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ABSTRACT 

A general method is developed with which various theo

rems on the mean square convergence of functionals of bran-

ching random walks are proven. The results cover extensions 

and generalizations of classical central limit analogues as 

well as a result of a different type. 

1. INTRODUCTION 

Consider a branching random walk, 1.e. a Galton-Watson 

process {Z } with offspring distribution {p.}, on which is su-
n J 

perimposed the additional structure of random walk on the li-

ne. A particle whose parent is at x, moves to x + y and the 

yls of different particles are i.i.d. with common distribution 

function G. This model covers as an important special case 

the age-dependent branching process, where the position of a 

particle corresponds to the time of its death. Some attenti-

on has been given to study the distribution of the particles 
th 

of the n generation over the line. As usual ln branching 

processes, this problem is closely related to the behaviour of 

the mean, which in the present context, requires a study of 

the convolution powers of G. A number of results closely re-

lated to the central limit theorem have already been proven 

([2], [3, Ch.6], [4], [5], [7], [11], [12], [13], [14], [15], 

[16]) and the case where G is in the domain of attraction of 

a stable law, has also been considered ([2]). We give in Sec-

tion 3 some further results ~nd generalizations along these 

lines, while Section 4 is devoted to a different type of li- , 

miting behaviour. We consider there the situation G(O-) = 0 
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G(O) > 0 and obtain a result, which for G lattice is closely. 

I related to the limit theory of decomposable mUltitype Galton~ 

Watson processes ([ 10]). 

While the method of proof in some of the references cited 

is highly analytic, we present 1n Section 2 a simple and ge

neral conditioning argument, which reduces the problem to a 

study of the convolution powers of G. We feel, that this is 

the natural approach, because it is based on the structure of 

the process and it is of sufficient generality to give unifi

ed and simple proofs of known and new restilts as well as to 

deal with certain generalizations. 

2. PRELIMINARIES 

Following the notation of [9, Ch. 5], we denote any par-
. 1 f h th . b' .. . d . , t1C e 0 ten generat10n y <':n> = <l l 1 2 ···1n > an 1tS po-

sition on the line by X. 
... 1 

n 
Then 

where the Y. 's are i.i.d. with law governed by G. We intro
i. _n 

duce some more notation: Let n ~ 0 

Z (A) = L 
n in 

th 
1 { X. E A} =;= the n urn b e r 0 f par tic 1 e s 0 f the n 

F 
n 

_n 1 _n generation in A (A a Borel subset ~f 

cr(X. , k < n) 
':k 

the line) 

Zn(~k): The number of offsprings of ~k at time n > k 

G: The nth convolution of G 
n 

Go(x) = 0 for x < 0, GO'(x) = 1 for x >0 

f, (x) 
n 

f:oof(x+y)dGi(y) where f 1S any bounded measurabl~ 

functi.on. 
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The assumptions on the position X. of the original particle 
ZO 

will be of minor importance. It is usually assumed, that 

x . = 0 for the r an d om wa I k sit u at ion, w h i leX. :E s t a ken t 0 

b~OrandOmlY distributed according to G in the ~ie-dep~nd~nt-
case. Thus the distribution of Xi ~s Gn , respectively Gn + l 

....n 
~n the two cases. We treat for convenience only the case 

X. = O. 
~O 

Ljp. < 00 

J 

Also, we assume throughout that Zo = 1, I < m = 

d .2 
an L J p. < 00. 

J 

For any fixed n, the distribution of the i 's on the li-
... n 

ne may be described by functionals of the form U 
n,n 

L f(X. ), 
• 1 ' 
~ ... n 

where f may depend on n. More generally, define for k 

O,l, ..• ,n 

U 
k"n 

L Z (ik)f k(X, ) n.... n- ~ 

~k ... n 

... n 

It will be convenient to center f, i.e. to assume Ef(X. ) 
,], 

f (0) = O. 
n 

We obtain by ~onditioning the fo1lowingba~Yc 

pression for the mean square of U 
n,n 

EU 2 =E[E(U 2 IF, 1)] 
n,n n,n n-

2 
E[Var(U IF, l)]+EU 1 n,n n- n- ,n 

n, 

~=lE[Var(Uk'Il~Fk_l)] 

= 

n 
L E[ L Z2(ik _ I ){ff 2_ k (x. +y)dG(y)-f 2_ k l(X, )}] 

k=l ~k-1 n ... n ~k-l n + Zk-l 

n k-l 2 
L m EZ _kBk(n) 

k=l n 
< constant 

2n n -k 
• m L m Bk(n) 

k=l 

ex-

Thus ~n the various 

examples and generalizations to be investigated ~n the rest 

oft h epa per we are 1 eft wit; hac los ere x am ina t ion 0 f the 

Bk(n)'s. 

(2.1) 
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3. CENTRAL LIMIT ANALOGUES 

00 2 00 2 2 
2 Let ~ = I_ooxdG(x), 0 = I_oox dG(x) - ~ , ¢(x) = 

e- x 12 1m, \p(x) = I_:¢(t)dtc. If 0 2 < 00 and tn c.J ll~l + (Jgt, 

then G (t ) c.J\P(t) and one would expect Z J-oo,t limn to be cIo-
n n n n 

se to \p(t)Z Imn and thus to \p(t)W, where as usual W 
n 

1 im Z Imn. 
n 

In fact, this has long been known. We state the 
n 

result for the sake of completeness and give the proof in or~ 

der to demonstrate our method: 

then 

Theorem 1. If 0 2 < 00 and t 
n 

r- -1/2 (Jvn t + 0 (n ), ! 

lim E{(Z ]-00 t limn - \p(t)W~2) 0 
- n 'n 

n+oo 

Proof: For ~tl:y fixed n let f (x) = l{x<t } -Gn (t n ) and no-_ 
n 

te that Z ]-oo,t ] = 
n n 

The conditions of the U + G (t )Z • 
n,n n n n 

G (t ) -+ \p(t) (more generally, G k(t +x)+ 
n n n- n 

theorem ensure that 

~(t) for any fixed 

E([U Imn]2) -+ O. 

k and x). Thus it suffices to show, that 

n,n 
Obviously 

From this relation it 1S clear, that for each k, lim Bk(n) = 0 
n+oo 

and the assertion follows from (2.1) and the dominated con-

vergence theorem. 

A slight modification of the argument yields a local li

mit the 0 r em • 

Theor em 2. Suppose in addition to the assumptions of 

that I oooo /xI 3 dG(x) < 00. Theorem 1, 

Then for a 

that G is n~n-lattice and 
~ 2 

- (b-a)¢(t)W] ) = o. < b,lim E([o/U Z [t +a,t +b]/mn 
. n n n 

n+OO 

Proof. Let f(x) 1 - (G (t +b)-G (t +a» 
{t .+a < x < t +b} nn n n 

n - - n 
Then Z [t +a,t +b] = 

n n n 
U + (q (t +b) - G (t +a»Z and so 

n ,n . n n n n n 

we are to prove, that E([/U ,U Imn]2) -+ 0 and that 
n,n 
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crlU(G (t +b) - G (t +a» -+ (b-a)¢(t). The latter assertion 
n n n n 

follows from an extension of the Berry-Esseen theorem ([8], 

pg. 210). The same result yields the estimates nBk(n) ~ 0 

for each k > 1 and sup (n-k)Bk(n) < ~.for some constant C. 

This follows sincel.:!:k<n 

J (G k(t +b-x) - G (t +a-x) - (G (t +b) - G (t +a»)2 dGk (x) 
n- n n-k n n n n n 

Thus! for any nO 

1 im E ( [rn u 1m] ) 2 ~ 1 im n 
n,n n n-+oo n+ co 

n/2 n 00 

-k -k -k 
lim 2: m 2C + lim n 2: m = 2C 2: m 

n+"" k=n . . . 0 n+oo k=n/2 k=n 
0 

and s~nce nO ~s arbitrary, the proof ~s comp let e. 

Several generalizations of these results are possible. 

We well indicate two. 

1) 
th Suppose that the displacement of the n generation Y. 

~ 
~n 

has distribution Ii' depending on n. 
n 

The only thing that one 

needs to carry out the previous arguments is a Berry-Esseen 

type theorem for non-identically distributed independent ran40m 

variables. Such results exist under suitable assumptions 

([6], pg.78 and 81). 

We introduce some notation and state the result. Let 

~, =foo~xdF.(X), cr~ 
~ -- ~ ~ 

k 
2: ~. 

i=l ~ 

f oo 2' _ 11 2, ooX dF. (x) t-' 
~ ~ 

k 
2: cr 2 

i i=l 
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Theorem 3. Assume there exist constants ° < A < B < 00 

such that 

A < inf 0~ < sup f_:lxl3d~i (x) < B 
1 1 

Then 

Assume in addition: 

< 00, 
w 

lim sup/f(Ul)1 < 1, and for some L > 0, 
IUlI+oo 

where 

lim{sup /fk(Ul) - f(Ul)]} 0 
k-+oo IUlI>L 

f i ulX . () () e dFk x , f ul 

Then for a < b 

feiUlXdF(X) 

lim E([S m-nZ [t +a,t +b]- (b-a)¢(t)W])2 = 0 n n- n n 
n+oo 

A result similar to Theorem 3 was proven in [7] under 

m 0 r ere s t ri c t i v e ass um p t ion s • 

It would be reasonable Ito believe that InCDre general mo

tions of the particles could be allowed providing analogs of 

the Berry-Esseen Theorem exist. 

2) The underlying branching mechanism could also be genera~ 

lized. For example we could allow the process to grow as a 

supercritical branching process with random environments [ 1 J. ~ 

The statement of the result is analogous and hence omitted. 

R em ark s. The t e c h n i que des c rib e d her e can a 1 sob e a p p 1 i -! 

ed to Bellman-Harris processes where particle motion is permi~

ted [14]. The details are as expected more complicated. 
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4. THE CASE G(O-) ;;: 0, G(O) > 0 

I f we ass um e G t 0 b e con c en t rat e don [0,00 [, no par tic 1 e • 

on Ja,oo[ (a > 0) can produce offspring in [O,a] and thus the 

particles in [O,a] form~ a continuous-type Galton-Watson pro-

cess with [O,a] as the set of types. A closer study of this 

process might be of some interest, especially because, as we 

shall see, it is not positively regular, but rath~r analogou~ 

to the decomposable processes considered in [10], for which 

no generalization of the limit results to the case of an in-

finite number of types has so far been obtained. In most 

cases, however, extinction will occur a.s .. For example if 

G(O) 0, a standard assumption in the theory of age--depen-

dent branching processes, exti::ncHon fl911otvs'sin~ee ijBEZn[O,a] = 
n 

~m G (a)« 00 ([3], pg. 144). Also for G(O) > 0 but mG(O) < 1 
n 

we have extinction a.s. by t:he same reason. However, if 

mG(O) > 1, then EZ [O,a] -+ 00 and we shall give a limit result 
c~n 

for this case. 

th 
Let 2 (0) be the number of particles of the n generatie

n 
on located at 0 and note that the sequence ZO(O), 2 1 (0), ... 

is an ordinary supercritical Galton-Watson process with mean 

mG(O). Consequently W = lim 2 (O)/mnG (0) exists a.s. and in 
n n 

n mean square. 

Theorem 4. If mG(O) > 1:, then 

lim E([2 [O,al/mnG (a)-W]2) 0 
n n 

n 

To motivate the result, consider the simplest case, where G 

1.S lattice, e.g. a distribution go,gr,:g2~ •. ,ga dn{O,L,2,= .. ,'a.}i 

anda i sa1ki: n t eg~.!t..,: 'fhen.th:ecp art i e:h e s,i n'{O~ 1,2 c, • ~ .• , a} jforman 

(a+1)-type Galton-Watson process with mean matrix 

gl g2 ga 

go gl ga-1 
m 0 go ga-2 

. 
0 0 go 
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Limit theorems for such a situation can be found in [10]. 

It turns out, that W governs the behaviour of the process, so 

that the asserted convergence in Theorem 4 1n the lattice ca

se may be deduced from the results of [10]. 

The proof of Theorem 4 follows the lines of Section 3 by 

introducing a suitable f and e"St~mating the Bk(n) 's. While 1n 

Section 3 central limit theorems were applicable, we need he

re a lemma on the behaviour of the G (a)'s, which 1S slightly 
n 

stronger than the estimate G (a) = 0(6 n ) for all 6 > G(O) 
n 

([3], pg. 144) useful in standard renewal theory~ 

The assumption G(O) > 0 may here be relaxed to G(E) > 

G(O) for all E > 0 so that G Ca) > 0 for all n. 
n 

Lemma 1. G l(a)/G (a) + G(O) n+ n 

Proof. For any E > 0, write G(x) G(E)F(x) +(l-G(E»H(x), 

where F is concentrated on [O,E]and H on DE,oo[. Then Hk(a) == 0 

for k > N = alE and expanding by the binomial formula we get 

1 N (n+l) k G lea) = G(E)n+ ~ a 
n+ k=O k 

F n + l - k * Hk(a), 

where a (I-G(E» /G(E). Thus 

n+l 
~ G(E) n+l-N Gn(a) 

and we need only to let first n tend to infinity and then E 

to zero. 

Proof. 0'f:. Theorem 4: Let for any fixed n,f(x) 

} G (0) - l{ O}G (a) and note that < a n x= n 

Z [O,a]/mnG (0) - Z (O)/mnG (0) 
n n n n 

Also, 

Bk(n) < Jf 2 dG 
n-k k 

U /mnG (O)G Ca) 
n,n n n (4. 1) 

(4.2). 
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Ck (n) + Dk' (n) (say) 

We shall show th~ existence of constants A < 00, p > 1, 

o < Ik(n) < 1 with lim Ik(n) = 0 for all k such that 
n 

(4. 3) 

Using (4.1), (2.1) and the dominated convergence theo

rem, this will complete the proof. It suffices to establish 

(4.3) for the Ck(n)'s and the Dk(n)'s separately. The treat

ment of these two cases are ,very similar and we consider only 

the latter which is more complicated. We define A,p such that 
k 2 -k 

Gk(a)/m Gk(O) ~ Ap for all k. This is possible because of 

Lemma 1 and mG(O) > 1. If 

then obviously 0 ~ Ik(n) ~ 1 and 

2 2 -k 
< AG (O)G (a)p Ik(n) n n 

It only remains to prove that 

2 

f~+ 
G k(a-x) 

lim 
n-

dGk (x) 
2 

< 
n Gn_k(a) 

lim (Gn(a)/Gn_k(a) - Gk(O)) 
n 

lim 
n 

lim Ik(n) = O. 
n 

G k (a-x) 

f~+ 
n-

Gn - k (a) 

o by Lemma 1. 

But 

dGk(x) 

Also, the distribution of the particles of the th 
n gene-

ration over [O,a] may be described. We shall show, that th~; 
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in an appropriate sense tends to a probability measure Ga on 

[O,a], which has the interpretation as the limiting distribu

tion of the position X. of a particle of the nth generation 
~ 

conditioned upon {X. 
~ 
.... n 

_n } < .. a • If G(E) > G(O) for all E > 0, we 

define Ga to be degenerate at a. o the rw i s e, let F (x) 

(G(x) - G(O»)/~l-G(O». Since F(E) = 0 for some E > 0, there 

is a greatest integer N such that FN(a) > 0 and we let Ga(x) = 

FN(x) /FN (a), x < a. Then 

Lemma 2. For 0 < x < a, G (x) /G (a) -+- Ga(x) 
n n 

From this lemma and Theorem 4, we immediately get 

P 
Corollary: For 0 < x < a, Z [O,x]/Z [O,a] ~ Ga(x) 

n n 

Proof.of Lemma 2: We have to distinguish between the 

two cases in the definition 'of Ga. In the latter, the asser"": 

tion is clear from 

G (x) 
n 

G (a) 
n 

~ (~)exkFk(X) 
k=l 
~------------, where ex = (l-G(O»/G(O). 

~ (~)exkFk(a) 
k=l 

In the former, let A = {XE]O,E] IG (a-x)/G (a) > 6} n n n 
where 0 < E < a, 6 > O. Then 

fA dG .:s. iJ~+ Gn (a-x) /Gn (a) dG(x) 
1 
7(G l(a)-G (a)G(O»/G (a) \) n+ n n 

n 

Thus by Lemma I, lim fA dG = O. Since G(E) > G(O), it follows 
n n 

that fACn]O,E]dG > 0 for n 
n 

large so that in particular, ther~ 

is 
c Then a x E A n]O,E). n n 

G (a-E)/G (a) < G (a-x )/G (a) < 6 
n n - n n n -

Thus by letting 6 tend to zero, we get G (a-E)/G (a) -+- 0 and n n 
since E is arbitrary we are done. 

Note that again Lemma 2 holds only for G(E) > 0 for all 

E > O. 
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