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ABSTRACT 

This paper contains a systematic presentation of time­

continuous stable population theory in modern probabilistic 

dress. The life-time births of an individual are represented 

i by ani n h om 0 g e n e 0 u s Poi s son pro c e s sst 0 P P e d at d eat h , and an 

aggregate of such processes on the individual level constitu-

tes the population process. Forward and backward renewal re-

lations are established for the first moments of the main 

fun c t ion a 1 s 0 f the pro c e s san d . fo r the i r den sit i e s. The i rCisyl:D.p_-

totic convergence to a stable form is studied, and the stable 

age distribution is given some attention. It is a distingui-

shing feature of the present paper that rigorous proofs are 

given for results usually set up by intuitive reasoning only. 
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1. INTRODUCTION 

Stable population theory in its classical 

deterministic formulation with continuous time and age para­

meters started with a paper by Sharpe and Lotka in 1911, and 

to this day it continues to form the backbone of a substanti~ 

al chunk of population mathematics. (For recent reviews, see 

Keyfitz, 1968; Coale, 1972; Pollard, 1973~) The correspon­

ding theory for the case of discrete time and age parameters 

got going much later (Bernadelli, 1941; Lewis, 1942; and 

particularly Leslie, 1945, 1948). It started out as a deter­

ministic theory too, but the second half of the 1960- s saw 

the birth of a stochastic version of the time-discrete model 

(1[ 0 1 1 a r d, 1 9 6 6; Goo dm an, 1 9 6 8) . Rev i e ws 0 f the ens u i n g d eve 1-

opment have been given by Feichtinger (1971) and Pollard (1913). 

No similar general reconciliation of deterministic and 

stochastic theory has been published so far for the time-con~ 

tinuous case, even though the results are latent in a funda­

mental paper which Kendall published in 1949 already. Crump 

and Mode (1968, 1969) and Jagers (1969, 1973, 1974) fseeialso 

Oemey (1972)J have carried out the groundwork for a theory 

of generalized branching processes, however, and this tool 

turns out to be just what one needs to establish the basic 

results of a stochastic stable population theory. The present 

paper gives an account of such results. 

In this presentation, we concentrate on the basic rene­

wal equations of the theory. We establish forward equations, 

and we show how the classical Lotka integral equation is a 

backward relation which can be derived rigorously within the 

stochastic process context. The basic renewal theorem enables 

us to easily prove standard results concerning 

convergence of a population to the stable form. We also carry 

forward the work of Goodman (1967), Pollard (1969) and Key­

fitz (1968, Section 8.2) by suggesting some strong analogies 

between the time-continuous and the time-discrete case. 

The present paper clears up concepts and g1ves rigorou~ 
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proofs of results which~_avebeen es!=ablishedpreviouslytb l.1t 'Qy 

intuitive reasoning ~nly. Th~ £ull stoch~stic theory is much 

richer than this, and plans are in hand to present remaining 

par t s 'i n a c om pan ion pap e r • The discussion of"difficult"con-

cepts such as age atchild-bear-ing and generation length will be 

postponed until th~~. 

~~~ __ !~~_t!~~~~E_~t_£!~~~~£~!_~~~£!~_E~E~!~~~£~_~~~£EY' Lot­

k a's fun d am e n tal in t e g r ale qua t ion has the follow i n g form: 

* t 
B (t ) G (t) + J B(t-x)p(x)m(x)dx. (1. 1) 

° 
Here, B(t) ~s called the number of births at time t or the 

* den sit y 0 fbi r t h sat tim e t, G (t) is" the n um b e r 0 fbi r t h s 

[at time t] to the initial population", p(x) is the probabi­

lity of surviving from birth to age x, and m(x)dx is regar­

ded as "the probability of a woman x years of age having a 

child in the interval x to x + dx". (See Preston, 1970, and 

Keyfitz, 1968, pp. 97-98.) 

To give an impression of the flavour of the kind of rea-
I 

soning we find within the classical, deterministic theory, we 

quote the argument which Keyfitz (1968, pp. 98~99) uses to 

establish (1.1): 

" the number of women of ages x to x + dx at time t, 

born since time zero, will b~ the survivors of children born 

x years ago, B(t-x)p(x)dx, x < t. These women would have at 

time t a number of children equal to 

B(t-x)p(x)m(x)dx 

per year. 

Integrating [this expression] through all x and adding 

* the allowance G(t) for births to those already alive at time 

zero gives the fundamental [integral] equation". 

We regard this kind of reasoning as a commendable way of 

setting up relations between the various moments, distributi­

ons, and densities which appear in a theory of this sort. 



-6-

Knowledge of the form of a relation makes it eaSler to find ~ 

proof for it. The pseudo-probabilistic argument above cannot 

be accepted as a rigorous proof, however. A proper proof of 

(1.1) and other similar relations will be given in this paper. 

of individuals. In a probabilistic version of stable popula-

tion theory, therefore, we start out by specifying a stochastic 

process on the individual level. This process should be re-

garded as a representation of the aspects which are taken in­

to account of the lifetime reproductive behaviour of the indi-

vidual. For this purpose, ~e use a straightforward Poisson 

process with time-dependent intensity {m(x): x ~ O}, stopped 

at the death of the individual, in the basic model studied in 

this paper. The Poisson events correspond to births, and we 

get a b i rth-and-deat h mode Ion the individual level. [Apart 

from what is contained in KendBll's 1949 paper, the seeds of 

these ideas can be found in papers by:Joshi I (1954) and Con-

sael and Lamen;~' (1962). Hoem (1969) seems to be the first 
--" ---- -' 

one to give this set-up any intensive attention.] 

The random process on the population level consists of 

the aggregate of processes on the individual level. We take 

the individual processes to be stochastically independent. 

For ani n d i vi d u a 1 0 fag e u at tim eO, the n , a Poi s son pro c e s s. 

with intensity {m(x): x > u} generates births until time L -~, 

when the parent individual dies. (The lifetime L is taken as 

), independent of the Poisson process~) Each birth starts off a 

new and independent Poisson process, which generates new 

births until it is stopped at death, and so on. The study of 

this process constitutes our stochastic stable population 

theory, which covers all of the classical theory and goes far 

beyond it. 

On the basis of this s~t-up, the present paper is orga-

nized as follows. The processes on the individual and the 

population level are presented in Sections2 and 3, respective­

ly. Forward and backward renewal relations are presented in 
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Section 4. In particular, Lotka's integra1equat ion (1.1) 1S 

established 1n Theorem 4.4. Convergence to the stable form is 

I studied in Section 5 ~ In a final Section, we discuss the re­

productive value and the stable age distribution, as well as 

t-heir mathematical interpretation as eigenvectors for mean ope­

rators. This brings out a strong analogy with th~ discrete ti­

me theory. 

In order to facilitate comparison with the classical 

theory, we have tried to stay as close as possible to the no~ 

tation of Keyfitz (1968) and Coale (1972), even though we con-

sider it unfortunate in some respects. We also use standard 

actuarial notation where possible unless the two sets of con­

ventions conflict, in which case we stick to the demographic 

tradition. 

The individual process 

of this paper provides a model for lifetime births. To get 

a similar model for liveborn offspring of either sex, say, 

one w 0 u 1 d s p e c i f y an f' add i t ion a 1 dis t rib uti 0 n for the n um b e r 

of such offspring in each birth and use a compound Poisson 

process (Feller, 1971) to represent the behaviour of the indi~ 

vidual. Indeed, the specification of a more complex process 

on the individual level is the key to a generalized (single­

sex) stable population theory which takes into account featu­

res beyond the m~re births, such as birth order, marriage, 

residence, and so on. Compare Roger~ 1966, 1974; Keyfitz, 

1 96 8, C hap t e r 14; Goo dm an, 1 9 6 9; Fee n e y, 1 9 70 ; N am boo d i r { , 

1970; Le Bras, 1971; Keyfitz, 1973a;Feichtinger, 1974. 

On the aggregate level, the tools would be an extension 

of the generalized branching processes and multivariate rene-

wal theory. The former has not been worked out yet, but it 

should be possible to do so by known methods. 

see Crump (1970). 

For the latter, 

The stochastic independence between individuals 1S a key 

assumption in this theory. Everything becomes much more dif-

ficu1t if the independence assumption is dropped. This is the 
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reason why it 1S so hard to develop a satisfactory theory of 

genuinely two-sex populations. Although a number of authors 

have contributed to the subject, one still does not really 

seem to be anywhere as close to a general solution as in the 

case of a single sex. Recent work in stochastic processes 

primarily directed towards population genetics, such as that 

of Kesten (19JO, 1971), may inspire further development 1n 

this part of demography, provided one can find mating rules 

which are realistic in human populations. 

(For a review of the literature on two-sex demographic 

models up to 1971, see Keyfitz, 1973b. There are later con­

tributions by McFarland, 1972; Parlett, 1972; Das Gupta, 1972; 

Bartlett, 1973; and Mode, 1972, 1974.) 
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2. THE PROCESS OF LIFETIME BIRTHS ON THE INDIVIDUAL LEVEL. 

Let {K(t): t ~ O} be a Poisson process with a bounded 

and continuous intensity function m(.). Let L be a random 

variable which is independent of K(.) and which has the sup­

port [O,w] (for 0 < w < 00) and the distribution function 

x 
1 - exp{-f~(s)ds} 

o 
(2.1) 

for 0 < x ~ w, where ~(.) is non-negative and continuous on 

[O,w]. Since tl'(w) = 1, it follows that 

w 
f~(s)ds 00 
o 

Finally, let x A y = min (x,y), x V y = max (x,y), p(x) 

1 - q(x), t P = p(x+t)/p(x), t q = 1 - t P • x . x x 

We then interpret m(x) and ~(x) as the forces of fertili­

ty and mortality (or, equivalently, the birth and death 1n­

tensities), respectively,of an individual of age x. We shall 

call me,) the gross maternity function, and ¢(.), defined by 

¢(x) = m(x)p(x) 

is known as the net maternity function. Thehighe~tage pos­

sible 1S w. We define 
-~ 

and 

x 
~(x) = f ¢(s)ds 

o 

M (x) 
x 

x 
fm(s)p(s)ds 
o 

fm(s)ds. 
o 

The number of births by age x 1S K(XAL). We note that 

M(x) = EK(x), and get 

EK(XAL) EE{K(XAL)!L} EM(XAL) 

00 xAy 
J f m(s)ds q(dy) 
o 0 

x 
f[l-q(s) ]m(s)ds, 
o 

x 00 

f fq(dy)m(s)ds 
o s 
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so that 

\Il (x) EK(XAL). (2. 2) 

Define 

p{K(XAt) > n}", (2. 2) 

Then, immediately, 

00 
\Il (x) (2.4) 

The quant ity RO \Il(00) = EK(L) 1S called the gross re-

production rate, and, correspondingly, RO = M(oo) = EK(OO) 1S 

called the net reprodti~ti6nrate. 

The following additional observations turn out to be 

useful. Assume that it is known that L > u, where 0 < u < w, 

and concentrate on what happ~ns after age u. Let E denote 
u 

the expectation operator, conditional on the event{L >.u}. 

The expected number of births between ages u and u + t, con­

ditional on{L > u}, is 

t 
\Il (t) 

u = f 
o 

p m(u+s)ds, 
s u 

(2.5) 

as is seen by treating E {K[(U+t)AL] - K(u)} 1n the same man­
u 

ner as we proved (2.2). We define 

and see that ¢ :(0) is continuous with support [O,w-u]. Nod";;, 
u 

ce that cp(x) = \IlO(x) and ¢(x) = ¢O(x). 

Let X(n) be the time of occurrence of the n-th event 1n 

the Poisson process K(.). Define 

P{u<X(n) < (u+t) A LIL > u}. 

Then 

ncpu(t) = P{K(UAL) < n < K[(u+t) A L] IL > u} 

n n· = [ \Il (u + t) - <l? (u) J / p ( u) • (2.6) 
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The latter equality follows from the fact that for t > 0, 

P{(L~u)n(K(UAL) < n < K[(u+t)AL])} = o. Summation in (2.6) 

finally gives 

iP (t) = 
u 

00 

L 
n=l 

niP (t), 
u 

of which (2.4) 1S a special case. 

(2. 7) 
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3. THE STOCHASTIC POPULATION PROCESS. 

3A. The individuals. We now turn to the process on the po~ 

pulation level. This is the age-dependent birth-and-death 

process introduced by Kendall (1949), and we shall restate its 

constructive definition in terms of family trees. 

To begin with, we shall consider the situation where at 

time 0, the population consists of a simgle ancestor, whom 

we shall refer to as individual <0>. (Later on, we shall 

extend this to a population of ancestors~) Each birth gives 

rise to a single descendant, and! for ease of exposition, Wf­

shall regard the original ancestor and all descendants as 

female. Let us refer to <O>'s first descendant after time a 
as individual <1>, let us call her second daughter <2>, and 

so on. In turn, the daughters of <k> are individuals <k,l>, 

<k,2>, and so on. The i l-st daughter of individual <i> = 
n+ 

<i l ,i 2 ,··· ,in> is called <i l ,i 2 ,·· .,in + l > = <i,i n + l >. Depen­

ding on its interpretation, the symbol i may mean a non-nega-

tive integer or a sequence of positive integers. 

<O,i> and <i,O> as identical to <i>. 

We define 

Let N be the set of positive integers and let J = 

{a} U N U-N 2 U ••• be the set of possible individuals consis­

iting of the original ancestor <0> and all her descendants. 

Finally, we let m~ = {m:,il iE~}'denote the set of possib-! 

Ie individuals in the subfamily generated by <m>, for m = 
1 , 2 , ••• 

~~!. __ ~~~~!~_!!~~~~E~~~' To each individual <i> there corresponds 

a life~length L. and a reproduction measure K.(.). The 
~ ~ 

former is a positive random variable, and the latter is a 

nonhomogeneous Poisson process over [0,00). Assume that the 

elements of ~ are given in some fixed enumeration, e.g., 

<0>, <1>, <2>, <1,1>, <3>, <2,1>, <1,2>, <1,1,1>, 

family history is then given by the sequence 

A 
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Ll,l 

Kl l:{o) , 

... ) . 

... 

At time 0, the original ancestor will have some age u, 

which we shall regard as g1ven. We assume that q(u) < 1 

(c amp ar e (2. 1) ) • 

For any i E J, we define X. (1), xo (2), ... by X. (k) = ..... _ 1 1 1 
> k}. Thus, X. (k) is defined as the age of 

1 

<i> at the birth of her k-th daughter. We do not count any 

births to <0> before age u. What we register, therefore, is 

that <0> gives birth to <KO(O) + 1>, <KO(O) + 2>, •.• at ages 

XO(KO(O) + 1), XO(KO(O) + 2), .0., ~ntil at time LO - U, <0> 

dies at age LO. Similarly, individual <KO(O) + n> gives birih 

to individuals <KO(O) + n, 1>, <KO(O) + n,2>, ... at ages 

XK 0 ( 0 ) + n ( 1), XK 0 ( 0 ) + n ( 2), ..., un til she die sat age 

LKO(O) +n at time XO(KO(O) +.n) -'u + LKO(O) + n' and so on. 

The generations IO(W), II (w), "0 are defined recursive­

ly as follows: 

L. }. 
1 

The family I(w) = IO(W) U Ii(W) U ••• then consists of the 

original ancestor and all her descendants actually born after 

time o. 

Let Z~(t) be the indicator of the event that <i> E J is 
1 

born, alive, and of age not exceeding a at time t. 

<i l ,··., i k >, then 

If <i> = 

S1· = XO(i l ) + X';1(i 2 ) + ••• + x.. . (i k ) - u 
.L 1 l ,1 2 , •.. ,1k _ l 

is the time at which <i> 

and only if 

a 
is born (if ever), and Z. (t) = 

1 

u < XO(i 1 ) ~ LO,X1o l
(i 2 ) < L. , .•.• X.. . (i k ) 

11 1 1 ,1 2 "., ,1 k - l 

1 if 



< L.. . 
~1'~2'···'~k' 

t - a < S. < t < S. + L .• 
~ ~ ~ 

00 
Define Z.(t) = z. (t), and let 

~ ~ 

L 
iEI(w) 

a 
Z.(t). 
~ 

Then Za(t) denotes the number of individuals of age not ex­

ceeding a alive in the population at time t, and {Za(t) r 

o < a < 00, 0 < t < oo} is defined as a stochastic process by 

the following assumptions. 

Let 0 be the set of family histories w as defined ~n 

Subsection 3B above. Ass um e t hat L 0' K d ( . ), L l' K 1 ( • ) 

are independent and that their distributions are given as 

follows. 

(a) The life-lengths L l , L2 , are all distributed as 

L in Section 2. If q(u) < 1, then LO has the conditional di~ 

stribution of L, given that L > u, i.e., P{L O < u + t} = q.' 
t u 

(b) The reproduction measures Kl:(o), K2(o), are all 

distributed as ID(o) in Section 2. The reproduction measure 

KO(e) of the original ancestor ~s distributed as K(e) restric­

ted t 0 [u ,00,) • 

3D. Some functionals and their first moments. Let Y (t) 
n 

be the number of individuals born before time t in the n-th 

generation I • 
n 

utilizing the common convolution notation, we 

shall prove the following theorem. 

Theorem 3.1. E Y (t) = ~ * ~*(n-l)(t) for n > 1. 
u n u 

Proof. The proof is by induction. 

~ (t) by (2.5). Assume that the formula in the theorem holds 
u 

m for n < N, and let Y (t) be the number of individuals in I 
= n n 

who descend from <m> 1n II' Then by (2.6) and (2.7), and 

since <m> starts off on independent population with the same 

, i 
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;structure, 

t 

00 

l: 
m=l 

E 
u 

m 
YN+ l (t) 

!~~ Eu{mYN+l(t)l<m> was born at time s} m~u(ds) 

The theorem then follows from the induction assumption. c 

* We let Z (t) denote the number of individuals who have 

been members of the population during the period [O,t], i.e.; 

the number of births during (O,t] plus 1 for the original an­

cestor. Similarly, we let zt (t) denote the number of deaths 

during the same period. The population size at time t is then 

00 * t Z(t) = Z (t) = Z (t) - Z (t). (3.1) 

* t The rigorous definition of Z (t) and Z (t) ~s straightforward 

as is the proof of the fact that they are both nondecreasing. 

The corresponding first moments are 

N aCt) --':- E 1 Z a ( t ), N * (t) = E Z * (t ), Nt ( t ) 
U U: U U U 

and 

N (t) 
00 

= N (t) = E Z(t). u u u 

* 
00 

*m Theorem 3. 2. N (t) = 1 + l: ~ * ~ (t) . u m=O u 

00 * Proof. Since Z (t) 1 + l: Y (t), the theorem is a con­
m=l m 

sequence of Theorem 3.1.0 

Corollary l. For t > 0, u > 0, and ° < a < 00 we have , - - - -

Na(t) * Nt (t) < 00 N (t) < 00 < 00, u , u , u 

as well as 

Z a (t) * zt (t) < 00 Z (t) < 00 and < 00 , , 
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(a.s., conditional on LO > u). 

* Proof. If ~(oo) = 1, then NO(t) < 00 is a standard result 

in renewal theory. A proof is found ~n Feller (1971, Chap-

ter XI), and it is easily generalized to the case where ~(ro) 

~s arbitrary. 

By comparing our process with one started at time -u 

with a single ancestor aged 0 where all births are counted, 

* * that Nu(t) ~ NO(u+t). 

* 
a * Fur the rm 0 r e, N ( t) < N ( t ) and 
u = u 

we see 
t 

N (t) < N (t), which proves the first statement of the corol"': 
u = u 

lary. The second statement follows from the finiteness of 

the expectations. D 

* Corollary 2. N 1(.) is 
u 

* n (t) 
u 

we see that 

* n (t) 
u 

for 0 < U < w, 0 < t < 00. 

continuously differentiable. 

00 

L 
m=O 

If 

Remark: In what follows, we shall derive a number of 

, 

relations between the moment functions defined ~n this Subsec­

tion. For every relation we can prove for N (t), there is ad 
* u 

exactly corresponding relation for N (t) which appears if we 
u 

disregard the mortality of the descendants of the original 

ancestor. Once this observation has been made, separate 

* proofs for N (t) are superfluous if proofs are given for N (t). 
u u I 



4. THE FORWARD AND BACKWARD RENEWAL EQUATIONS 

~~~ __ ~~E~~E~_E~~~~~!_~g~~~f£~!o 
function of an event A by XAo 

Let us denote the indicator 

The 0 r em 4. 1 • For 0 < a < 00, 

t 
Na(t) 

u X[O,a] (u+t)tPu + f p m(u+s)N~(t-s)ds, 
OS u 

* 
t 

* N (t) 1 + f p m(u+s)NO(t-s)ds, u OS u 
(4.2) 

and 

Nt(t) 
t 

tqu + f p m(u+s)Nb(t-S)ds '" u OS u 
(4.3) 

Remark 1. We shall prove the theorem in a minute, but 

before we do,let us note th~t these relations have straight­

forward deterministic interpretations. Let us take (4.1) as 

an example. It counts the total number of no-more-than-a-

year-olds at time t as the expected survival proportion of 

the original ancestor, provided she has not become over a 

years old, plus the number of no-more-than-a-year-olds des­

cending from the daughters born to the original, j ancestor in 
I 

the period [O,t], including these daughters themselves unless 

they have reached an age over a at time t. 

and (4.3). 

Similarly for (4.2) 

Remark 2. The formula in Theorem 3.2 is the standard 

solution of the renewal equation (4.2). We needed a direct 

proof of that theorem, however, in order to prove the finite­

ness of the process. 

Proof of Theorem 4.1. It suffices to prove (4.1), for 

then (4.2) follows from the Remark at the end of Section 3 

and (4.3) follows from (3.1). 

To~ prove (4.1), then, first note that 

00 

Za(t) = Z~(t) + L nZa(t), where nZa(t) 
n=l 

L 
iEJ 

",n 

a 
Z.(t). 
~ 



(See the end of Subsection 3A for the definition of J .) 
~n 

The first right hand term in (4.1) follows from the fact 

that EuZ~(t) = X[O,a] (u+t)p{Lo~u+tILO>U}' 

Furthermore, by (2.6), 

u+t 
J Eu{nza(t)lxo(n) 
u 

u 

so that by (2.7), 

00 u+t 
L E nZa(t) = 

n=l u 
J N~(t-v+u)~u(dv). 
u 

From t his and ( 2 .5 ), ( 4 . 1) follow s • 0 

Corollary. For each a E (0,00] and t E (0,00), N~(t) is 

continuous and bounded in u on [O,w), except for a disconti­

nuity of -tPa-t at a - t (if a > t). 

Proof. The continuity results are immediate from (4.l)~ 

To show boundedness, we use (4.1) to get 

t 

for all u, 

a JA a N(t) < 1 + mNO(t-s)ds < 00 
u = ° 

A 
s~nce m sup m(s) < 00 by ass um p t ion. 0. 

~~~ __ ~~£~!~E~_E~~~~~!_~q~~;!~~~. At the end of Section 3, we 
* d * defined a density of births, nu(t) = at Nu(t). Another possi-

bility for such a density is to define it as the density of 

individuals of age ° at time t, i.e., as nO(t) = -*-Na(t)I 0': u aa U a= 

We shall now prove that the latter density exists and that 

the two densities are equal. 

The existence and continuity of the density 

d a = aa Nu(t) for ° < a < t 

~s proved and a formula for it ~s given ~n the following the~ 

orem. Note that (4.4) again has a straightforward determinis-
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tic interpretation, 

and 

The 0 r em 4. 2 • 

aAt * 
f n (t-v)p(v)dv for 0 < a < 00, (4.4) 
o u 

a * n ( t) = n (t- a ) p ( a) for 0 < a < t. ( 4 • 5 ) 
u u 

a 
Proof. The first term in (4.4) is EuZO(t). Furthermore, 

if J' 

a a a 
~ = N (t) - EuZO(t) = L E Z. (t). 

u iE J' u 1. 

The individual term here equals 

ever born and Ov(t-a) < S. ~ t}' 
1. 

p{t<S.+L.I<i> 1.S ever born, LO > u, S.}] 
=1. 1. 1. 

Eu~-)({<i> is ever born, 
I 

and ov(t-a)<s.<t}p(t-S i )] 
= 1.= 

t 
f p(t-s)F. (ds), 

Ov(t-a) 1.,U 

where F. (s) = ~{<i> 1.S ever born, and S1.' ~ siLo> u}. 1.,U 

Since, evidently, * L F. (s) = N (s) - 1, we get 
iEJ' 1.,U u 

t * 
~ f p(t-s)N (ds), 

Ov(t-a) u 

from which (4.4) follows. Then (4.5) follows by differentia-

t ion, sin c e n *:( .) i s c on tin u 0 usb Y Cor 0 11 a r y 2 0 f The 0 r em 3. 2. D 
U 

Corollary 1. 

Corollary 2. 

o 
n (t) 

u 

N (t) 
u 

* n (t). 
u 

, t * 
t P ~ _ + _b n u_ ~~v ) p (v) d v. -

Note that Corollary 2 implies the continuous differentiabi-

lity of N (.). 
u 



J 

i We now turn to N!C.). ItlS coritinuously differentiable by 

the following Corollary. We let 

'd 't , 
= "8t"Nu(t). 

Corollary '3. NtCt) -
---------- u tqu + 

t * '" i 
In (t-v)q\(v)dv. 
o u \~_ 

Proof. This follows slnce 

* In addition to (4.2). we have the following relation for N (t). 
u 

Theorem 4.3. 

* t * N (t) = 1 + W (t) + f[N (t-y) - lJp(y)m(y)dy. 
u u 0 u 

Proof. Insert the formula of Theorem 3.2 into this equa~ 

tion.o 

This is essentially Lotka~ integral equation for the 

present case. 

and get 

To see this,differentiate with respect to t 

* n (t) 
u 

t * 
p m(u+t) + f n (t-y)p(y)m(y)dy, 

t u 0 u 

which has the same type of interpretation as (1.1) has. 

case where there is only a single ancestor at time O. Let us 

now extend this to the case where there is an arbitrary ini­

tial population at time 0, with ages distributed according to 

some integer valued function {Za(O): a > a}, where Za(O) deno-

tes the number of persons of age at most a at time O. We as-

sume that Z· (0) is the outcome of a point process which with 

probability 1 gives a finite initial population, l.e., 

Z(O) < 00 a.s. We assume that the mean Na(O) = EZa(O) exists, 

is finite, and is absolutely continuous (as a function of a) 

for 0 < a < 00, The corresponding initial population density 

a tag e a i s n a ( 0 ) = dNa ( 0) /d a . We ass um e t hat n a ( 0 ) = 0 for 
- -- --

a > w,and define Na(t\:' -EZaCt), N(-t)-::-EZ(t-) = N°O(t), and 

similarly for the other means. It is easily seen that they 

satisfy integral equations obtained from those of Theorem 4.1 I 



by integration with respect to Ndu(O). 

In everything which follows in this paper, the above as­

sumptions will be taken to hold. 

Theorem 4.4. Given the identification B(t) 

Lotkas integral equation holds: 

* n (t), 

with 

Proof. 

* t 
B(t) = G (t) + IB(t-x)p(x)m(x)dx, 

o 

* 
00 

G (t) 
u - .... 

In (0) p m{u+t)du o t u ..- -- -

u 
MUltiply the formula in Theorem 4.3 by n (0) and 

integrate with respect to u, to get 

00 t ; 
:* U * N (t) = N(O) + Jip (t)n (O)du + J[N (t-y)-N(O)]p(y)m(y)dy. 

o u 0 . 

Then differentiate this with respect to t.e 

Remark. To see that G*(t) is always finite under the 

stated assumptions, note that,by assumption'tpum(u+t) < 

sup m(s) < 00 and Jn~du = N(O) < 00. 

Lotka's equation is a relation ~n terms of the density 

of births. A similar relation holds for the density of 

deaths, D(t) = nt(t). 

Then 

Theorem 4.5. Suppose that 

00 

Gt (t) = Jnu(O) p ]J(u;+t)du < 00. 

o t u 

t 
D (t) = Gfi (t) + J B (t - x ) p (x hI (x) d x • 

o 
Proof. Multiply the relation in Corollary 3 of Theorem 

4.2 with nU(O) and integrate to get 

Nt(t) = fnu(O)tq du + fB(s)q(t-S)dS. 
o u 0 

Then differentiate with respect to t and reorganize slightly.pi 
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Remark. Since {P(t+u)ll(t+u): u > O} 1.S the upper tail 
-

the density of the life-time distribution, Gt(t) 0 for t 

Gt(t) if w < 00 . For t < w, the condition that < 00 implies 

that nU(O)/p(u) should have a finite integral with respect 

the tail [t,oo) of the life-time distribution, as it will if 

it is bounded, say. 

~~!. __ f!!!~~_!~~~~. We now define the (deterministic) crude 

-britn~ and death rates at 'time t as 

bet) = B(t)/N(t) and d(t) D (t ) /N (t) • 

of 

> 
-

tq 

We s hall pro v e a form u 1 a for e a c h 0 f the s e ,f 

and then need the following result. 

Theorem 4.6. Na(t) is absolutely continuous in a, and 

its density na(t) satisfies 

1B(t-a)p(a). for O. < a <t, 

~la-t(O)' f '>t , in, tPa-t ,or a • 
~ --' 

(4. 6) 

-- -

a 
Proof. If a > t, NO(t-s) NO(t-s) for all s E [O,t). 

u 
If we mUltiply (4.1) by n (0) and integrate with respect to u, 

we get,therefore, 

00 

I nU(O) p du, 
a-t t u 

which proves the second line of (4.6). 

lows from Theorem 4.2.0 

The first line fol-

Theorem 4.7. 

00 00 

B(t) = Ina(t)m(a)da and D(t) 
o 

Ina(t)~(a)da. 
o 

Proof. By (4.6) and Th~orem 4.4, 

B (t) 
00 

= Ina-t(O) p tm(a)da 
t a-

t 

t 
+ Ina(t)m(a)da, 

o 

w 



which gives the formula for B(t). 

~s similar. o 

The proof of that of D(t) 

Let us finally introduce the (deterministic) rate of in­

crease of the population at time t as 

with net) 

r (t) = b (t) - d (t) = n (t ) IN (t ) , 

d 
d'tN(t). 



5. ASYMPTOTIC GROWTH 

~~~ __ ~~~~_£~~!~_~~g~~E~~' We now come to a discussion of the 

behaviour as t + 00 of the means and their densities introduced 

above. A fundamental concept of this theory is the intrinsic 

growth rate, in that asymptotically, all means and densities 
, 

grow (or decline) at a speed determined by this rate. It is 

defined in the following manner. 

Let 
00 

I(p) = Je-pxp(x)m(x)dx. 
o 

As we shall see ln a moment, the equation 

I (p) = 1 (5. 1) 

has at most a single real solution. If such a solution exists, 

we call it the intrinsic growth rate (or Malthusian parameter) 

of the process, and wJ~_d§note' it by r. 

In discussing the existence of r, we start by noting that 

1(0) RO' the net reproduction rate. If RO < 00, then, 

I(p) + 0 as p + 00, Thus, if 1 < RO < 00, the intrinsic growth 

rate will exist and be positive. Similarly, if RO = 1, then 

r = O. Conversely, if r exists and is positive (zero), then 

If RO = 00 or RO < 1, then r mayor may not exist, depen~ 

ding on the form of qr(.) = p(. )m(.). If RO < I and r exists, 

then r < O. 

In all human and animal populations, ¢(x) = 0 for all swf-

ficiently large x. In such a case,we shall say that ¢ eventur 

ally vanishes. If ¢ has this property, then RO < 00, r exists" 

and we get 

> > 1 .... r O. 
< < 

(5. 2) 

Adppting some branching process terminology we shall call 

the process supercritical if RO > 0, critical if RO = 1, and 
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subcritical if RO < 1. 

Now assume that r exists, and define 

x 
-rx 

hex) = e p(x), H(x) = Jh(s)ds, 
o 

t/J(x) 
-rx 

e p (x)m (x), 'If ex) 

Here H(oo) may be finite or infinite. 

x 

x 
Jt);(s)ds. 
o 

If H(oo) < 00 , let 

c(x) = h(x)/H(oo), C(x) = Jc(s)ds = H(x)/H(oo). 
o 

If it exists, C(.) is a probability distribution function and 

c(o) its density. The corresponding distribution is called 

the stable age distribution. 

If P eventually vanishes, then H(oo) < 00. 
00 

Similarly, if 

r > 
-rX 

0, H(oo) < Je dx = l/r < 00. 

o 
If r = 0 and H(oo) < 00, then C(o) 1S called the itationary 

age distribution. In this case, 

q:> 

H ( 00) = J p ( x) d x = g'! = E (L) 
o 0 

1S the expected lifetime of a new-born. 

By the definition of r as the real valued solution of 

(5.1\ t/J is a probability de~sity, and the corresponding distri­

bution is called the distribution of the age at childbearing 

in the stable population. The mean of this distribution, 

00 

A 
-rx 

Jxe p(x)m(x)dx, 
o 

1S called the mean age at childbearing in the stable popula­

tion. There exist cases where A = 00, but A is finite if ¢ e­

ventually vanishes. 

Fina lly, let 

00 

Vex) Je-rttp m(x+t)dt = erx{l-'If(x)}/p(x) for 0 < x < w, 
o x 
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while vex) = a for x > w (when w < 00). We call Vex) the re-

productive value of an individual of age x.Note that V(a) = 1. 

Let a = su~{x:m(x) ~ Ol~ so that S 
1S the upper limit of the fertile age span. Then Vex) = a 

for x 2. s. If a < w, as it is 1n human populations, V(·) 

is a continuous function which vanishes for x > S. 
cular, V(·) is bounded in this case. 

In parti-

In the general case, it may happen that V(o) is unboun­

ded and that it is discontinuous at w, though examples of 

this are rather pathological. A simple sufficient condition 

for V(o) to be bounded when r > a is that the expected re­

maining life-time 

stays bounded. 

0, 

e 
x 

00 

f, p dt 
a t x 

The names of the concepts introduced in the present ~ub­

section are motivated by their interpretation in the theory 

of stable populations. We are not prepared to introduce the 

concept of a stable population yet, however, and shall post-

pone it to Subsection 6B. A complete discussion of a concept 

like the mean age at childbearing in the stable population re­

quires theory beyond that of the present paper. Hoem (1971), 

Keiding (1973) and Jagers (1973,1974) have contributed to 

this discussion and we plan to include it in a-compal11.op.-Pll:...······ 

per. 

We introduce these concepts here in spite of this, be­

cause we need s~~of their properties in the following Sub-

sections. What we need, does not rest on a deeper understan, 

ding of their interpretation. 

5B. The renewal theorem. The convergence theorems which we 

shall prove, are straightforward corollaries of a basic rene­

wal theorem. For easy reference we shall state this theorem 

in the form which is most convenient here. We build on the 

formulation given by Feller (1971, Chapter XI). This formula-
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tion uses the concept of direct Riemann integrability. A 

fun c t ion f de fin e don [0 ,00) i s call e d d ire c t 1 y R i em ann in t e - , 

grable if the generalized Riemann sums formed from a partitio­

ning of the whole half axis [0,00) converge appropriately as 

the partitioning becomes finer. Feller (1966, 1971) gives 

several sufficient conditions for direct Riemann integrabili~ 

ty. In demographic applieations, this is no real problem 

since any Riemann integrable function on [0,00) which eventu­

ally vanishes, is directly Riemann integrable. 

Theorem S.l. Let F be an absolutely continuous distri­

bution function on [0,00) with F(O) = O. Let g and G be real 

functions vanishing on (-00,0), and assume that g is directly; 

Riemann integrable. Let G satisfy the renewal equation 

Then 

x 
G(x) = g(x) + fG(x-y)F(dy). 

o 

00 00 
G(x) ~ fg(y)dy/fyF(dy) as x ~ 00, 

o 0 

(S. 3) 

(S. 4) 

the limit being interpreted as 0 if the denominator is 00. 

~~!. __ !:£E~!~~!£!!_g!:£~~~!. We shall callourprocess (as well as 

the population whose growth it represents)Malthusian if the 

intrinsic growth rate r exists, A < 00, H(oo) < 00, and Vee) 1S 

bounded. Any population where a < w < 00, as in any human po-

pulation, will then be Malthusian. 

Theorem S.2. As t ~ 00 in a Malthusian process, 

a -rt 
N (t)e ~ C(a)V(u)H(oo)/A 

u (S. S" 

for 0 < U < wand 0 < a < 00. 

F~rt he rmore, 

i 
(S. 6). 

for 0 < a < 00. Fin a 11 y " 

-rt -
N(t)e ~ VH(oo)/A (5. n 



if either (a) r ~ 0, or (b) w < 

vanishes. In (5.6), 

u 
00, or (c) n (0) eventually 

00 

v fV(u)nu(O)du. 

° 
Proof. 1°. Let 

-rt 
get) = X[o,a](t)p(t)e and G(t) 

Then g will be directly Riemann integrable, as we see by re­

peatedly invoking some examples in Feller (1966, p. 349),as 

follows: 

F~!)9.1Tl a<oo, g ~s~ir~ctly -Riemann: integrable s~nce it vanishes 

on (a,oo). For a = 00, g = h, which is directly Riemann inte-

grab1e for r > 0, s~nce it is then decreasing and Riemann in~ 

t e g r a b 1 e (b e c au s e H ( 00 ) < (0). For a = 00 and r < 0, we s tar t b-y 

noting that h(x)<4 e as x + 00 since H(oo) < 00. Thus, h(.) is 
: 

bounded. It is also nonnegative and continuous. For n < x '< 

n+ 1, 

Since 
00 

H(oo) = fh(x)dx 

° 

-r 
< e hen). 

00 

r > e L h (n) , 
n=l 

the latter sum converges. Let ~n = max{h(x): n < x ~ n+l}. 
-r . 

Then L~ < e Lh(n) < 00, so g is directly Riemann integrable. 
n 

2°, We now prove (5.5) for u = 0. Rewrite (4.1) with 

u = ° as 

t 
G(t) = get) + fG(t-s)W(ds). 

° 
Since ~(oo) = 1, we may use Theorem 5.1 to get N~(t)e-rt + 

H(a)/A as t + 00. 

3°. We then prove (5.5) for a general u. By (4.1), 
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t 
fN a( ) -r(t-s) 

+ ° t-s e • 
-rs 

p m(u+s)e ds. 
s u 

° 
Now let t ~. Since G(t) is bounded and converges, we get 

the limiting value of the integral to be H(a)V(u)/A by domina­

ted convergence. Call the first right hand side element of 

(5.8) g(a,u,t). For a < 00, g(a,u,.) eventually vanishes. 

Finally, g(a,u,t) ~ ° as t ~ oo,because H(oo) < 00, 

has been proved. 

Thus, (5.5) 

4°. We now prove that for each a E [0,00] ,the integral 

1n (5.8) is bounded by some constant independent of t and u. 

Since the integral 1S non-decreasing as a ~ 00, it suffices 

to take a = 00. By (4.4) , NO(x)e 
-rx 

is continuous, and by 2° 
it converges to the finite constant H(oo)/A as x ~ 00, Thus 

it 1S bounded above by some constant K, which implies that 

the integral in (5.8) is bounded by KV(u), which is bounded 

itself by assumption. 

5°. We note that 

00 

f a -rt u 
N (t) e n (O)du, 

° u 

and intend to prove the rest of the theorem by dominated 

convergence. By 4°, it rema1ns to discuss the conditions un-

der which g(a,u,t) is bounded by some constant K(a) indepen­

dent of (u,t). 

For a < 00, g(a,u,t) = ° at least for t > a, and we can 
-ra 

take K(a) max{l,e }. This proves (5.6). Now let a = 00, 

If r ~ 0, then g(oo,u,t) ~ 1, which proves (5.7) under 

condition (a) of the Theorem. 

If w < 00, then g(oo,u,t) = ° at least for t > wi'. so we can 

take K(oo) max{l,e- rw }, which proves (5.7) under condition 

(b). 

If r < ° and w 
u 00 but n (0) ° for u > w' , we can take 
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-rw' 
K(ro) = max{l,e }, as it suffices to bound g(oo,u,t) for 

u E [O,w']. This proves (5.7) under (c). 

The problem with the case where r < 0 and 

it may happen that 

lim 
-rt 

sup tPu e 00 , 
u+oo t+oo 

and condition (c) makes this unimportant.o 

In a Malthusian process, therefore, 

00 

-rx 
Je p(x)dx 

rt- 0 
N(t) ~ e V -----------------

00 

and 

Jxe-rxp(x)m(x)dx 
o 

w = 00 is that 

under either of assumptions (a) to (c) 1n Theorem 5.2. In 

this sense, the asymptotic age distribution is C(o), In V, 

an initial individual of age u enters with weight V(u). The' 

latter quantity measures the number of children to be born 

to this member of the initial population, discounted at the 

rate of interest r(Fisher, 1958, p.27). 

~Q~ __ !~~_~~9~~~~~~_£i_£~~£~~_~~~_~~~~~~. Starting with (1.1) 

classical deterministic stable population theorists argue that 
rt B(t) will ultimately grow as e (Compare, e.g., Keyfitz, 

1968, p.103, or Coale, 1972, pp. 64-65.) We shall prove this 

under the condition that {nu(O): u ~ O} is directly Riemann 

integrable, as it will be at least whenever w < ~, since 
u 

n (0) = 0 for u ~ w. 

Theorem 5.3. 
u 

In a Malthusian process where n (0) 1S di-

rectly Riemann integrable, 

B(t)e- rt ~ ~/A as t 

* Proof. Let G (t) be defined as in Theorem 4.4, and let 



get) -rt * -rt e G (t), G(t) = e B(t). By Theorem 4.4, 

t 
G(t) = get) + JG(t-x)~(dx). 

o 
00 00 

We note that Jg(t)dt = JV(u)nu(O)du, so g is directly Rie-

mann integrab2e.(Rememb~r that V(o) is bounded in a Malthusi~ 
an process.) Then invoke Theorem 5.1.0 

Theorem 5.4. In a Malthusian process with finite max~­

mal life-length w, 

00 

J -rx 
e p(x)J.l(x)dx 

D(t)e- rt ~ V _0 ______________ __ 
00 

J -rx 
xe p(x)m(x)dx 

o 

= V l-rH(oo) 
A 

Use partial integration to prove that the 

integral ~n the numerator equals 1 - rH(oo) and is therefore 

finite. 

2°. From Theorem 4.5, we get 

w u ( ) ru . () t () i -rt n 0 e -r u+t -r t-x' -rx 
D(t)e =J () p(u+t)J.l(u+t)e du+JB(t-x)e p(x)J.l(x)e ~ ° p u ° . 

The first term here is ° for t > w. By Corollary 2 to Theo-

rem 3.2, 'B(·) is continuou~. Since nU(O) vanishes for u > ~, 
-rt 

the assumption of Theorem 5.3 holds. Thus, B(t)e is boun-
o 

ded by a constant. The present theorem then follows by 1 and 

dominated convergence.o 

Corolla.E1.' 

life-length w, 

In a Malthusian process with finite maximal 

n(t)e- rt + r V H(oo)/A 

-

'J as t + 00. (Recall that net) = dN(t)/dt by definition.) 

Proof. net) = B(t) - D(t).o 
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Remark. The convergence in Theorem S.4 and its Corolla~ 

ry may be shown to hold for w = 00 also, but only under various 

conditions upon which we shall not elaborate. 

Theorem S.S below. 

Similarly in 

SE. The crude rates. We shall close this Section with a The~ 

orem on the convergence of the crude rates introduced in Sub­

section 4D. 

Theorem 5.S. In a Malthusian process where w < 00, as 

t -+ 00, 

and 

Proof. 

and S.4.0 

00 

bet) -+ l/fe-rxp(x)dx 
o 

co co 

1 /H (00) ~ (S. 9) 

f -rx f -rx 1 d(t) ~ e p(x)~(x)dx/ e p(x)dx =H(CO) - r,(S.lO) 
o 0 

ret) ~ r .. (S.11) 

These relations follow from Theorems S.2, 5.3 
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6. STABLE POPULATIONS. THE OPRRATOR SEMIGROUP. 
----------------~------~~--~--~~. 

6A. Time decomposition of Na(s+t). The present ~ection is ------------ ----------------u-- --- ___ I 

devoted to a study of some properties of stable populations. 

It turns out to be useful to decompose NaCs+t) into a contri~ 
u 

bution from the period [O,s] and a subsequent contribution 

from the period (s,s+t]_before ~e ~mba~~ qn_Qur accou~t pro­

per, so we shall first prove the following iheorem, which 

holds for any population of the kind studied in this paper. 

Theorem 6.1. Na(s+t) 
u 

The proof goes as follows: We first prove 

that 

00 

Eu {Za Ct +s ) I CZ b Cs): Oib,~OO)} = fZdxCs)Na(t). 
° x 

(6. 1) 

(See 2° for the definition of this integral-.''j; This implies 

that 

00 

Na(s+t) = E fzdx(s)Na(t). 
u U o x 

We then note that E ZX(s) = NX(s), so that once (6.1) 1S e-
u u 

stablished, it remains to prove that 

To show this, we prove that for any bounded function f, 

00 00 d 
E'fzdx(s)f(x) = fN x(s)f(x). 

u ° ° u 

(6. 2) 

Thus, once (6.1) and (6.2) have been established, our proof 

1S complete. 

2°. To prove (6.1), let the ages of the almost surely 

finite number Z(s) of individuals in the population at time s 

be Al ,A2 , ... ,AZes ) .The right hand side in (6.1) equals 

Z(s) 
a 

L NA.(t), 
i= 1 1 . 
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, the sum being empty if Z(s) = 0. Since each individual alive 

and of age A at time s gives rise to an expected number of 

N1(t) live individuals of age at most a at time s+t, (6.1) 

follows from the fact that the conditioning process {Zb(s): 

° < b < oo} determines the A. completely. 
1 

3°. To prove (6.2), check first that it holds(in that 

both sides equal N:(s)if f(x) = X[O,a](x). The relation 

then holds for all step functions by linearity and for gene­

ral bounded f by dominated convergence.o 

~~~ __ ~~~£!~_E~E~!~~~£~~' In Subsection 5C we proved that in 
a 

a Malthusian process where w < 00, say, N (t)/N(t) -+ C(a) as 

t -+ 00 , an din Sub sec t ion 5 Awe call e d C: ( .) the s tab 1 e age 

distribution. One would expect Na(t)/N(t) to be equal to 

C(a) for all a and t if the 'initial age distribution were 

C(o), so that in this sense the age distribution would be 

stable. This turns out to be true, as will appear in a Corol-

lary to Theorem 6.2 below. Let us agree, therefore, to call 

a Malthusian process stable if the initial population densi~ 

ty is proportional to the density c(o), i. e., if 

kc(a) for all a, (6. 3) 

for s om e k > ° . Similarly, we shall call the population it-

self stable. 

Theorem 6.2. In a Malthusian process, we have that 

00 

f a rt 
c(X)Nx(t)dx = e C(a) for ° ~ a < 00 

° 
(6.4) 

(Note that we do not assume (6.3) here:-.) 

Proof. Use (5.5) to conclude that 

Let u ° in Theorem 6.1 and divide by NO(s) to get 



As s + 00, the distribution function Fs(x) = N~(s)/Na(S) con­

verges to the continuous distribution function C(x) for all x. 

The iheorem therefore follows from the continuity properties· 

of N~(t), proved in the Corollary of Theorem 4.1, and a stan­

dard result on weak convergence. (See, ~.~., Billingsley, 

1968, pp. 11-12.)0 

Corollary. In a stable Malthusian process the following 

relations hold for all t > a: 

C(a) for a < a < 00, 

bet) = b(a), d(t) = d(a), and ret) r. 

Here, B(a) = N(a)/H(oo) = V lA, 

D(a) I = N (a) (H (00) - r) V(l - rH(oo))/A, 

b (a) 1 
= H(oo)' and d(a) - r. 

Proof. The two first relations follow immediately from 

(6.3) and (6.4). By differentiation with respect to a,we 
a rt a 

see that n Ct) = e n (a). The rest of the Corollary is now 

easily obtained from Theorem 4.7.D 

Remark. Notice that the average reproductive value per 

individual in a stable population is ViNca) = A/H(OO), and com~ 

pare with the occurrence of these quantities in the ~heorems 

of Section 5. 

~~~ __ !~~_E~EE~g~£~~y~_y~!~~. We introduced the reproductive 

value Vex) at the end of Subsection SA, and it turned out to 

playa central role in the limit expressions in Theorems 5.2 

to 5.4. We now prove a stability relation for it, similar to 

the one for C(x) in (6.4). 
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Theorem 6.3. In a Malthusian process, 

~ dx rt 
fV(x)N (t) = e V(u). 
o u 

Proof. Let 0 < a < ~ so that C(a) > O. By Theorem 6.1, 

rt -r(s+t)Na( ) e e s +t . (6. 6) 
u 

By (5.5), the right hand side here converges to 

ertV(u)C(a)H(~)/A as s ~~. The rest of the proof consists 

in showing that the left hand side of (6.6) converges to 

~ 

f dx 
V(x)N (t)C(a)H(~)/A. 

o u 

The latter integral exists and is finite because V(o) ~s bouri-

ded by the definition of a Malthusian process. By (5.5) aga~n, 

-rs a 
e N (s) ~ V(x)C(a)H(~)/A. 

x 

Given the proof of Theorem 5.2, our present Theorem follows 

by dominated convergence. 0 

§~~ __ !~~_~E~E~~~E_~~~i~E~~E' We shall close this paper by 

pointing out the strong formal analogy between the theory fo~ 

discrete time and age parameters on the one hand and the con-' 

tinuous time situation considered in the present paper on the 

ot he r hand. We shall not go into the details of functional 

analysis, but one may obviously define an operator Nt on a 

suitable space of functions on [O,~) by letting 

~ 

N f(x) = ff(u)Ndu(t). 
t 0 x 

~* 
The adjoint operator Nt is given by 

~* ~ 
NtF(a) = fNa(t)F(du) 

o u 

for positive measures represented by the distribution func­

tion F. 
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~ 

Then {Nt:O __ < t < oo} satisfies the semigroup property N 
t+s 

N N by Theorem 6.1. ~'Furthermore, in a Malthusian process 
t s 

with intrinsic growth rate r, e rt is an eigenvalue of Nt and 

the reproductive value V(o) is the corresponding eigenvector~ 
~* 

by Theorem 6.3. 
rt eigenvalue e 

The eigenvector for Nt eorresponding to the· 

1S the stabl~ age distribution C(·). 

The convergence theorems may also be paraphrased 1n the 

language of the operator semigroup. Define the operator 

V ~ C and its adjoint C ~ V by letting 

and 

Then (5.5) 

and 

ex> 

V ~ Cf(x) V(x)Jf(u)C(du) 
o 

ex> 

C ~ VF(a) = C(a)JV(u)F(du). 
o 

corresponds to ttie statements that, 

-rt ~ 
e N 

t 
-+ H(oo) V ~ C 

A 

-rt~* H(oo) 
e N -+ ---- C ~ V t A • 

as t -+ 00 , 

It seems an interesting task to make these concepts precise 

and to investigate the possibility of a direct operator-theo­

retical treatment of the asymptotic theory using results such 

as those by Karlin (1959} •. 
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