ')IF k}] 
i=l ~ n+~ n+ 

k-l ~ 

E[exp(- L 8.Y .)E{exp (-8 k Y k)IF k}] 
i=l ~ n+~ n+ n+ 

k-l ~ 

Let for 8 

E[exp(- L S.Y .)(E{exp(-8 k Y k)IF k}-a(Sk»]+a(8 k )A k lC8') 
. 1 ~ n+~ n+ n+ n, - -
~= 

where S' (Sl,···,8 - ) and 
k-l 

~s the Laplace transform of an exponential distribution with 

intensitya/(m-l). By ( a) 0 f the The 0 r em, B n k (~) -+ 0 as 

n -+ 00 so by repeating the argument 

which completes the proof of the Corollary. 

d. A simple estimator of the Malthusian parameter. 

For the Markov branching process, the maximum likelihood 
t 

estimator of a ~s (Xt-xo)/St' St =foxudu, or the intuitive oc-

currence-exposure rate. We notice that this estimator, which 

we shall denote by a, ~s not in general the maximum likelihood 

estimator of a in a Bellman-Harris process: Consider the ex-

ample of Subsection 4b above where ; ~ A(2 l /2_ l ), ~ 1, but 
1 

a = 3" :1= is seen to be 3 and therefore 

Nevertheless, the analysis ~n the preceding Subsection 

shows that the sample functions of a Bellman-Harris process 

for large t look very much like the sample functions of 

a Markov branching process with the same offspring distributi--
on and split intensity a/(m-l). One might therefore expect a 

to be asymptotically equivalent to the maximum likelihood e

stimator. 



We present in this Subsection a proof of the consistency 
'" of a and a conjecture concerning the asymptotic normality. 

In the next Subsection a is compared to some other estimators 

proposed in the literature. 

Theorem 4.3 As t + 00, and supposing Lp. j log J < 00, 

J 

+ a 

Proof. This follows at once from the almost sure conver-
-at . { } gence Xte + W, where ° < W < ooa.s. on Xt + 00 , which was 

proved by Athreya and Kaplan (1975), cf. the proof of Lemma 

3.1. 

Conjecture As t + oo,"an'd' 'u'ndersuita'ble regularity as-

sumptions, including thatoffin'i't'e' 
2 2 a = L(i-m) p., the distribution of 

1. 2' 2 
1y normal (0, {a . + (m-l) }a/ (m-1)). 

S 1/ 2 (~-a)isasympt ot i ca I
t 

Motivation. The conjecture is the obvious generalisation 

of the analogous statement of Theorem 2.5 and it should be 

possible to obtain a proof by extending the argument that pro

ves Theorem 2.4. Assume for convenience PI 0, cf. the dis

cussion above. First, it follows from Jagers (1974) or by 

an extension of Athreya and Kaplan's (1975) method, that as 

t + 00, using Nt = the number of discontinuities in [O,t] 

and it therefore suffices to study 

St Nt-1/2(~-a) 

= N- 1 / 2 (X S ) t t - xo - a t 

Nt 
N- 1 / 2 L (Z. 

t . 1 J J= 

where Z. is the S1.ze of thej'th discontinuity and Y. = 
J J 
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aX (T.-T. 1)' T. being the time of the jfth discontinuity; 
T'_ l J J- J 

TheJsecond term will be negligible ~n the limit. To study 

the first term, we first notice that Zj+1 is independent of 

the a-algebra F. defined in Theorem 4.2(a) and by that same 
J 

Theorem the conditional distribution ofY. 1 givenF. conver-
J+ J 

ges towards an exponential with mean m-1. 

Therefore, for large j, Z. k - Y. k' k = 1,2, .•. , are 
J + J + 

approximately independent random variables distributed as 

Z - Y, where Z + 1 has the offspring distribution (p.) and Y 
~ 

~s exponential with mean m - 1, and Z and Yare independent, 

so that E(Z-Y) = 0 ~nd Var(Z-Y) = a 2 + (m-1)2. 

Let now 

~ 

~ j (8) = E[exp{i8(Z.-Y·)}IF~ 1 J 
. J J J-

and 

ljJ(8) E[ex~{i8(Z-Y)}J, 

then 

This will converge to zero, so that the conjecture may 

be proved by appealing to central limit theory for random sums 

of random variables as above, if there exist 

1,2, ... such that 

I~ j ( 8) - ljJ ( 8) I· < I 8 I c j 

and 

-1/2 n 
n L c. + 0, 

j =1 J 

con s tan ts c . , 
J 

for instance, if E(Y.) = m - 1 + O(j-O) for some 0 > 1/2. 
J 

This seems plausible but we have no proof so far. 

j = 
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e. Hoel and Crump's estimator of the Malthusian parameter. 

A recent study by Hoel and Crump (1974) 1S concerned 

with estimation of the life-length distribution in a Bellman~ 

Harris process with binary splitting, that is, offspring di-

stribution degenerate at 2. This model has been applied to 

cell growth studies, cf. Hoel and Crump's references or Ja

gers (1975, Chapter 9), who gives a comprehensive survey of 

these models. 

Hoel and Crump consider mainly Kendall's multiphase pro

cess discussed in Subsection 4b above. For this binary split

ting process Xt with gamma (k,A~l) life-length distribution it 

is known that as t + 00 

from 0 n ere ali sat ion 0 f { X I 0 < u < t}. 
u ..... 

propose to fit a straight line to log Xt ' thus lIapproximating" 

the "asymptotic true" line at + log S + log Xo and subsequent

ly using the slope as an estimate of a and the intercept on 

the ordinate axis to estimate S. Now there are several pro-

blems of using the intercept to estimate S, and Hoel and 

Crump do point out that no consistent (as the observation ti-

me gets large) estimate res~lts. The basic difficulty, as 

in particular discussed hy Waugh (1972), 1S that it follows 

from the general convergence theorems that for large t, 

- WQ at Xt fJe or 

log Xt ~ at + log S + log W 

where W is a random variable. 

As an examplel in the pure birth process with Xo = 1, 

W is exponential with mean 1, so that E(log W) = -y = - 0.577 

and Var (log W) = ~2/6 = 1.645. 

It is a consequence of the invariance considerations in 
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Subsection 4c above that asymptotically as t ~ 00, the sample 

function will only contain information on a and not on other 

functionals of the life-time distribution. In this light, 

it is obvious that the particular procedure suggested by 

Hoel and Crump will not lead to a consistent estimate. Their 

proposal to overcome this is to estimate S from replicated 

experiments. 

Let us then turn to the question of estimating the Mal-

thusian parameter a. 

estimator 

Hoel and Crump study in particular the 

t-s 

where s < t are some time points. 

For the case of k = 1, that lS, the linear birth process, 

exact means and standard deviations of the maximum likelihood 
A 

estimator a (X t - xO)/St were given by Beyer, Keiding and Simonsen 

(1975), cf. Beyer (1974). In this case, direct computation is also 

possible for a and some values were kindly supplied by K.S. Crump 

ln a personal communication. As an example, if E(X t ) = 20, correspon 

ding to t = 3,00, one gets E(~)= 0.851, o(a) 0.337, or a mean 

square error (mse) of 0.136. Choosing s = 2.30, that lS, E(X t ) = 10, 

which is the case treated in Hoel and Crump's (1974) Table 2, one 
A 

gets E(a) = 0.921 with o(a) = 0.472, or an mse of 0.229. But it lS 

possible to do better by selecting other values for s. Thus if 

s = 0.75 corresponding to E(X t ) = 20 1 / 4 , E(~) = 0.869 and a(~)=0.366, 
giving mse = 0.151 and this clearly compares fayourably with the 

maximum likelihood estimate, which usually will be much harder to 

compute. Further comparisons of the maximum likelihood estimator to 

alternatives based on less information seem to be desirable. 
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