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ABSTRACT

This paper contains a systematic presentation of time-
continuous stable population theory in modern probabilistic

dress. The life-time births of an individual are represented

by an inhomogeneous Poisson process stopped at death, and an

aggregate of such processes on the individual level constitu-

tes the population process. Forward and backward renewal re-
lations are established for the first moments of the main
functionals of the process andrfgrithgi;;ﬂgnsitieg,ﬂzheigra§ympf
totic convergence to a stable form is studied, and the stable
age distribution is given some attention. It is a distingui-
shing feature of the present paper that rigorous proofs are

given for results usually set up by intuitive reasoning only.
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1. INTRODUCTION

1A. Background. Stable population theory in its classical

deterministic formulation with continuous time and age para-
and

meters started with a paper by Sharpe and Lotka in 1911,
to this day it continues to form the backbone of a substanti-
al chunk of population mathématics. (For recent reviews, see
Keyfitz, 1968; Coale, 1972; Pollard, 1973.) The correspon-
ding theory for the case of discrete time and age parameters

got going much later (Bernadelli, 1941; Lewis, 1942; and
1945, 1948). It started out as a deter-

but the second half of the 1960- s saw

particularly Leslie,
ministic theory too,
the birth of a stochastic version of the time-discrete model
(Pollard, 1966; Goodman, 1968). Reviews of the ensuing devel-
opment have been given by Feichtinger (1971) and Pollard (1973).

No similar general recénciliation of deterministic and
stochastic theory has been published so far for the time-con-
tinuous case; éven though the results are latent in a funda-
mental paper which Kendall published 'in 1949 already. Crump
and Mode (1968, 1969) and Jagers (1969, 1973, 1974) [seeialso

Doney (1972)]. have carried out the groundwork for a theory

of generalized branching processes, however, and this tool

turns out to be just what one needs to establish the basic

results of a stochastic stable population theory. The present

paper gives an account of such results.

In this presentation, we concentrate on the basic rene-

wal equations of the theory. We establish forward equations,

and we show how the classical Lotka integral equation is a
backward relation which can be derived rigorously within the

stochastic process context. The basic renewal theorem enables

us to easily prove standard results concerning

convergence of a population to the stable form. We also carry
forward the work of Goodman (1967), Pollard (1969) and Key-
fitz (1968, Section 8.2) by suggesting some strong analogies

between the time-continuous and the time-discrete case.

The present paper clears up concepts and gives rigorous
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proofs of results which have been esgablishedvpreviously;bggibéwg

~intuitive reasoning only. The full stochastic theory is much

richer than this, and plans are in hand to Present remaining
parts in a companion paper. The discussion of"difficult"con-

cepts such as age at childbearing and generation length will be

ka's fundamental integral equation has the following form:

B(t) = G (t) + } B(t-x)p (x)m(x)dx. (1.1)
0
Here, B(t) is called the number of births at time t or the
density of’births at time t, G*(t) is "the number of births
[at time t] to the initial population", p(x) is the probabi-
lity of surviving from birth to age x, and m(x)dx is regar-
ded as "the probability of a woman x years of age having a

child in the interval x to x + dx". (See Preston, 1970, and

Keyfitz, 1968, pp. 97-98.)

To give an impression of the flavour of the kind of rea-
soning we find within the classical; deterministic theory, we
quote the argument which Keyfitz (1968, pp. 98-99) uses to
establish (1.1):

"... the number of women of ages x to x + dx at time t,
born since time zero, will be the survivors of children born
X years ago, B(t-x)p(x)dx, x < t. These women would have at

time t a number of children equal to
B(t-x)p(x)m(x)dx

per vyear.

Integrating [this expression] through all x and adding
% . .
the allowance G(t) for births to those already alive at time

zero gives the fundamental [integral] equation”.

We regard this kind of reasoning as a commendable way of
setting up relations between the various moments, distributi-

ons, and densities which appear in a theory of this sort.



Knowledge of the form of a relation makes it easier to find a
proof for it. The pseudo-probabilistic argument above cannot
be accepted as a rigorous proof, however. A proper proof of

(1.1) and other similar relations will be given in this paper.

of individuals. In a probabilistic version of stable popula;
tion theory, therefore, we start out by specifying a stochastic
process on the individual level. This process should be re-
garded as a representation of the aspects which are taken in;
to account of the lifetime reproductive behaviour of the indi-
vidual. For this purpose, we use a straightforward Poisson
process with time-dependent intensity {m(x): x > 0}, stopped
at the death of the individual, in the basic model studied in
this paper. The Poisson events correspond to births, and we
get a birth-and-death model on the individual level. [Apart
from what is contained in Kendall's 1949 paper, the seeds of
these ideas can be found in papers by:Jéshi} (1954) and Con-

saél and Lamens 5(1962). Hoem (1969)‘Seems to be the first

one to give this set-up any intensive attention.]

The random process on the population level consists of
the aggregate of processes on the individual level. We take
the individual processes to be stochastically independent.

For an individual of age u at time O, then, a Poisson process
with intensity {m(x): x > u} generates births until time L - wu,
when the parent individual dies. (The lifetime L is taken as
independent of the Poisson process,) Each birth starts off a
new and independent Poisson procéss, which generates new
births until it is stopped at death, and so on. The study of
this process constitutes our stochastic stable population

theory, which covers all of the classical theory and goes far

beyond it.

On the basis of this set-up, the present paper is orga-

nized as follows. The processes on the individual and the

population level are presented in Sections2 and 3, respective-

ly. Forward and backward renewal relations are presented in




Section 4. Inrﬁarticular, Lotka's integral equation (1.1) ié

established in Theorem b.b. ‘Convérgence to the stable form is

' studied in Section 5. In a final Section, we discuss the re-

Productive value and the stable age distribution, as well as

' their mathematical interpretation as eigenvectors for mean ope-

rators. Thig brings out a strong analogy with the:discrete ti-

In order to facilitate comparison with the classical
theory, we have tried to stay as close as possible to the no-
tation of Keyfitz (1968) and Coale (1972), even though we con-
sider it unfortunate in some respects. We also use standard
actuarial notation where possible unless the two sets of con-

ventions conflict, in which case we stick to the demographic

tradition.

1D. The possibility of extemnsions. The individual process

of this paper provides a model for lifetime births. To get

a similar model for liveborn offspring of either sex, say,
one would specify an¢ additional distribution for the number
of such offspring in each birth and use a eompound Poisson
process (Feller, 1971) to represent the behaviour of the indi-
vidual. Indeed, the specification of a more complex process
on the individual level is the key to a generalized (single-
sex) stable population theory which takes into account featu-
res beyond the mere births, éuch as birth order, marriage,
residence, and so on. Compare Rogers 1966, 1974; Keyfitz,
1968, Chapter 14; Goodman, 1969; Feeney, 1970; Namboodiri,
1970; Le Bras, 1971; Keyfitz, 1973a;Feichtinger, 1974.

On the aggregate level, the tools would be an extension
of the generalized branching processes and multivariate rene-
wal theory. The former has not been worked out yet, but it

should be possible to do so by known methods. For the latter,

see Crump (1970).

The stochastic independence between individuals is a key
assumption in this theory. Everything becomes much more dif-

ficult if the independence assumption 1s dropped. This is the



reason why it is so hard to develop a satisfactory theory of
Although a number of authors

one still does not really

genuinely two-sex populations.
have contributed to the subject,
seem to be anywhere as close to a general solution as in the

case of a single sex. Recent work in stochastic processes

primarily directed towards population genetics, such as that
of Kesten (1970, 1971), may inspire further development in

this part of demography, provided one can find mating rules

which are realistic in human populations.

(For a review of the literature on two-sex demographic
to 1971, see Keyfitz, 1973b. There are later con-
1972; Parlett, 1972; Das Gupta, 1972;

models up
tributions by McFarland,
Bartlett, 1973; and Mode, 1972, 1974.)



2. THE PROCESS OF LIFETIME BIRTHS ON THE INDIVIDUAL LEVEL.

Let {K(t): t > 0} be a Poisson process with a bounded
and continuous intensity function m(.). Let L be a random
" variable which is independent of K(.) and which has the sup-

port [0,w] (for O < w < «) and the distribution function
q(x) = P{Léx} = 1 - exp{-fu(s)ds} (2.1)
0

for 0 < x < w, where u(.) is non-negative and continuous on

[O,w]. Since g(w) = 1, it follows that

W
fu(s)ds = oo,
0

min (x,y), x v y = max (x,y), p(x) =

]

Finally, let x A ¥y
1 - q(x), p, = p(x+t)/p(x), (q, = 1 - ,p_.

We then interpret m(x) and H(x) as the forces of fertili-
ty and mortality (or, equivalently, the birth and death in-
tensities), respectively,of an individual of age x. We shall

call m(.) the gross maternity function, and ¢(.), defined by

¢(x) = m(x)p(x)

is known as the net maternity function. The highest age pos-

Eible is we We define

X X
®(x) = | ¢(s)ds = [m(s)p(s)ds
0 0

and x
M(x) = fm(s)ds.
0

The number of births by age x is K(xAL). We note that

EK(x), and get

M(x)

EK (xAL) EE{K(xAL)|L} = EM(xXAL)

© XAV X oo
[ [ m(s)ds q(dy) = [ [q(dy)m(s)ds
0 0 0 s

X
Jl1-q(s)Im(s)ds,
0
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so that
®(x) = ER(xAL). (2.2)
Define
%9 (x) = P{R(xAL) > n}. (2.2)
Then, immediately,
o(x) = I "o(x). (2.4)
n=1

The quantity io = 0(») = ER(L) is called the gross re-

production rate, and, correspondingly, Rgp = M(®) = EK(®) is

called the net reproduction rate.

The following additional observations turn out to be
useful. Assume that it is known that L > u, where 0 < u < w,
and concentrate on what happens after age u. Let Eu denote
the expectation operator, conditional on the event {L >.ul}.
The expected number of births between ages u and u + t, con-

ditional on {L > ul}, is

<Py m(u+s)ds, (2.5)

O'—rr

®u(t) =

as is seen by treating Eﬁ{K[(u+t)AL] - K(u)} in the same man-

ner as we proved (2.2). We define

b, (t) = 2= 0 (t) = p m(utt),

and see that ¢u(o) is continuous with support [O,w-u]. Noti-—]

ce that o(x) = @O(X) and ¢(x) = ¢O(x).

Let X(n) be the time of occurrence of the n-th event in

the Poisson process K(.). Define
"o (t) = P{u<xX(n) < (u+t) A L|L > ul}.
Then
ncbu(t) = P{R(uAL) < n < K[(u+t) A LIIL > u} =

=["8(u+t) - "0 (u)l/p(u). (2.6)
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The latter equality follows from the fact that for t > O,
P{(L;u)ﬂ(K(uAL) <n < K[ (u+t)AL])} = 0. Summation in (2.6)

finally gives

. _ [=-] n
o (&) = nil o (t), (2.7)

of which (2.4) is a special case.
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3. THE STOCHASTIC POPULATION PROCESS.

3A. __The_individuals. We now turn to the process on the po-

pulation level. This is the age-dependent birth-and-death

- process introduced by Kendall (1949), and we shall restate its

constructive definition in terms of family trees.

To begin with, we shall consider the situation where at
time O, the population consists of a simgle ancestor, whom
we shall refer to as individual <0>. (Later on, we shall
extend this to a population of ancestors.) Each birth gives
rise to a single descendant, and for ease Qf exposition, we
shall regard the original ancestor énd all descendants as
female. Let us refer to <0>'s first descendant after time O

as individual <1>, let us call her second daughter <2>, and

In turn, the daughters of <k> are individuals <k,1>,

so on.
<k,2>, and so on. The in+1—st daughter of individual <i> =

i i i i .. . _
i151,, »1> is called 11515, ’ln+1> <1’ln+1> Depen

ding on its interpretation, the symbol i may mean a non-nega-
tive integer or a sequence of positive integers. We define

<0,1i> and <i,0> as identical to <i>.

Let N be the set of positive integers and let J =
{o} uNuU N2 U ... be the set of possible individuals consis-

‘ting of the original ancestor <0> and all her descendants.

Finally, we let "J = {m,i|i€J} denote the set of possib-
le individuals in the subfamily generated by <m>, for m =

1,2,... .

a life-length Li and a reproduction measure Ki(o). The

former is a positive random variable, and the latter is a

nonhomogeneous Poisson process over [O,m). Assume that the
elements of J are given in some fixed enumeration, e.g.,
<0>, <1>, <2>, <1,1>, <3>, <2,1>, <1,2>, <1,1,1>, ... . A

family history is then given by the sequence
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<LO Ll L2 Ll,l ...>
Ko(+) Kp(e) Ky(e) Ky o) ...

At time O, the original ancestor will have some age u,

which we shall regard as given. We assume that q(u) < 1

(compare (2.1)).

For any i € g, werdefine Xi(l)’ Xi(2), «e. by Xi(k) =
inf {tLOIKi(t) > k}. Thus, Xi(k) is defined as the age of
<i> at the birth of her k-th daughter. We do not count any
births to <0> before age u. What we register, therefore, is
that <0> gives birth to <K0(O) + 1>, <KO(0)f+ 2>, ... at ages

XO(KO(O) + 1), XO(KO(O)'+ 2), ..., until at time L0 - u, <0>

dies at age LO' Similarly, individual <KO(O)'+ n> gives birth

to individuals <K0(0) + n, 1>, <KO(O) + n,2>, ... at ages

XKo(o)+ n(l)’ XKO(O)'+ n(z)’ «es, until she dies at age

L at time XO(KO(O) +.n) -uu + LKO(O)'+ 0’ and so on.

KO(O) +n

The generations Io(w), Il(w), ... are defined recursive-

ly as follows:

Io(w) = {<0>}, I (w) = {<i>|u<x (i) < L.},
I, (0 ='{<i,j>|<i>€Ik(w), X, (j) < L}

The family I(w) = Io(w) U Il(w) U ... then consists of the

original ancestor and all her descendants actually born after

time O.

Let Z?(t) be the indicator of the event that <i> € J 1is

born, alive, and of age not exceeding a at time t. If <i> =
<il,...,ik>, then

S. = X (i,) + X. (i,) + ... + X. . . (i,) - u

i 01 iy 2 Iyslgsecesiy 4 k

is the time at which <i> is born (if ever), and Z?(t) = 1 if

and only if

u <X (i) £ L. ,X, (i,) < L. ,...,X, . . (i,)
071 0 i 2 i, Iyslpgseeesly o k
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< L. . .
= Tijsig,eeesips

<t

A
n
+
=

t - a < S§S.
= i

3C. The stochastic process. Define Zi(t) = Z: (t), and let

z%(t) = z%(t,0) = = z2(t).
1€T (w)

Then Za(t) denotes the number of individuals of age not ex-
ceeding a alive in the population at time t, andA{Za(t)l
0 <a<w, 0<t <o} is defined as a stochastic process by

the following assumptions.

Let @ be the set of family histories w as defined in

Subsection 3B above. Assume that LO’ KO(-), Ll’ Kl(-) e

are independent and that their distributions are given as

follows.

(a) The life-lengths Ll’ L2, ... are all distributed as
L in Section 2. If q(u) < 1, then LO has the conditional di-

stribution of L, given that L > u, i.e., P{LO < u+ t} = £ 9y-

(b) The reproduction measures Kl(-), Kz(-), ... are all
distributed as K(¢) in Section 2. The reproduction measure

KO(-) of the original ancestor is distributed as K(+) restric-

ted to [u,w).

3D.__Some_functionals and their first moments. Let Y (t)
be the number of individuals born before time t.in the n-th

generation In. Utilizing the common convolution notation, we

shall prove the following theorem.

= * *(n-1)
Theorem 3.1. EuYn(t) = @u o) (t) for n > 1.

Proof. The proof is by induction. We note that Equ(t)=

@u(t) by (2.5). Assume that the formula in the theorem holds
for n < N, and let mYn(t) be the number of individuals in In
who descend from <m> in I,. Then by (2.6) and (2.7), and

. 1
since <m> starts off on independent population with the same
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structure,

oo
m
E Yo,(6) = T E_ Y. (¢
m=1
t Cm v o
= Z;f Eu{ YN+1(t)l<m> was born at time s} @u(ds)
m 0
t o t
= i g E Yy (t-s)"0 (ds) = gEOYN(t-s)®n(ds).

The theorem then follows from the induction assumption.Od

We let Z*(t) denote the number of individuals who have
been members of the population during the period [0,t], i.e.,
the number of births during (O0,t] plus 1 for the original an-
cestor. Similarly, we let Zf(t) denote the number of deaths

during the same period. The population size at time t is then
* t
Z(t) = 2°(t) = 2z (£) - Z (t). (3.1)

*
The rigorous definition of Z (t) and Z+(t) is straightforward

as 1s the proof of the fact that they are both nondecreasing.

The corresponding first moments are

o et R L * feey = g 2zt
NG(E) = By Z7(e), N () = B 20 (e), Ni(e) = B .zT(o),

and
oo
Nu(t) = Nu(t) = EuZ(t).

* e *m
Theorem 3.2. N (t) =1+ X & * & "~ (t).

u u

m=0

E3 0

Proof. Since Z (t) = 1 + X Y (t), the theorem is a con-
m=1

sequence of Theorem 3.1l.p

Corollary 1. For t > 0, u > 0, and 0 < a < ©, we have

NT(t) < o, N (t) < = Nl(t) < o
u 4 u ? u 4
as well as

73(t) < @, Z (£) < ©, and 2T (£) <



‘1éf

(a.s., conditional on Ly > u).

*
Proof. If ®(») = 1, then No(t) < © igs a standard result
in renewal theory. A proof is found in Feller (1971, Chap-

ter XI), and it is easily generalized to the case where & ()

is arbitrary.

By comparing our process with one started at time -u
with a single ancestor aged O where all births are counted,
W: see th:t N:(t) ;.NZ(u+t). Furthermore, Ni(t) < N:(t) and
Nu(t) < Nu(t), which proves the first statement of the corol-

lary, The second statement follows from the finiteness of

the expectations.H

* .
Corollary 2. Nu(-) is continuously differentiable. If

* P *
n (£) = 5= N_(t),

we see that

(t)

I

"M
o
*
©

b 3
nu(t)

for 0 < u < w, 0 < t < o,

Remark: In what follows, we shall derive a number of
relations between the moment functions defined in this Subsec-
tion. For every relation we can prove for Nu(t), there is an
exactly corresponding relation for NZ(t) which appears if we
disregard the mortality of the descendants of the original
ancestor. Once this observation has been made, separate

*
proofs for Nu(t) are superfluous if proofs are given for Nu(t).
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4, THE FORWARD AND BACKWARD RENEWAL EQUATIONS

4A. TForward renewal equations. Let us denote the indicator

function of an event A by Xy

Theorem 4.1. For 0 < a < o,
a t a
Ny (E) = X[, a7(u*E) Py * gspum(u+s)No(t-S)ds, (4.1)
* t *
N (t) = 1 + éspum(u+s)No(t—s)ds, (4.2)
and
+ - | }
Nu(t) = t 9y + gspum(u+s)No(t—s)dsg‘ (4.3)

Remark 1. We shall prove the theorem in a minute, but
before we do,let us note that these relations have straight-
forward deterministic interpretations. Let us take (4.1) as
an example. It counts the total number of no-more-than-a-
year-olds at time t as the expected survival proportion of
the original ancestor, provided she has not become over a
years old, plus the number of no-more-than-a-year-olds des-
cending from the daughters born to the original‘;ancestor in

the period [0,t], including these daughters themselves unless

they have reached an age over a at time t. Similarly for (4.2)

and (4.3).

Remark 2. The formula in Theorem 3.2 is the standard
solution of the renewal equation (4.2). We needed a direct

proof of that theorem, however, in order to prove the finite-

ness of the process.

Proof of Theorem 4.1. It suffices to prove (4.1), for

then (4.2) follows from the Remark at the end of Section 3

and (4.3) follows from (3.1).

To~ prove (4.1), then, first note that

o

z%(t) = Zg(t) + ¥ "z2%8(t), where "z%(t) s z%(t).
. 1 :

n=1 1€J

~Tl



(8ee the end of Subsection 3A for the definition of Jn.)
The first right hand term in (4.1) follows from the fact

a .
that E Z (t) = X[O’a](u+t)P{LO;u+t|Lo>u}.

Furthermore, by (2.6),

u+t
{ E {727 ()| X () = v, u<x(n)<L }"e (dv)

n,a
Eu Z (t)

u+t a n
£ Ny (t-v+u) ¢ (dv),

so that by (2.7),

u+t

i Eunza(t) = { Ng(t—v+u)®u(dv).

n=1

From this and (2.5), (4.1) follows.O

Corollary. For each a € (0,*] and t € (0,%), Ni(t) is
continuous and bounded in u on [0,w), except for a disconti-

nuity of “ePa-t at a - t (if a > t).

Proof. The continuity results are immediate from (4.1).
To show boundedness, we use (4.1) to get
a ta a
No(t) < 1 + [mN_(t-s)ds < =
u = 0 0

for all u, since i = sup m(s) < ® by assumption.O

4B._ _Backward renewal equations. At the end of Section 3, we
* *

defined a density of births, nu(t) = 5% Nu(t). Another possi-

bility for such a density is to define it as the density of

. .. . . 0 _ 0 ya
individuals of age 0 at time t, i.e., as nu(t) = aaNu(t)’a___o.

We shall now prove that the latter density exists and that

the two densities are equal.
The existence and continuity of the density

a 0 a,
= 2 < <

nu(t) P Nu(t) for 0 < a t
is proved and a formula for it is given in the following the-

orem. Note that (4.4) again has a straightforward. determinis—
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‘tic interpretation.

Theorem 4.2.

aAnt

Nz(t) = X[O,a](u+t)tpu é n:(t—v)p(v)dv for 0 < a < »,(4.4)

and
a * .
nu(t) = nuara)p(a) for 0 < a < t. (4.5)

Proof. The first term in (4.4) is Euzg(t). Furthermore,

if J' = J~{o},
- 2 _ a - a
A = Nu(t) Euzo(t) iéJ'Euzi(t).

The individual term here equals

P{<i> is ever bormn, and Ov(t-a) < Si;tisi+Li'Lo>ﬁ}

=

th |

A

= EQJXH<1> is ever born and Ov(t-a) < S

o P{t<S.+L.|[<i> is ever borm, L. > u, S.}]
="1 1 0 i

- Eu§¥{<i> is ever born, and Ov(t—a)isi;t}p(t_si)]

t

= J  p(t-s)F. (ds),
Oov(t-a) 1,4
where F, (s) = P{<i> is ever born, and S. < s|L_. > ul}.
i,u ( 1= (0]

*
Since, evidently, ¥ F, (s) =N (s) - 1, we get
iegt isu u

t *
A = [ p(t=s)N_(ds),
Ov(t-a)
from which (4.4) follows. Then (4.5) follows by differentia-

tion, since nz(-) is continuous by Corollary 2 of Theorem 3.2.0

0 * -
Corollary 1. nu(t) = nu(t).
t * v
Corollary 2. N (t) = _p_ + [n (t-v)p(v)dv.
u t u 0 u ] .

Note that“Corolléry 2 implies the continuous differentiabi-

lity of Nu(.).

f
|
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4 o A ,
We now turn to Nu(g). It 1s continuously differentiable by
the following Corollary. We let

LT T

o, (t) = §ENu(t)'

£7 .
/

Corollarngf.Nu(t)'= £y +.gnu(t—v)$(h)dv.

! *
Proof. This follows since NI(t) = Nu(t) - Nu(t).u
*
In addition to (4.2), we have the following relation for Nu(t).

Theorem 4.3.

t
No(e) = 1+ o (£) 4 g[N:(t-y)w— 11p (y)m (y)dy.

Proof. Insert the formula of Theorem 3.2 into this equa-

tion. O

This is essentially Lotkas integral equation for the

present case. To see this,differentiate with respect to t

and get

t
a(t) = p, m(urt) + [ o (e-y)p(yIm(y)dy,
0

which has the same type of interpretation as (1l.1) has.

4C._ _Lotka's integral equation. So far, we have studied the

case where there is only a single ancestor at time O. Let us
now extend this to the case where there is an arbitrary ini-
tial population at time O, with ages distributed according to
some integer valued function‘{Za(O): a > O}, where Za(O) deno-
tes the number of persons of age at most a at time O. We as-
sume that Z°(0) is the outcome of a'point process which with
probability 1 gives a finite initial population, i.e.,

Z(0) < o a,s. We assume that the mean Na(O) = EZa(O) exists,
is finite, and“is absolutely continuous (as a function of a)
for 0 < a < . The corresponding initial population density

at age a is na(O) = d Na(O)/da. We assume that na(O) = 0 for

a > w, and define N2(t) = Ez%(t), N(t) = EZ(t) = N"(t), and i
similarly for the other means. It is easily seen that they ‘
satisfy integral equations obtained from those of Theorem bo1

i
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by integration with respect to Ndu(O).

In everything which follows in this paper, the above as-

sumptions will be taken to hold.

3
Theorem 4.4. Given the identification B (t) n (t),

Lotkds integral equation holds:

t
B(t) = G (t) + [B(t-x)p(x)m(x)dx,
0

with

* “u e
G (t) = fn (0) _p m(u+t)du
0 t u DR
Proof. Multiply the formula in Theorem 4.3 by nu(O) and

integrate with respect to u, to get
- o u t %
N (t) = N(0) + f@u(t)n (0)du + [[N (t-y)-N(0)Ip(y)m(y)dy.
0 0 ;

Then differentiate this with respect to t.O

* . ..
Remark. To see that G (t) is always finite under the
stated assumptions, note that,by assumption,tpum(u+t) <

sup m(s) < o and fngdu = N(0) < o,

Lotka's equation is a relation in terms of the density

of births. A similar relation holds for the density of

deaths, D(t) = n'(t).

Theorem 4.5. Suppose that

G+(t) = fnu(O) ) ﬂ(u+t)du < oo,
0 t u
Then N

D(t) = 6T(e) + [B(t-x)p(x)u(x)dx.
8 0

Proof. Multiply the relation in Corollary 3 of Theorem

4.2 with nu(O) and integrate to get

© t
NT(t) = fnu(O)tqudu + fB(s)q(t-s)ds.
0 0

Then differentiate with respect to t and reorganize slightly.no



Remark. Since {p(t+u)u(t+u): u > 0} is the upper tail of
the density of the life-time distribution, G+(t) =0 for t > w
if w < ©, TFor t < w, the condition that GT(t) < o implies
that nu(O)/p(u) should have a finite integral with respect to
the tail [t,») of the life-time distribution, as it will if

it is bounded, say.

4D.__Crude_rates. We now define the (deterministic) crude

.~ birth and death rates at time t as

b(t) = B(t)/N(t) and d(t) = Dﬂ(rti)V/’N(rt),

E We shall prove a formula for each of these,
and then need the following result.

Theorem 4.6. Na(t) is absolutely continuous in a, and

its density na(t) satisfies

B(t-a)p(a) ' for 0 % a < t,

na(t) = , ) )
jné—t(O)fpa_tlfor a > t.

Proof. If a > t, Ng(t—s) = No(t—s) for all s € [0,t].
If we multiply (4.1) by nu(O) and integrate with respect to u,

we get,therefore,

[==]

[ n%(0)_p du,
t u

a-t

N(t) - N23(t)

which proves the second line of (4.6). The first line fol-

lows from Theorem 4.2.0

Theorem 4.7.

B(t) = [n®(t)m(a)da and D(t) = [nZ(t)pu(a)da.
0 0

Proof. By (4.6) and Theorem 4.4,

. - ¢
B(t) = fna-t(O)tpa_tm(a)da + fna(t)m(a)da,
t 0
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which gives the formula for B(t). The proof of that of D(t)

is similar.D

Let us finally introduce the (deterministic) rate of in-

crease of the population at time t as

r(t) = b(t) - d(t) = n(t)/N(t),

with n(t) = %?N(t).



5. ASYMPTOTIC GROWTH

behaviour as t - © of the means and their densities introduced

A fundamental concept of this theory is the intrinmsic

above.
growth rate, in that asymptotically, all means and densities
grow (or decline) at a speed determined by this rate. It 1is
defined in the following manner.
Let
[ee]
-px
1(p) = Je ¥p(x)m(x)dx.
0
As we shall see in a moment, the equation
I(p) =1 (5.1)

has at most a single real solution. If such a solution exists,

we call it the intrinsic growth rate (or Malthusian parameter)

of the process, and we denote it by r.

In discussing the existence of r, we start by noting that

I(0) = 9(») = RO, the net reproduction rate. If RO < o, then

Thus, 1f 1 < R0 < o, the intrinsic growth
= 1, then

I(p) ~ 0 as p + =,
rate will exist and be positive. Similarly, if RO

r = 0. Conversely, if r exists and is positive (zero), then
R

o > 1 (RO = 1).

If RO = © or RO < 1, then r may or may not exist, depen-

ding on the form of ¢(¢) = p(e)m(.). TIf RO < 1 and r exists,

then r < O.

In all human and animal populations, ¢(x) = O for all suf-

ficiently large x. In such a case,we shall say that ¢ eventu-

ally vanishes. If ¢ has this property, then RO < ®, r exists,

and we get

0. (5.2)

Alv

R l & r

0

Alv

Adppting some branching process terminology we shall.call

> 0, critical if R, = 1, and

the process supercritical if RO 0
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subcritical if RO < 1.

Now assume that r exists, and define

X
e "Fp(x), H(x) = [h(s)ds,
0

h(x)

X
P(x) = e "Fp(x)m(x), ¥(x) = [y(s)ds.
: 0

Here H(®) may be finite or infinite. If H(®) < o, let

X
c(x) = h(x)/H(®), C(x) = [c(s)ds = H(x)/H(»).
0

If it exists, C(e) is a probability distribution function and

c(e) its density. The corresponding distribution is called

the stable age distribution.

If p evengually vanishes, then H(®) < . Similarly, if

r > 0, H(o) < fe_rxdx = 1/r < =,
0

If r = 0 and H(») < o, then C(e) is called the Stationary

age distribution. In this case,

H(=) = [p(x)dx = & = E(L)
0

is the expected lifetime of a new-borm.

By the definition of r as the real valued solution of
(5.1), ¥ is a probability density, and the corresponding distri-

bution is called the distribution of the age at childbearing

in the stable population. The mean of this distribution,

A = fxe_rxp(x)m(x)dx,
0
is called the mean age at childbearing in the stable popula-

tion. There exist cases where A = o, but A is finite if ¢ e-

ventually vanishes.

Finally, let

-rt
e tpxm(x+t)dt

V(ix) = erx{l—W(x)}/p(x) for 0 < x < w,

oY— 8
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while V(x) = 0 for x > w (when w < ). We call V(x) the re-

productive value of an individual of age x.Note that V(0) = 1.

. | Let B = sup{x:m(x) > 0}, so that B

is the upper limit of the fertile age span. Then V(x) = O
for x > B. If B < w, as it is in human populations, Vi(-)
is a continuous function which vanishes for x > B. 1In parti-

cular, V(=) is bounded in this case.

In the general case, it may happen that Vi(e) is unboun-
ded and that it is discontinuous at w, though examples of
this are rather pathological. A simple sufficient condition

for V(¢) to be bounded when r > O is that the expected re-

maining life-time

stays bounded.

The names of the concepts introduced in the present Qub-
section are motivated by their interpretation in the thedry
of stable populations. We are not prepared to introduce the
concept of a stable population yet, however, ~and shall post-
pone it to Subsection 6B. A complete discussion of a concept
like the mean age at childbearing in the stable population re-
quires theory beyond that of the present paper. Hoem (1971),
Keiding (1973) and Jagers (1973,1974) have contributed to

this discussion and we plan to include it in a companion pa-

per.

We introduce these concepts here in spite of this, be-
cause we need same of their properties in the following Sub-

sections. What we need, does not rest on a deeper understan-—

ding of their interpretation.

5B. The renewal theorem. The convergence theorems which we
shall prove, are straightforward corollaries of a basic rene-
wal theorem. TFor easy reference we shall state this theorem
in the form which is most convenient here. We build on the

formulation given by Feller (1971, Chapter XI). This formula-—
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tion uses the concept of direct Riemann integrability. A

function . f defined on [0,») is called directly Riemanninte-
grable if the generalized Riemann sums formed from a partitio-
ning of the whole half axis [0,») converge appropriately as
the partitioning becomes finer. TFeller (1966, 1971) gives
several sufficient conditions for direct Riemann integrabili-
ty. In demographic applisafions, this is no real problem
since any Riemann integrable function on [0,®) which eventu-

ally vanishes, is directly Riemann integrable.

Theorem 5.1. Let F be an absolutely continuous distri-

bution function on [0,®) with F(0) = 0. Let g and G be real

functions vanishing on (-«,0), and assume that g is directly.

Riemann integrable. Let G satisfy the renewal equation

X
G(x) = g(x) + [G(x-y)F(dy). (5.3)
0
Then
G(x) - [g(y)dy/[yF(dy) as x - o, (5.4)
0 0

the limit being interpreted as O if the denominator is oo.

5C. _Population _growth. We shall callqﬁfjprocess (as well as

the population whose growth it represents)Malthusian if the
intrinsic growth rate r exists, A <€ o, H(o) < o, and V() is
bounded. Any population where B < w < o, as in any human po-

pulation, will then be Malthusian.

Theorem 5.2. As t = o in a Malthusian process,

N2(e)e TT 5 c(a)V(u)H(w) /A (5.5)
for 0 < u < w and O L a < =,
Fﬁrthermore,

N3 (t)e Tt 5 C(a)VH () /A (5.6)
for 0 < a < oo‘,r Finaliyr,‘ﬁ/

t

N(t)e "% - VH(w)/A (5.7)
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if either (a) r > 0, or (b) w < «, or (c) nu(O) eventually
vanishes. In (5.6),
V = [V(u)n (0)du.
0

Proof. 10. Let

g(t) = X[O’a](t)p(t)e_rt and G(t) = Ng(t)e_rt.

Then g will be directly Riemann integrable, as we see by re-

peatedly invoking some examples in Feller (1966, p. 349),as

follows:

For all|a<e, g is directly Riemamn integrable since it vanishes
on (a,»). For a = o, g = h, which is directly Riemann inte-
grable for r > 0, since it is then decreasing and Riemann in-
tegrable (because H(®) < ). For a = » and r < 0, we start by
noting that h(x)<* 0 as x > o since H(w) < o. Thus, h(.) 1is
bounded. It is also nonnegative and continuous. For n < x <

n+1l,

e"h(n+l) < h(x) < e 'h(n).

Since
oo [o0]
H(®) = [h(x)dx > e I h(n),
0 n=1
the latter sum converges. Let u, = max{h(x): n < x < n+l}.

Then Zun < e_rzh(n) < o, s0 g is directly Riemann integrable.

20. We now prove (5.5) for u = 0. Rewrite (4.1) with
u = 0 as
t
G(t) = g(t) + [G(t-s)V¥(ds).
0
. a -rt
Since Y(») = 1, we may use Theorem 5.1 to get No(t)e -

H(a)/A as t > o,

30. We then prove (5.5) for a general u. By (4.1),
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rt rt

L ]
No(8)e 7 = X[, 2] (948D Pye (5.8)

t
+ ng(t—s)e r(t-s) TS4s.

. pm(u+s)e
0 s’ u

Now let t -w, Since G(t) is bounded and converges, we get

the limiting value of the integral to be H(a)V(u) /A by domina-
ted convergence. Call the first right hand side element of
(5.8) g(a,u,t). For a < o, g(a,u,.) eventually vanishes.

Finally, g(a,u,t) =» 0 as t -» o,because H(w) < o, Thus, (5.5)

has been proved.

40. We now prove that for each a € [0,»],the integral
in (5.8) is bounded by some constant independent of t and u.
Since the integral is non-decreasing as a -» o, it suffices
to take a = w. . By (4.4), No(x)e_rX is continuous, and by 20
it converges to the finite constant H(o)/A as x - o. Thus
it is bounded above by some constant K which implies that
the integral in (5.8) is bounded by KV(u), which is bounded

itself by assumption.

50. We note that

(o]
N®(t)e FF - fn2(e) Tt % 0)du,

0
and intend to prove the rest of the theorem by dominated

convergence. By 40, it remains to discuss the conditions un-
der which g(a,u,t) is bounded by some constant K(a) indepen-

dent of (u,t).

For a < o, g(a,u,t) = 0 at least for t > a, and we can

take K(a) maX{l,e—ra}. This proves (5.6). Now let a = o,

If r > 0, then g(»,u,t) < 1, which proves (5.7) under

condition (a) of the Theorem.

If w < », then g(»,u,t) = 0 at least for t > wy.so we can

"W). which proves (5.7) under condition

take K («) max{1l,e

(b).

If r < 0 and w = © but n"(0) = 0 for u > w', we can take



-30-

. — |
K(®) = max{l,e tw }, as it suffices to bound g(®,u,t) for

u € [0O,w']. This proves (5.7) under (c).

-

The problem with the case where r < 0 and w = is that
it may happen that
rt

‘m - = ©0
lim sup £Pye s
u>o >

and condition (c¢) makes this unimportant.o

In a Malthusian process, therefore,

fe_rxp(x)dx

N(t) ~ eft7 O ,

fxe_rxp(x)m(x)dx
0

and

N (t) /N(t) - C(a),

under either of assumptions (a) to (c¢) in Theorem 5.2. 1In
this sense, the asymptotic age distribution is C(-). 1In V,
an initial individual of age u enters with weight V(u). The
latter quantity measures the number of children to be borm
to this member of the initial population, discounted at the

rate of interest r(Fisher, 1958, p.27).

5D. The sequences of births and deaths. Starting with (1.1),

classical deterministic stable population theorists argue that
B(t) will ultimately grow as et (Compare, e.g., Keyfitz,
1968, p.103, or Coale, 1972, pp. 64—65;3w We shall prove this
under the condition that'{nu(o): u > 0} is directly Riemann
integrable, as it will be at least whenever w < ®, since

nu(O) = 0 for u > w.

Theorem 5.3. In a Malthusian process where nu(O) is di-

rectly Riemann integrable,

rt

B(t)e > V/A as t - oo,

*
Proof. Let G (t) be defined as in Theorem 4.4, and let
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- E3 -
g(t) = e rte (t), G(t) = e rtB(t). By Theorem 4.4,

t
G(t) = g(t) + [G(t-x)¥(dx).
0

[= <]
We note that Ig(t)dt = fV(u)nu(O)du, so g is directly Rie-
mann integrab?e.(Remembgr that V(e¢) is bounded in a Malthusi-

an process,) Then invoke Theorem 5.1l.no

Theorem 5.4. In a Malthusian process with finite maxi-

mal life-length w,

e T¥p(x) U (x)dx |
D(t)e Tt 5 F _vi:r_i_(i‘il_

Xe_rxp(x)m(x)dx

o‘—8|lo—38

Proof. 10. Use partial integration to prove that the
integral in the numerator equals 1 - rH(®) and is therefore

finite.

20. From Theorem 4.5, we get

w u Tu . t |
D(t)e_rt=f2‘§%%§‘—p(u+t)u<u+t)e"r‘“*t)du+IB(t—x>e’r(t“xﬁtx)u<x)e"
0 0

The first term here is O for t > w. By Corollary 2 to Theo-

. . . . u .
rem 3.2, B(¢) is continuous. Since n (0) vanishes for u > w,

the assumption of Theorem 5.3 holds. Thus, B(t)e—rt is boun-

ded by a constant. The present theorem then follows by 1O and

dominated convergence.nd

Corollary. 1In a Malthusian process with finite maximal

life-length w,

n(t)e_rt +~ r V H(®) /A
as t > o, (Recall that n(t) = dN(t)/dt by definition.)f

Proof. =n(t) = B(t) - D(t).o

rx

dx
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Remark. The convergence in Theorem 5.4 and its Corolla-
ry may be shown to hold for w = © also, but only under various

conditions upon which we shall not elaborate. Similarly in

Theorem 5.5 below.

5E. The crude rates. We shall close this Section with a The-

orem on the convergence of the crude rates introduced in Sub-

section 4D.

Theorem 5.5. In a Malthusian process where w < ®, as

t > o,
[ee)
b(t) » 1/fe "Fp(x)dx = 1/H(®), (5.9)
0
oo (=] _ 1
d(t) » [e T¥p(x)u(x)dx/fe T¥p(x)dx ==5— - r (5.10)
0 0 H () ’
and
r(t) > r. (5.11)
Proof. These relations follow from Theorems 5.2, 5.3

and 5.4.0
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6. STABLE POPULATIONS. THE OPERATOR SEMIGROUP.

6A.__Time_decomposition_ of N”(s*t). The present section is
devoted to a study of some properties of stable populations.
It turns out to be useful to decompose Ni(s+t) into a contri-
bution from the period [0,s] and a subsequent contribution
from the period (s,s+t] befdre,we embark on our account pro-
per, so we shall first prove the following ﬁheorem, which |

holds for any population of the kind studied in this paper.

[e=]
a _ de . 2., .
Theorem 6.1. Nu(s+t) = fNu’(s)N£{E§ﬁ>

0
Proof. 10. The proof goes as follows: We first prove
that
b , T.d
E {2%(t+s) [ (27 (s):0<b<m)} = [25%(s)NZ(2). (6.1)
‘ 0

(See 2O for the definition of this integralff] This implies
that T
a ® d a
Ne(s+t) = E [z9%(s)NZ(p).
u u X
0
We then note that EuZx(s) = Nj(s), so that once (6.1) is e-

stablished, it remains to prove that

8

E, gzdx<s>N§(t) = (3% end (o).

o

To show this, we prove that for any bounded function f,

£, (2% () E0) = NiF (o). (6.2)
0 0

Thus, once (6.1) and (6.2) have been established, our proof

is complete.

20. To prove (6.1), let the ages of the almost surely
finite number Z(s) of individuals in the population at time s

be Al’AZ""’AZLﬁ)'The right hand side in (6.1) equals
Z(s) a
i=1 i



_34?_

the sum being empty if Z(s) = 0. Since each individual alive
and of age A at time s gives rise to an expected number of
N (t) live individuals of age at most a at time s+t, (6 1)
follows from the fact that the conditioning process {Z (s):

0 < b < «} determines the A, completely.

30. To prove (6.2), check first that it holds(in that
both sides equal Ni(s))if f(x) = X[O a](x). The relation
b
then holds for all step functions by linearity and for gene-

ral bounded f by dominated convergence.n

6B, Stable populations. In Subsection 5C we proved that in

a Malthusian process where w < ®, say, Na(t)/N(t) + C(a) as

t > o, and in Subsection 5A we called C(+) the stable age
distribution. One would expect Na(t)/N(t) to be equal to

C(a) for all a and t if the initial age distribution were
C(e), so that in this sense the age distribution would be
stable. This turns out to be true, as will appear in a Corol-
lary to Theorem 6.2 below. Let us agree, therefore, to call

a Malthusian process stable. if the initial population densi-

ty is proportional to the density c¢(e), i.e., if
na(O) = ke(a) for all a, (6.3)

for some k > 0. Similarly, we shall call the population it-

self stable.

Theorem 6.2. In a Malthusian process, we have that

Tc(x)Ni(t)dx = e"fc(a) for 0 < a < . (6.4)
(Note that we do not assume (6.3) here.)
Proof. TUse (5.5) to conclude that
Ng(s+t)/No(s) - ertC(a) as s = o,

Let u = 0 in Theorem 6.1 and divide by No(s) to get

N (s+t)/N (s) = IN (t)N <s>/N (s).
0
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As s - o, the distribution function Fs(x) = Ng(s)/No(s) con-
verges to the continuous distribution function C(x) for all x.
The theorem therefore follows from the continuity properties
of N?(t), proved in the Corollary of Theorem 4.1, and a stan-

dard result on weak convergence. (Seé, e.g., Billingsley,

1968, pp. 11-12.)no

Corollary. In a stable Malthusian process the following

relations hold for all t > 0:

Na(t) = ertNa(O) and Na(t)/N(t) = C(a) for 0 < a < =,
B(t) = e B (0), D(t) = eftp(0),

b(t) = b(0), d(t) = d4(0), and r(t) = r.

Here, B(0) = N(O)/H(®) = V/A,

D(0) = N(O) (e2ex - 1) = V(1 - rH(=))/A,

H(*®)

b(0) = grzys and d(0) = o= - T

Proof. The two first relations follow immediately from
(6.3) and (6.4). By differentiation with respect to a,we

see that na(t) = ertna(O). The rest of the Corollary is now

easily obtained from Theorem 4.7.0

Remark. Notice that the average reproductive value per
individual in a stable population is V/N(0) = A/H(®), and com-
pare with the occurrence of these quantities in the Qheorems

of Section 5.

6C. The reproductive_value. We introduced the reproductive

value V(x) at the end of Subsection 5A, and it turned out to

play a central role in the limit expressions in Theorems 5.2

to 5.4, We now prove a stability relation for it, similar to

the one for C(x) in (6.4).



Theorem 6.3. In a Malthusian process,

fV(X)NSX(t) = "ty (uw).
0

Proof. Let 0 < a < o so that C(a) > 0. By Theorem 6.1,

eI (e)N0T (6) =TT T (TN (o), (6.6)
0 .

By (5.5), the right hand side here converges to T ARt
ertV(u);C(a)H(w)/A as s » o, The rest of the proof consists
in showing that the left hand side of (6.6) converges to

JVGONSX(£) e (a)H () /.
0

The latter integral exists and is finite because Vi(+) is boun-

ded by the definition of a Malthusian process. By (5.5) again,

e TN (s) > V(x)C(a)H () /A.

Given the proof of Theorem 5.2, our présent Theorem follows

by dominated convergence.Oo

pointing out the strong formal analogy between fhe theory for
discrete time and age parameters on the one hand and the con-
tinuous time situation considered in the present paper.on the
other hand. We shall not gd into the details of functional
analysis, but one may obviously define an operator §t on a

suitable space of functions on [0,») by letting

&tf(x) - éf(u)Niu(t).

-

The adjoint operator Nt is given by

ﬁ:F(a) - gNi(t)F(du)

for positive measures represented by the distribution func-

tion F.



|

-

Then {Nt:O t < o} satisfies the semigroup property Nt+s

- -

Nth by Theorem 6.1, Furthermore, in a Malthusian process

with intrinsic growth rate r, e is an eigenvalue of Nt and

the reproductive value V(<) is the corresponding eigenvector.

by Theorem 6.3. The eigenvector for Nf ecorresponding to the

eigenvalue et is the stable age distribution C(-).

The convergence theorems may also be paraphrased in the
language of the operator semigroup. Define the operator

V ¥ C and its adjoint C 8 V by letting

Vs Cf(x) = V(x)Jf(u)C(du)
0
and
C s VF(a) = C(a)fV(u)F(du).
0

Then (5.5) corresponds to the statements that, as t = o,

e_rtN.—>.}_I..(.°f.2.V5C
t A
and
-rt ¥ H ()
> 2N
e Nt 3 C 8 V.,

It seems an interesting task to make these concepts precise
and to investigate the possibility of a direct operator-theo-

retical treatment of the asymptotic theory using results such

as those by Karlim (1959)..
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