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Summary 
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The ASN/n for curtailed and semicurtai1ed single sampling by 

attributes is found as function of the acceptance probability (OC) 

for the binomial and the Poisson distribution. The two binomial 

ASN/n functions are approximated by means of the corresponding Pois­

son function. A table of ASN/n for the Poisson case is given and it 

~s shown that the relative error of the approximations is small. An 

approximation based on the normal distribution is also derived. 
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Let n denote the sample s~ze and c the acceptance number for a 

binomially distributed random variable with parameter p. It is well-

known, see for example Statistical Research Group, Columbia University 

[6], that the ASN divided by n for fully curtailed sampling equals 

e(p) = B(c,n+l,p) (n-c)/nq + {l - B(c+l,n+l,p)}(c+l)/np, 

where B(c,n,p) denotes the binomial distribution function. If curtail-

ment takes place only in connection with rejection the first term in 

the formula above should be replaced simply by B(c,n,p) and we shall 

denote this semicurtailed ASN/n by eb . A table of e and/or eb will be 

rather voluminous because e depends on three variables (c,n,p), see 

Blyth and Hutchinson [1]. 

It seems natural to investigate the corresponding Poisson formula, 

e say, which depends on two parameters only, and try to approximate e 
g 

and eb us~ng eg as the main term in the approximation. 

Deducing the Poisson formula directly or from the binomial formula 

by passing to the limit in the usual way (p + 0 , n + 00 and fixed 

np m) we get 

e (m) = G(c,m) + {l - G(c+l,m)} (c+l)/m, 
g 

where G(c,m) denotes the Poisson distribution function. Note that e 
g 

corresponds to eb because we cannot have curtailment by acceptance 

under Poisson conditions. 

Since the derivative of e (m) ~s negative it follows that 
g 

decreases from 1 to 

e (n) 
g 

G(c,n) + {l - G(c+l,n)} (c+l)/n 

e (np) 
g 

as p increases from 0 to 1. Similarly eb (p) decreases from 1 to (c+l)/n. 
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It may be proved that eb(p) > eg(np ) for 0 < p ~ 1. It follows from the 

definitions that e(p) < eb(p) for 0 < p < 1. Furthermore, for 0 < c < n - 1 

e(p) first increases from e(O) = (n-c)/n to a maximum and then decreases to 

eel) = (c+l)/n. Consequently e(p) and e (np) intersect. An example has 
cr 
o 

been shown in,Fig.l. (To demonstrate the characteristic features of the 

curves and the differences between them we-have chosen rather small 

values of n and c.) 

Fig. L Comparison of the three ASN!n curves as functions of 

the fraction defective for n = 10 and c = 2. 
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Normally we are interested in the ASN corresponding to a known 

value of the ac. We shall therefore transform the three functions above 

so that they become functions of the acceptance probability. Let us 

define p and m as solutions to the equations B(c,n,p) = ~ and 
~ ~ ~ 

G(c,m ) 
~ 

a ,respectively, a ~ a ~ 1. Note that this definition of 

m means that m is different from np As shown by Rald [3] it follows 
a a a 

from a result by Wise [1'] that 

(1) 

which may be used to find p from m with sufficient accuracy for most 
a a 

applications in sampling inspection. Tables of m have been given by 
a 

Rald and Kousgaard [4] and Burstein [2]; m 
a 

m (c) may also be found 
a 

as ! (2c+2). 

Setting e (m ) 
g a 

E (a) and e(p ) 
g a 

E(a) it ~s straightforward to 

show that 

and 

E (a) 
g 

a + (l-a)(c+l)/m g(c,m) 
a a 

a + (l-a)(c+l)/np b(c,n,p )(n-c)/n 
a a 

E(a) = Eb(a) + a(np -c)/nq - b(c,n,p ) p (n-c)/nq, 
a a a a a 

(2) 

(3) 

(4) 

where g(c,m) and b(c,n,p) denote the frequency functions for the Poisson 

and binomial distributions, respectively. Closely related results for 

the binomial have been given by Shah and Phatak [5]. 

Graphs of the three functions corresponding to Fig. 1 are shown ~n 

Fig. 2. 
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Fig.2. Comparison of the three ASN/n curves as functions 

of the probability of acceptance for n = 10 and c 2. 
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From (2) and (3) we have 

c+ 1 !r .nmpaa Eb(a} = Eg(a) + (I-a) m _ 
a 

n-c 
n . 

Replacing b(c,n,p ) by g(e,m )(l+(c/2n», see Lemma 2 in the Appendix, a a . 

using (2) to eliminate g(c,m ) and inserting (1) we get 
a 

(5) 
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Noting that the correction to Eb(a) in (4) is O(n- l ) we get 

E(a) Eb(a) + {a(m -c) - g(c,m )m }/ a a a 
n + O(n-:~) 

Eb(a) + {m E (a) + a - c - l}/ 
a g 

-2 
n + O(n ), 

where we have used (2) to eliminate g(c,m). Inserting (5) 
a 

we finally ge t 

E(a) = E (a) + {E (a) (2m -c) + a - c - l}/ 2n + 0(n-2). (6) 
g g a 

(5) 

To compute the approximationYto Eb(a)we 
(6 ) 

whereas the approximationYto E(a) requires a 

need only a table of E (a) 
g 

table of m as well. Both 
a 

approximations are simple to compute and rather accurate as will be 

shown in the following. 

Table 1 contains values of E (a) for 9 commonly used values of a 
g 

and c = 1(1)20(2)50(5)70(10)100. 

Table 2 contains for c = 5 and n = 20 and 50 the values of E (a), 
g 

Eb(a) and E(a) and the errors, ~ and ~, i.e. the approximations 

computed form (5) and (6) minus the exact values. It will be seen that 

the error decreases with n and that the error even for n = 20 is rather 

small. 

A survey of the relative error ~s g~ven in Table 3 which shows 

that the absolute value of the relative error by using the approximations 

for n; 20 and (c+l)/(n+l) ~ 0.25 is at most 1.80 per cent for 

0.01 < a ~ 0.99. The maximum of the relative error ~s normally found for 

rather small values of n, so that for large values of n the relative 

error will be considerably smaller than the maximum shown in Table 3. 
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Table l. The ASN/n = E (a) as function of the acceptance probability 
g 

for the Poisson distribution. 

Probability of Acceptance 

C .990 .950 .900 .750 .500 .250 .100 .050 .0lO 

0 .995 .975 .949 .869 .721 .541 .391 .317 .215 

1 .997 .982 .964 .903 .783 .625 .483 .409 .300 

2 .997 .986 .970 .919 .814 .672 .538 .466 .355 

3 .998 .988 .975 .929 .835 .703 .576 .507 .397 

4 .998 .989 .977 .936 .850 .726 .606 .538 .430 

5 .998 .990 .979 .942 .861 .744 .629 .563 .457 

6 .998 .991 .981 .946 .870 .759 .648 .584 .479 

7 .999 .992 .982 .949 .877 .771 .664 .602 .499 

8 .999 .992 .983 .952 .883 .781 .678 .617 .516 

9 .999 .993 .984 .954 .888 .790 .690 .631 .531 

10 .999 .993 .985 .956 .893 .798 .700 .643 .545 

11 .999 .993 .986 .958 .897 .805 .710 .654 .558 

12 .999 .994 .986 .960 .901 .811 .718 .663 .569 

13 .999 .994 .987 .961 .904 .817 .726 .672 .579 

14 .999 .994 .987 .962 .907 .822 .733 .680 .589 

15 .999 .994 .988 .964 .910 .827 .740 .688 .598 

16 .999 .995 .988 .965 .912 .831 .746 .695 .606 

17 .999 .995 .988 .966 .914 .835 .752 .701 .613 

18 .999 .995 .989 .967 .916 .839 .757 .707 .621 

19 .999 .995 .989 .967 .918 .843 .762 .713 .627 

20 .999 .995 .989 .968 .920 .846 .766 .718 .634 

22 .999 .995 .990 .970 .923 .852 .775 .728 .645 

24 .999 .996 .990 .971 .926 .857 .782 .737 .656 

26 .999 .996 .991 .972 .929 .862 .789 .745 .666 

28 .999 .996 .991 .973 .931 .866 .795 .752 .674 

30 .999 .996 .991 .974 .933 .870 .801 .758 .682 

32 .999 .996 .992 .975 .935 .873 .806 .764 .690 

34 .999 .996 .992 .975 .937 .877 .811 .770 .697 

36 .999 .996 .992 .976 .939 .880 .815 .775 .703 

38 .999 .996 .992 .977 .940 .882 .819 .780 .709 

40 .999 .997 .992 .977 .941 .885 .823 .784 .714 

42 .999 .997 .993 .978 .943 .887 .826 .789 .720 

44 .999 .997 .993 .978 .944 .890 .830 .792 .725 

46 .999 .997 .993 .979 .945 .892 .833 .796 .729 

48 .999 .997 .993 .979 .946 .894 .836 .800 .734 

50 .999 .997 .993 .979 .947 .896 .839 .803 .738 

55 1.000 .997 .994 .980 .949 .900 .845 .811 .748 

60 1.000 .997 .994 .981 .952 .904 .851 .817 .756 

65 1.000 .997 .994 .982 .953 .907 .856 .823 .764 

70 1.000 .997 .994 .983 .955 .910 .860 .829 .771 

80 1.000 .998 .995 .984 .958 .916 .868 .838 .783 

90 1.000 .998 .995 .985 .960 .920 .875 .846 .793 

100 1.000 .998 .995 .985 .962 .924 .881 .853 .802 
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Table 2. Comparison of the three ASN/n functions and evaluation of the 

errors by using the approximations (5) and (6). 

c = 5 c = 5 n = 20 c = 5 n = 50 

a E Eb Llb E Ll Eb ~ E b. 
g 

.990 .99B .999 .000 .829 .008 .998 .000 .933 .001 

.950 .990 .993 .000 .860 .009 .991 .000 .941 .001 

.900 .979 .985 -.001 .875 .009 .982 .000 .940 .001 

.750 .942 .956 .000 .884 .008 .947 .000 .920 .001 

.500 .861 .893 -.002 .856 .004 .873 .000 .860 .001 

.250 .744 .799 -.004 .785 -.002 .765 -.001 .760 .000 

.100 .629 .705 -.007 .700 -.006 .657 -.001 .656 .000 

.050 .563 .651 -.009 .649 -.009 .596 -.001 .595 -.001 

.0lD .457 .563 -.013 .562 -.013 .496 -.002 .496 -.001 

Table 3. Absolute value of maximum relative error expressed as 

percentage by using (5) (upper entry) and (6) (lower entry) to compute 

Eb (a) and E(a) for n ~ 20. 

Probabi1i ty of Acceptance 
c + 1 
n + 1 0.99 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.01 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 

0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.10 0.20 
0.05 0.03 0.03 0.02 0.02 0.01 0.02 0.06 0.10 0.20 

0.00 0.00 0.00 0.01 0.03 0.09 0.19 0.28 0.54 
0.10 0.12· 0.11 0.10 0.08 0.04 0.05 0.17 0.27 0.53 

0.00 0.00 0.01 0.03 0.11 0.28 0.54 0.77 1.34 
0.20 0.56 0.51 0.46 0.36 0.17 0.12 0.47 0.73 1.33 

0.00 0.00 0.01 0.05 0.16 0.40 0.76 1.06 1.80 
0.25 0.93 0.84 0.77 0.61 0.29 0.16 0.66 1.01 1. 79 

0.00 0.01 0.02 0.09 0.28 0.68 1. 27 1. 74 2.86 
0.33 1.86 1. 69 1. 55 1.19 0.56 0.25 1.09 1.64 2.84 

0.00 0.02 0.06 0.19 0.56 1. 29 2.31 3.07 4.78 
0.50 5.61 5.03 4.48 3.20 1.46 0.35 1. 94 2.89 4.74 
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To complete the inves tigation we ,.shall derive an approximation 

to E (a) based on the normal distribution. From the Edgeworth expansion 
g 

we have 

where ¢ (u) denotes the standardized normal density function and u 

(m-c-l)/ Ic + '1. (The expansion is found from the expansion of the gamma 

distribution using the relation between the Poisson and the gamma dis-

tributions.) Similarly. the Cornish- Fisher expansion gives 

m = (c+1) {1 - u / ~ + (u2-1)/(3(c+1») + O(c-3 / 2)}, a a a 

where ~ (u ) F a, ~(u) denoting the standardized normal distribution 
a 

function. Inserting these expanS10ns into (2) we get 

E (a) 
g 

1 + {(l-a)u - ¢ (u )}/ ~ 
a a 

+ {(1-a)(2u2+1) - ¢(u )(u3 - 3u )}/(3(c+1» + 0(c-3/ 2). (7) 
a a a a 

The error of this approximation has been illustrated 1n Table 4. 

It will be seen that the error is a decreasing function of c and that 

the approximation is satisfactory for most practical purposes for c > SO. 

Analogous results may be found for Eb (a) and E~~1 by means of 
-"'\ 

expansions of the beta distribution. 

Table 4. Errors by using the approximation (7) to Eg(a). 

c = 20 c = SO c = 100 

a E D,. E D,. E D,. 
g g g 

.990 .999 .000 .999 .000 1.000 .000 

.950 .995 .006 .997 .003 .99$ .001 

.900 .989 .012 .993 .005 .995 .002 

.750 .968 .016 .979 .006 .985 .003 

.500 .920 .001 .947 .000 .962 .000 

.250 . 8~·6 -.012 .896 -.005 .924 -.003 

.100 .766 .000 .839 -.002 .881 -.001 

.050 .718 .014 .803 .003 .853 .001 

.001 .634 .046 .738 .013 .802 .005 
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Appendix 

Lemma 1. For fixed c and m , 0 < m < 00 p = min and n + 00 we have 

b(c,n,p) = g(c,np){l + p(c - ! np) - (c2_c)/ 2n + 0(n-2)}. 

Proof. This result follows immediately from an expansion of 

In {b(c,n,p)/ g(c,np)} using Stirling's formula for In n! and the 

power series expansion for In(l-p). 

Lemma 2. For fixed c and a , 0 < a < 1 , and n + 00 we have 

b(c,n,p ) = g(c,m ){l + c/ 2n + 0(n-2)}. 
a a 

Proof. From (1) we get 

which by means of Taylor's expansion gives 

g(c,np ) = g(c,m ){l + (m _c)2/ 2n + 0(n-2)}. 
a a a 

Combining this result with Lemma 1 for p = p Lemma 2 follows. 
a 
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