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1. INTRODUCTION AND SUMMARY 

The pu~pose of the present paper ~s to clarify the following 

question: For which covariance models do the problems of 

statistical inference have an explicit solution? 

The question ~s relevant if one wishes to develop a general 

theory for covariance models because then one has to make a 

compromise between, on the one side, to make it as general as 

possible in order to cover most of the relevant examples and, 

on the other side, to provide that it can produce satisfactory 

solutions of concrete models and to make a right compromise 

it ~s necessary to know the nice models. 

Since there has been a tendency to develop very general theo­

ries we shall here be rather concrete and only be interested 

in covariance models for which the maximum likelihood estima­

tor and its distribution, in the case where the observation is 

-norrnaf!y A1st_ribut~d,_ can J>egiven e~plicit 1~~' 

The most general theory for statistical models which deals with 

exact problems is the theoEl of canonical exponential families, 

see B a rnd 0 r f f - N i e 1 sen (1970:). For the multidimensional normal 

distribution with mean zero' the canonical hypotheses are those 

which are affine in the ~nverse covariance; for these models 

we have, for any choice of a basis in the sample space, that 

the orthogonal projection, with respect to the trace form, of 

the empirical covariance onto the space of inverse covariances 

is a minimal sufficient statistic, and the result of the gene­

ral theory is that the maximum likelihood estimator, if it e­

xists, ~s a unique solution to the likelihood equation and 

that this equation is given by setting the projection of the 

empirical covariance equal to the projection of the variance, 

see also Anderson (1969), Section 5. However, this equation 

cannot be solved explicitly in general and we have to make 

some restrictions. Since what one understands by an explicit 

solution is not objective, we shall not try to show that some 

restrictions are necessary, but only make one assumption which 

seems natural, namely that the ~ypothesis are linear in the 
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covariance too; 1n fact, the hypotheses which one can under­

stand are those which are linear in the covariance while the 

condition that they are linear in the inverse covariance only 

shall provide that they are mathematically tractable. 

In this paper we shall prove a structure theorem for covarian­

ce models which are linear in both the covariance and the inver­

se covariance and from this structure theorem show that these 

models can be solved explicitly. 

In Section 2 we prove that the models can be characterized by 

means of Jordan algebras. In Section 3 and 4 we have stated 

the results from the theory of Jordan algebras which we shall 

use. In Section 6 we prove the structure theorem for the mo­

dels. The theorem says that the models are products of models 

each of which being either I. independently identically distri­

buted (multidimensional) real, complex, or quaternion variables 

with a completely unknown covariance or II. independently i­

dentically distributed (multidimensional) variables with a 

parametrization of the covariance which is given by means of 

the Clifford algebra. The models I are known and it has 

been shown that they have explicit solutions, see Anderson 

(1958), Goodman (1963), Khatri (1965), and Ander~son(1972). 

The models II are not known before and in Sections 7 and 8 we 

show that the problems of estimation and testing have rather 

explicit solutions; it turns out that the distribution pro­

blems are not more complicated than those for the twodimensio­

nal normal distribution. In Section 9 we have given one of 

the possible representations of the models which have a dimen-

sion which is less than sixteen. Finally in Section 10 we 

briefly discuss how the general theory of exponential famili­

es works on the models we treat. 

Anderson (1969), (1973), (1974) has treated covariance models 

with linear structure but, as he states, the exact distribution 

of the maximum likelihood estimator can not be obtained in clo-

sed form in general. Seely (1971), (1972) has treated covari-

ance models for which the smallest affine subspace containing 

the family of unknown covariances is a linear space Land 
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(assuming IEL) he prove that such a model admits a complete 

sufficient statistic if and only if L satisfy condition (2.3) 

in this paper (he called such a subspace a quadratic subspace 

but the right name must be a Jordan algebra). If one combi-

nes Seely's and our results one get that the linear covarian­

ce models which admit a complete sufficient statistic precise­

ly are those which are characterized in Section 6. 

2. COVARIANCE MODELS GIVEN BY JORDAN ALGEBRAS. 

Let E be a real vector space and e a non empty family of regu-

lar covariances on E. In the following we shall always assu-

i.e. there exists a subspace L me that e is a linear space; 

* of the vector space B (E ) of symmetric bilinear forms on E's 
s 

* dual space E such that 

e = {LEL!L lS positive definite}. (2. 1) 

The two lemmas below give necessary and sufficient conditions 

in order that the family of inverse covariances 

is a linear space too; 1.e. that there exists a subspace M 

of the vector space B (E) of symmetric bilinear forms on E 
s 

such that 

e- 1 = {6EM16 lS positive definite}. 

We choose a fixed element 6 Ee- 1 . 
o 

With 6 E is a vector 
o * 

ce with an inner product and we can identify E with E • 

(2. 2) 

spa-

* Hereby both B (E) and B (E ) are 
s s 

identified with the symmetric 

linear mappings of E into itself and we can consider e and 

e- l as subsets of the same vector space. Moreover, since 6 
-1 0 

and 6 correspond to the identical mapping of E into itself, 
o 

we have lEe and lEe-I. 

Lemma 1. e- 1 is a linear space if and only if e- l e. 
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Proof. If is obvious. 
-1 

Suppose 8 has the form (2.2). Let 

aEL. 
-1 

For A sufficiently small 1 - AaE8 and (l-Aa) = 
2 2· -1 -1 -1 

1 + Aa + A a + ... E 8 . Since lE8 , «(l-Aa) -l)/A 

a+ Aa 2 + .0. EM and, letting A tend to zero, we have aEM. 

Thus L c M and by symmetry it follows that MeL. 
- -1 

we have 8 = 8 • 

Lemma 2. 8-1 . 
~s a linear space if and only if 

Va, bEL: ab + ba E L. 

Since L 

(2. 3) 

M 

Proof. Only if: It follows from lemma 1 that L = M. Let aEL. 

For A sufficiently small 1 - AaE8 and (l-Aa)-l = 

2 2 -1 
1 + Aa + A a . + ••• E e • 

-1 2 
Since 1,aEL, «l-Aa) -l-Aa)/A = 

2 + 'A a 3 + E L and, a ,- .. letting A tend to zero, we have a 2 EL; 

Hence ab ba (a+b)2 2 b 2 E L for a,b E L. If: Let + = - a -
aE8. By induction it follows from (2. 3) that anEL for n > O. 

For A sufficiently small and positive a = (l-(l-Aa»/A and, 
-1 2 

s~nce 1 - Aa E L, a = A«(l-Aa) + (l-Aa) + ... ) E L. Thus 

8 c e- l and e- l c (e-l)-l = 8 and it follows from lemma 1 
- -1 -

that 8 is a linear space. 

The condition (2.3) says that L is a Jordan algebra of symme­

tric linear mappings of E into itself. Now the theory of Jor­

dan algebras is extensively treated in the literature, see 

Jacobson (1968), or Braun and Koecher (1966), and in the fol­

lowing two sections we shall merely collect the results which 

we shall need later on. 

3. THE STRUCTURE OF JORDAN ALGEBRAS. 

A Jordan algebra over the real numbers R ~s a real vector spa­

ce J with a composition 0 satisfying 

Va,bEJ: a 0 b = boa, (3.1) 

VAERVa, bEJ: (Aa) 0 b = A (a 0 b), (3.2) 

(3. 3) 
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'ia,bEJ: (a 2 0 b) 0 a = a 2 0 (b 0 a). (3.4) 

Thus the composition 0 is commutative and distributive with 

repectto +,butthe associative law is replaced by (3.4). 

For an' ass'o'ci'ativealgebra A we d f' can e 1ne a new composition 
. by s ett'ing' 

a 0 b 
1 ' 
"2(ab+ba) (3.5) 

for a,b E A, and it 1S easy to see that A with the composition 

o is a Jordan algebra; 
. . + 
1t 1S denoted A • 

A Jordan algebra J is called special if there exists an asso­

ciative algebra A such that J is a Jordan subalgebra of A+. 

A Jordan algebra J is called formally real if a 2 + b 2 = 0 

implies a = 0 and b = O. 

We can now formulate condition (2.3) 1n lemma 2 by saying 
+ that L is a Jordan subalgebra of (EndR~) , where End'1tE is the 

linear mappings of E into itself. Hence L 1S special and, 

since L consists of symmetric mappings, it 1S clear that L 1S 

formally real. 

The structure of a finite-dimensional special formally real 

Jordan algebra is completely known according to the following 

theorem of Jordan, von Neumann, and Wigner: 

Theorem 1. Let J be a finite-dimensional, special, and for-

mally real Jordan algebra. Then J is somorphic to a product 

of Jordan algebras, J. = Jlx .. oxJk , where each J i , 1 1,_ •• ,k, 

1 sis om 0 r ph i c t 0 on e 0 f the follow i n g : ( i) R, ( i i ) R x V. w h e -

re V is an m-dimensional real vector space, m ~ 2, with a po­

sitive definite form ¢ and where the composition in R x V 1S 

given by 

(a,~) 0 (S,y) = (as+¢(x,y),Sx + ay), (3.6) 

(iii) H (D), r > 3, where D is one of the iclassical fields, 
r 

the real numbers R, the complex numbers C, or the quaternions 

H, and Hr(D) the Hermitian r x r-matrices with elements in D. 
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Proof. See Jacobson (1968), p 205, Braun and Koecher (1966), 

p. 331, or Jordan, von Neumann,and Wigner (1934), p. 63. 

Two Jordan algebras R x VI and R x V2 of type (ii) are isomor­

phic if dim VI = dim V2 , Apart from this case none of the Jor-

dan algebras mentioned in theorem 1 are isomorphic. We shall 

see in Section 9 that R x V for m 2,3, and 5 is isomorphic to 

H2 (D) for D = R,C, and H. 

4. REPRESENTATIONS OF JORDAN ALGEBRAS. 

Theorem 1 ~s not quite sufficient for our purpose; we wish 

to know, not only the structure of a Jordan algebra, but also 

~n which way it can be represented as symmetric linear m.iap-

pings of E into itself. We shall need the notion of a unital 

special universal envelope algebra, ~n the following abbrevi­

ated usuea. 

Let J be a Jordan algebra with a unit; an associative algebra 

A and a Jordan algebra homomorphism a: J + A+ sending 1 into 

1 is called a usuea for J if, for any associative algebra B 
. + 

and any Jordan algebra homomorphism f: J + B sending 1 into 

1, there exists a unique algebra homomorphism n: A + B sending 

1 into 1 such that f = n 0 a: 

a 
J .~.-.~-.~ A 

n 
f 

B. 

Every Jordan algebra has one.and,upto isomorphism, only one 

usuea and it ~s generated by the image of J, see Jacobson (1968~ 

p. 73. If J ~s a special Jordan algebra there exists a Band 

an injective f and it follows that a must be injective. 

The usuea for a product of Jordan algebras is a product of 

the usuea's, see Jacobson (1969), p. 74. Thus we only need 

to know the usuea's ,for the Jordan algebras mentioned ~n 
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theorem 1. They are: (i) for R: R with 0: R -+ R the identical 

mapping, see Jacobson (1968), p. 74, (ii) for R x V: The Clif­

ford algebra C(V,~) with the canonical mapping 0: R x V -+ 

C(V,cp), see Jacobson (1968), p. 74, (iii) for H (D), r> 3: The 
r -

algebra M (D) 
r 

H (D) 
r -+ Mr(D) 

143. 

of r x r-matrices with elements in D and 0: 

the inclusion mapping, see Jacobson (1968), p. 

For definition and properties of the Cliffor~ alseb~a see 

Cheval ley (1954) _or Bourbaki. (1959) ; see also below.', 

According to Wedderburn's structure theorem the finite-dimen­

sional simple associative algebras over R have the form EridDS 

where D is R, C, o~ H, S a finite-dimensional vector space 

over D, and EndDS the D-linear mappings of S into itself, see 

B 0 u r b a k i! (195 8), p. 49 • We s hall a 1 way s ass um e t hat S 1 S a 

right D-space; thus, for any choise of a D-basis in S, EndDS 

1S isomorphic to Mr(D) where r = dimDS. 

We can say, therefore, that the usuea for a Jordan algebra of 

type (i) or (iii) is a simple algebr~ EndDS and that there 

exists a D-basis in S such that the elements 1n the Jordan al­

gebra by 0 correspond to Hermitian matrices. 

The structure of the Clifford algebra C(V,cp), where cP 1S a po­

sitive definite form on V and m = dim V, 1S given by the fol-

lowi ng ~ab Ie: 
m -- C C,,~ qJ) 

- ~ - - -

D S (m) =dimDS a(m) 

8x+l R 

8x+2 R 2 4.x+1 

8x+3 C 24x+l 24.x+2 

8x+4 H 2 4.x+3 

, 
i', 8x+5 H 

i 

! 

8x+6 24x+2 24.x+4 H 

8x+7 C 24.x+4 

i ! 
8x+8 R 24.x+4 
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For a proof see Chevalley (1954), p. 66. 

The usuea for a Jordan algebra of type (ii) is thus either a 

simple algebra or a product of two identical simple algebras. 

We shall say we are 1.n case (iia) if C(V,cp) is simple and 1.n 

case (iib) otherwise. 

divisible by four. 

Thus we are in case (iib) if m - 1 is 

We choose a basis in S in case (iia) and a basis in each of 

the two SIS in case (iib); then the mapping a: R x V + C(V,cp) 

in case (iia) corresponds to a mapping 

a : 
m R x V + Me (m)(n) 

and in case (iib) to a mapping 

a 
m 

where nand SCm) = dimnS are given in the table above. 

(4.la) 

(4.lb) 

Lemma 3. The basis or the bases in S can be chosen 1.n such a 

way that a maps R x V into Hermitian matrices. 
m 

We shall need the following property of the Clifford algebra: 

The Clifford algebra C (V,~) is a real algebra of dimension 2m 

for which there exists an injective linear mapping 

i: V + C(V,¢) 

such that i(V) generates C(V,cp) and such that 

VvEV: (i(v»2 = ¢(v,v) • 1, (4.2) 

see Chevalley (1954), p. 40. 

From (4.2) it follows that 

(4.3) 

and from ( 4 • 3) it can b e see nth at 1 ( i (V) ; the mapping 
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Proof of lemma 3. We shall only give the proof in case (iib); 

in case (iia) the proof is simpler. Choose an orthonormal ba-

Set x. = i(e.), J = 1, ••. , m and let G 
J J 

1.n v. 
be the subset of C(V,~) which consist of the elements ±l and 

±xil •.• x ik ' 1,::, i l ':' ••. :5. i k :5. m, k = 1, •.. ,m. It follows 

from (4.2) and (4.3) that G is a finite group. Choose a POS1.-

tive definite Hermitian form ~ on S x S such that_the two S's 
o 

are orthogonal and define a new form ~ on S x S by 

~(X,y) = L ~ (gx,gy). 
gEG 0 

It is clear that ~ 1.S a positive definite Hermitian form on 

S x S and, since the elements of the Clifford algebra map the 

two s's into themselves, that the two S's are 
-1 

x. 

orthogonal with 

respect to ~. 

and we have 

It follows from (4.2) that 
J 

x., j = 1, ... m, 
J 

~(x.x,y) 
J 

L 
gEG 

L 
gEG 

~ (gx.x,gy) 
o J 

~ (gx,gx.y) 
o J 

L 
gEG 

-1 
~ (gx,gx. y) 

o J 

~(x,x.y). 
J 

Hence the elements xl, .. "xm are Hermitian with respect to ~, 

and the lemma follows if we choose bases in the two S's which 

are orthonormal with respect to ~. 

5. HERMITIAN MATRICES. 

In this section we shall briefly discuss the connection be­

tween complex or quaternion matrices and real matrices. 

A complex matrix has the form 

L + iF (5.1) 

where Land F are real matrices. If we consider (5.1) as the 

matrix of a C-linear mapping of a complex vector space with 

basis (el, ..• ,e n ) then the matrix of this mapping with respect 

to the real basis (el, •.. ,en , eli, ..• ,eni) is 
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(5.2) 

(5.1) is Hermitian if and only if I is symmetric and F lS an­

tisymmetric; l.e. if and only if (5.2) is symmetric. 

In a similar way a quaternion matrix has the form 

where I, F 1 , F 2 , and F3 are real matrices, and it corresponds 

to the real matrix 

I -F - F2 - F3 =. 1 

F1 I - F3 F2 (5.4) 

F2 F3 I - F1 

F3 - F2 F1 I 
'} 

(5.3) lS Hermitian if and only if I 1S symmetric and F 1 , F 2 , 

and F3 are antisymmetric; 

tric. 

i . e. i fan don 1 y i f (5. 4 ) iss ymm e -

We shall say a real matrix has a complex or quaternion form if 

i t has the form (50 2 ) 0 r (5. 4) . Conversely (5.2) and (5.4) 

are called the real matrices corresponding to (5.1) and (5.3). 

Usually we use the same notation for a complex or quaternion 
1 

matrix and its real form. Thus the matrices 0 (A,V), 0 (A,V) 
2 m m 

and 0 (A,V) given by (4.1a) and (4.1b) are, when they are con­
m 

sidered as real matrices, a(m) x a(m) - matrices where a(m) = 
dimRS is given in the table in Section 4. 

6. THE STRUCTURE THEOREM. 

We are now in a position to p~ove the structure theorem for 

covariance models which are linear in both the covariance and 

the inverse covariance. 

It follows from Sections 2 and 3 that the models precisely are 
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those which have the form (2.1), where L is a Jordan algebra 

of symmetric linear mappings of E into itself and 1 E L. 

Before we state the theorem it shall be noticed that we by 

means of a fixed inner product on E have identified the symme~ 

* tric bilinear forms on E , the symmetric bilinear forms on E, 

and the symmetric linear mappings of E into itself. If we 

choose a basis in E then anyone of these objects correspond 

to a matrix, but two objects which are identified have in gene­

ral only the same matrix if the chosen basis is orthonormal 

with respect to the fixed inner product ! 

Let L = J x 
1 

x J k be the decomposition of L into a product 

of the Jordan algebras mentioned in theorem 1. We have 

Theorem 2. There exists an orthonormal basis In E such that 

e is the family of matrices of the form 

( 6. 1) 

o 

where Ai lS an Ni x Ni-matrix, 1 1, •.• ,k, dimRE = Nl +· •• +N k , 

where the A. 's vary independently, and where the set of the 
1 

A. 's are given by following parametrizations: 
1 

(i) If J. = R: 
1 

A. = aI N ' a > O. 
1 . 

1 

(6.2) 

(iia) If J. = R x' V, m = dim V, and m - 1 lS not divisible by 
1 

four: 

A. = (J (>..,v) \.'II I , 
1 m n 

(6.3a) 

where (>..,v) E R x V such that (J (>..,v) lS positive definite and 
m 

where N. = aCm)n. 
1 

Ciib) If J. 
1 

R x V, m dim V, and m - 1 is divisible by four: 
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e 2 (A,v) 0. I }. 
m n 2 

(6.3b) 

1 where (A.,v) E R x V such that 0" (A.,v) 
m 

and 0"2(A.,v) 
m 

are positive 

.definite and where Ni = a(m)(n l +n 2 ). 

(iii) If J. = H (D), r > 3: 
~ r 

A. = L ~ I , (6.4) 
~ n 

where L is a positive definite q x q-matrix, q = r dimRD, 

which has a complex form if D = C and a quaternion form if 

D = H and where N. qn. 
~ 

Remark. 
2 

1 We shall see in Section 7 that 0" (A,v), 0" (A,v), and 
m m· 

0" (A.,v) 
m 

are positive definite precisely when A > 0 and A. 2 > 

cp(v,v). 

Proof. It follows from Section 4 that the usuea for L is a 

each S. 
J 

End D S. 
. J 
] ] 

maps the elements of L into Hermitian matrices. As L c 

and 1 E L there exists a unique algebrahomomorphism n: 
x End D S. + E such that 
] j ] 

a= q(O"(j» for every B. E L: 

0" 
L 

~_m_._. __ ._~~ 
x End D. S. 
J ] ] 

n 
Injection 

EndRE 

(6.5): 

By means of D E is a modul over x End D S .• and it follows 
j j J 

from B 0 u r b a k i (195 8 ), p. 4 2 t h at the r e ex i s t s 1 eft D. ve c tor 
] 

spaces T. and a bijective R ~linear mapping 
] 

g: x S. ~D. T. + E 
] J ] ] 

such that 
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-1 
n((a.» = g 0 (x a. ~ IT.) 0 g 

J J J J 
(6. 6) 

for every (a.) E x EndD S~ .. J • . .J 
J J 

We choose a basis (fa) 1n each T j . 

basis (e S) in Sj and the usual real 

the real basis (e S €y ~ fa) == (e S l§ 

Together with the given 

basis (€ ) in D. we obtain 
y J 

€ f) inS. ~D T .• 
y a J j J 

All 

together we obtain a real basis in x S. ~D T .• In the follo-
. J . J 

wing transposition is with respect to the Jnit form corre-

sponding to this basis. 

Set (a.) 
J 

and, 

Rence 

by 

* g 

0" ( a), a E L. From (6 • 5) and (6. 6) we h a v e 

(x l§ IT. ) 
-1 

a = g 0 a. 0 g 
J J J 

transposition, 

-1* * a = g 0 (x a . ~ IT. ) 0 g . 
J 

J J 

* o g 0 (x a. ~ IT ) = (x a. ~ IT.) 0 g 
j J j j J J 

o g 

(6. 7) 

(6.8) 

(6.9) 

and, s1nce O"(L) generates x End D S. it follows from Bourba-

ki (1958), p. 42 that 

* g 

j j J 

o g = ~(lS. ~ h.), 
J' J J 

where h. E End T. for each j. 
J D. J J . 

(6.10) 

From (6.10) it follows that the h. 's are Hermitian and positi-' 
J 

ve definite. Hence it follows from Bourbaki (1959), p. 123 that 

h. = r.* 0 r., 
J J J 

where r. E End D T. 
J • J 

for each j. Since g is bijective h. 
J 

r b · . . J . are 1Ject1ve. 
J 

From (6.10) and (6.11) we obtain 

*-1 * g g o(x IS . ~ r. 0 r . ) 
J J 

J J 

-1* 
o(x IS . r. *) (x IS. r .) g ~ 0 ~ 

J J 
J ~ 

J J J 

(6.11) 

and 
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-1 * = «x IS i1 r.) 0 g ) 0 (x IS. Mr.), 
j j J J J J 

and by substitution 1n (6.7) we have 

-1 * -1 
a = «x IS. Mr.) 0 g ) 0 (x a, MIT.) 0 «x IS. i1 r.)o g ). 

j J J j J J j J J 

Let 

-1 
k = g 0 (: IS. i1 1;'j). 

J J 

Then it follows from (6.12) that 

* k i1aok=x 
J 

(a. M 
J 

We now choose the image of the basis in x S. ~D 
j J j 

mapping k as basis in E. Since 1 ELand 0(1) = 

(6.12) 

(6.13) 

T. und er the 
J 

(1S ). it 
j J 

* follows from (6.13) that k o k IT. and it is seen 
J 

that the chosen basis is orthonormal. Moreover, it is seen 

from (6.13) that the matrix of a with respect to this basis 

is the same as the matrix of x(a. i1 IT ) with respect to the 
j J j 

S. i1D T .• The theorem then follows from the dis-
J . J 

the uJuea's in Section 4. 

basis in x 

cuss10n 

If we ass um e t hat the dis t rib uti 0 n i s norm a 1 the nth est r u c -

ture theorem shows, since uncorrelated normally distributed 

variables are independent, that the model is a product of in­

dependent normal covariance models which have the form (6.2), 

(6.3a), (6.3b), or (6.4). 
Models of the form (6.2) are of course trivial. 

Models of the form (6.4) for D = Rand D = C are treated 1n 

detail 1n the lite~ature. See e.q. T.W. Anderson (1958) for 

the real case and Khatri (1965) for the complex case. 

S.A. Andersson (1972) has shown that covariance models which 

can be described by invariance under a group of linear mappings 

of the sample space are products of covariance models of the 

form (6.2) or (6.4) for r > 2. He als 0 shows t hat the maximum. 



-15-

likelihood estimator and its distribution, for a model of the 

form (6.4), can be specified 1n a form which, at the same ti-

me, cover all the three cases D R,C, and H. 

The models of the form (6.3a) and (6.3b) do not seem to be 

known. In the following sections we shall show, therefore, 

that the problems of estimation and testing have complete so­

lutions. 

7. MAXIMUM LIKELIHOOD ESTIMATION IN A MODEL OF TYPE (ii). 

It is convenient to describe models of the form (6.3a) and 

(6.3b) in an invariant way. 

The sample space is an N-dimensional real vector space E, 

and we assume that the observation X has a normal distribution 

with mean value zero and that the family of unknown covarian­

ces has the form (2.1), where L is a Jordan algebra of type 

(ii); i.e. we have an m-dimensional, m ~ 2, real vector space 

V with an inner product ~ and an injective Jordan algebra 

homomorphism T of the Jordan algebra R x V into the Jordan al~ 

gebra of symmetric linear mappings of E into itself such that 

e {(A,v)ER x VIT(A,V) is positive definite} 

1S the parameter space and 

the parametrization. 

It follows from Section 4 that the homomorphism T is composed 

of the mapping cr : R x V + C(V,¢) and an algebra homomorphism 
m 

n= C(V,¢) + EndRE. Since cr is injective we shall consider - m 
R x V as a subset of C(V,¢) and in the following omit cr~; 

m 
we shall also write v instead of (O,v) and A instead of (A,O); 

thus A + v = (A,V), T(A) = AlE' and T(A) + T(V) = T(A+V) = 

T(A,V). 

* For v E V we have v * v and n(v) * n(v); thus n:v ) * n(v)_ 
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* and, since R x V generate C(V,¢), it follows that n(s ) 
. * 
.,,(s) for every s E C(V,¢). 

(6.3a) and (6.3b) show that N = a(m) • n where n > 1 and a(m) 

is given in the table in Section 4; 

sible by aem). 

i.e. N has to be divi-

It follows from (4.2) that (A,v) is invertible if and only if 

A2:j: ¢(v,v) (7.1) 

and in this case 
-1 

(A,V) 
2 (l/(A -¢(v,V»)(A,-V). Since n ~s· 

an algebra homomorphism T(A,V) is also invertible if and only 

if (7.1) holds and then 

-1 
T(A,V) 1 

2 
A -¢(v,v) 

T(A,-V). (7.2) 

Now the set of positive definite N x N-matrices is a convex 

connected component in the space of regular symmetric N x N 

matrices; hence it follows from (7.1), since T(l,O) = IE' 

that T(A,V) is positive definite if and only if A > 0 and 

A2 > ¢(v,v); i.e. we have 

8 = {(A,V) E R x VIA>O A A2 > ¢(v,v)}. 

The density for the normal distribution with parameter (A,v)E8 

is 

N 1 

~2TI)-2Idet T(A,V)I 2exp (- 2 1 <T(A,-V),xx'» 
2(A -¢(v,v» 

(7.3) 

N 1 

( 2rr) 21 de t T (A , v) I 2 e xp (- 1 
< TO,-V),p(xx'»), 

2 
2(A -¢(v,v» 

where <,> is the trace form on EndRE and p the orthogonal pro­

jection, with respect to <, > , onto T(R x V). 

The family (7.3) is a canonical exponential family; thus the 

likelihood equation is p(xx') = E(p(XX'» or, since E(p(XX'»= 

p(E(XX'» = p(T(A,v» = T(A,V), 

p(xx') = T(A,V). (7.4) 
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It follows from the general theory of exponential families, see 

Barndorff-Nielsen, theorem 6.8, that p(xx') E ~ = T(e) for' 

every x E E. Therefore, we can define random variables (Y,Y l ) 

with values in e =' {(A,V) /A~O A A2 ~ ¢(v,v)} by 

(7.5) 

slnce T LS injective on R x V. 

Then the condition for the maximum likelihood estimator to 

exist is that (Y,Y l ) E 8, or Y > 0 and y2 > ¢(yl,y l ). 

In order to find the distribution of (Y,Y l ) we need some more 

results about the Clifford algebra. 

* Let r = {SEC(V,¢)/s 
-1 -1 

s A s V s V}. 

r is a group. 

It is obvious that 
-1 

For s E r the mapping v ~ svs of V into it-

self is denoted xes). 
, -1 -1 

From t4.2) it follows that ¢(svs ,svs )= 

s¢(v,v)s-l = ¢(v,v); thus Xes) is an 
-1 -1 2 -1 

svs svs = sv s 

orthogonal transformation of V, and it is easy to see that the 

mapping 

x: r -+ O(¢) 

of R into ¢'s orthogonal group LS a group homomorphism. 

Let sEV such that ¢(s,s) = 1. It follows from (4.2) and lem-
-1 * -1 * ma 3 that s = sand s = S; hence s = s and from (4.3) it 

follows that X(s)(v) = svs- l = -(v-2¢(v,s)s) for vEV; thus 

s E rand Xes) = -pes), where pes) is the symmetry with re-

spect to the hyperplane orthogonal to s. Now it is well known 

that any orthogonal transformation can be written as a product 

of symmetries. For ITEO(¢) there exist, therefore, unit vectors 

sl, ... ,sk in V such that IT = P(sl)".P(sk) = ~kX(sl, .•. ,sk)' 

where ~(v) = -v for v E V. If det TI = 1 it follows, Slnce 

det(, pCs» = -1, that k LS even and we have IT = X(sl ... sk)' 

Thus 

(7. 6) 

where 0 (¢) is the set of orthogonal transformation, of V, 
+ 

with determinant 1. 
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Let v E V. Since dim V > 2 there ~xists an orthogonal trans­

formation n with determinant 1 such that n(v) = -v and it fol­
-1 

lows from (7.6) that there exists an s E r such that svs = -v; 

since n is an algebra homomorphism we have 

n (S)T(V)n (s)-l = T(-V). (7. 7) 

For A ER it ~s obvious that n(s)T(A)n(s)-l = T(A); therefore, 

we have n{S)T(A,V)n(s)-l = T(A,-V). If (A,v) E e it follows 

from (7. 2) t hat d e t T (A , v) • d e t T (A , - v ) = (A 2 - ~ (v , v) N, and we 

obtain 

det T(A,v) 

for (A,v) E e ... 

If we take the trace on both sides of (7.7) we have that 

tr T(V) = tr T(-V) = tr(-T(v)) and it follows that 

<IE' T(V» = o. 

From (3.3) it follows that T(V l )T(V 2 ) + T(V 2 )T(V l ) 

for v l ,v 2 E V and we obtain 

If we substitute (7.5) 1n (7.3) and use (7.8), (7.9), and 

(7.10), then the density (7.3) can be written 

N N 

(2n) 2(A2_~(v,y)) 4exp (- N 
2 (AY - ~(v'Yl))' 

2(;\ -</l(v,v)) 

It foIl ow s from (7. 5) and (7. 9) t hat < Y 1 E ,IE> 

<T(Y,Y 1),lE> = <XX',lE> and we have 

Y = ~ t r (XX' ) . 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

Hence Y is positive with probability one and we can define a 

random variable Z by 

Z = Yl/Y. (7.13) 

The n (Y, Y 1) = (Y, Y Z) , and from (7. 11) it 1 sse en t hat (Y, Z) is 

a sufficient statistic for (A,v); hence it is sufficiently, at 
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first, to find the distribution of (Y,Z) for one value of the 

p aramet er. 

that v = O. 

Until further notice we shall assume, therefore, 

From (7.12) we have that the distribution of Y is a X2-distri­

bution with N degrees of freedom and scaleparameter A/N. 

Let c be an a~bitrary constant; Slnce p«cX)(cX)') 

C 2 p(XX') = c 2 T(Y,YZ) = T(X 2y, (c 2y)Z) we conclude that the 

distribution of Z does not depend on A and since the density 

of X only depends on Y (v=O!), a simple calculation shows that 

Y and Z are independent random variables. 

Let s E r and a E T(R x V). From the definition of r it fol­

lows that n(s,)-lan(s) E T(R x V) and nCs)-l = nCs- l ) = n(s*) 

* nCs) thus 

and we have 

< p ( ( n ( s ) X) (n ( s ) X) I ,a> = < ( n ( s ) X) (n ( s ) X) , , a> 

<n(s)XX' n(s)-l,a> = <XX', n(s)-lan(s» 

<p(XX'), 
-1 

nCs) an(s» 

-1 
<n(s)T(Y,YZ)n(s) ,a> 

-1 < n ( s ) p (XX' ) n ( s ) , a> 

<T(Y, Y(X(s)Z), a>, 

p( (n(s)X) (n(s)X)') T(Y,Y(X(S)Z)) . (7.14) 

Since the distribution of X is invariant under the orthogonal 

transformation n(s) it follows from (7.6) and (7.14) that the 

distribution of Z is invariant under orthogonal transformation, 

of V, with determinant 1. 

Define a random variable R by 

R ¢(Z,Z)1/2 (7. 15) 

From (7.5) and (7.13) it follows that 0 < R < 1 and that the 

maximum likelihood estimator exists if and only if R < 1. 
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We shall find the distribution of R. Let u be an arbitrary 

unit vector in V, ¢(u,u) = 1, and let Zl = ¢(Z,u). 

then Zl = 0 and if R > 0 then 

If R = 0 

and it is seen that zi/R2 is :the square of the norm of the 

projection of z/R on the onedimensional space which contain u; 

thus, since z/R for given R, R > 0, is uniformly distributed 

on the unit sphere, we have that the conditional distribution 

of Z~/R2 for given R, R > 0, is a Betadistribution with (I,m-I) 

degrees of freedom. 

For a > 0 we have, therefore, that 

E (Z 2a) 
1 

E(R2aB(1/2+a, (m-1)/2) 
BO/2, (m-1)/2) 

= E(R2a)B(I/Z+a, (m-1)/2) 
B(1/2, (m-l)/2) 

(7.16) 

and to find the moments of R we only have to find the distri-
2 

bution of Zl. 

From (7. 1 2 ), (7. 10), (7. 9) , and (7. 5) it foIl ow s t h at 

Zl ¢(Z,u) = ¢(Yl/Y,u) 

¢(Y1,u)/(~<XXI,lE>i = <T(Y l ), T(u»I<XX',lE> 

<xx' ,T(u»I<X'X,lE>' 

and we have 

(7.17) 

Since u is a 

* T(U) = T(U) ;. 

-1 
unit vector it follows from (4.2) that T(U) = 

hence (1-T(u»/2 is an orthogonal projection, 

and from ( 7 . 9) we have that tr «IE - T(u»/2) = N/2; thus 

the dimension of the range space is N/2, and it follows from 

(7.17) that (1 - Zl)/2 is Betadistributed with (N/2, N/2) de­

grees of freedom. By a simple transformation we have that the 
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distribution of Z~ is a Betadistribution with (1,N/2) degrees 

of freedom and from (7.16) we obtain 

r(N/4+l/2) r(m/2+a) 
r(m/2)r(N/4+l/2+a). 

(7.18) 

Since N has to be divisible by aCm) it follows from the table 

in Section 4 ~hat N/4 + 1/2 = m/2 if m = 2,3,5 or 9 and N = a(m) 

and that N/4 + 1/2 > m/2 otherwise. In the first case it fol-

lows from (7.18) that the distribution of R is degenerated in 

1 and 1n the second case it is easy to see that the distribution 

of R2 1S a Betadistribution with (m,N/2 - m+l) degrees of free­

dom. 

S till we are "'a s s urn in g t hat the par am e t e r v 1 s Z e r 0, but sin c e 

the null set s wit h res p e c t t 0 a norm aId i s t rib uti 0 n are the s am e 

for all parameters it follows that the maximum likelih00d esti­

mator exists with probability zero if N/4 + 1/2 = m/2 and with 

probability one if N/4 + 1/2 > m/2. In the following we shall 

therefor£ assume that N/2 > m - 1. 

Since R is positive wi~h probability one we can define a ran­

dom variable U by 

U Z/R. 

We have that ¢(U, U) = 1, and, since the distribution of Z is 

invariant under orthogonal transformation with determinant 1, 

it follows that Rand U are independent variables and that U 

1S uniformly distributed on the unit sphere. 

The maX1mum likelihood estimator for CA,v) 1S CY,Y l ) = (Y,YZ) 

(Y,YRU) and for v = a it follows from the results above that 

the distribution of (Y,R,Z) has density 

NN/2 N/2-l N 
rCN/2)(2)c)N/2 y exp(- 2:\Y) (7.20) 

x 2 rm-l(1_r2)N/4-m/2-l/2. 
B(m/2,N/4-m/2+l/2) 
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From (7.11) we have that the density for the distribution of X 

is 

-N/2 2 -N/4 k2 'fl' ) ( ;\ -<j:( v , v) ) e x p ( -
N 

yCA-rcp(v,u») 
2 2(;\ -cp(v,v» 

and,since this density for v = 0 is 

(2 ) -N/2,-N/2 (N ) 
11' A exp - 2I y , 

it follows from this and (7.20) that the distribution of 

(Y,R,U) for an arbitrary parameter (A.,v) E e has density 

(7.21) 

NN/2 N/2-l. N 
f(N/2)2 N/2 CA 2_cp(v,v»N/4 y eX P C--2-(-A-2_-cp-(-v-,-V-)-)Y(A-rCP(V,u») 

x 2 r m- l (1_r 2 )N/4-m/2-l/2 
B(m/2,N/4-m/2+l/2) 

with respect to the product of the Lebesgue measure on [O,oo[ 

(y), the Lebesgue measure on [O,l](r), and the uniform distri­

bution on the unit sphere eu). 

From the structure theorem in Section 6 it ~s seen that the 

models of type Cii) are classified between the classical one­

dimentional models and the classical multidimensional models. 

Thus (7.21) also determine a distribution on a convex cone 

(the distribution of (Y,Y l ) = (Y,YRU) on e) which generalizes 

the X2-distribution but which is simpler than the Wishart di-. 

stribution. We shall see in Section 9 that (7.21) for special 

values of Nand m describe the twodimensional real, complex, 

and quaternion Wishart distributions. 

8. LIKELIHOOD RATIO TEST IN A MODEL BF TYPE (ii) 

The natural hypotheses in a model of type (ii) of course are 

those which again determine a model 6£ type (ii). It follows 

from (3.6) that these hypotheses precisely are those which ha­

ve the form 
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H: (A,v) E R x Vl ' 

where Vl is a k-dimensional, 1 < k < m, subspace of V. 

From (7.9) and (7.10) it follows that the orthogonal projec­

tion, with respect to the trace form, of p(XX') = T(Y,Y l ) on 

T(R x Vl ) corresponds to the orthogonal projection, with re­

spect to ¢, of (Y,Y l ) = (Y,YRU) on R x V l " Thus we have that 

the maximum likelihood estimator for (A,v) under the hypothe­

S1S H is 

(Y,q(Y l » = (Y,YRq(U», 

where q is the orthogonal projection of V onto Vl ' 

If we substitute (Y,YRU) for (A,v) 1n (7.11) we get 

and if we substitute (Y,YRq(U» we get 

and we have that the likelihood ratio statistic is 

Let 

and 

Q 
N/4 

R(¢(qU,qU»1/2, 

qu/(¢(qU,qU»1/2, 

2 2 
W = (l-R )/(l-R l ). 

Then the maX1mum likelihood estimator 1S (Y,YRIU 1 ) and Q 
WN / 4. 

We shall find the distribution of (Y,Rl,Ul,W) under the hypo­

thesis H. Since we have again a model of type (ii) it follows 

from Sec t ion 7 t hat (Y, R 1 ' U 1) iss u f f i c i en t for ( A , v) . We 



shall therefore first find the distribution under the assump~ 

tion that v = O. In this case we have from Section 7 that Y, 

R, and U are independent variables, that Y is X2-distributed 

with N/2 degrees of freedom and scaleparameter A/N, that R2 

is Betadistributed with (m,N/2-m+l) degrees of freedom, and 

that U is uniformly distributed on the unit sphere. Since U 

is uniformly distributed we have, by a well known result, that 

~(qU,qU) and Ul are independently distributed and that 

.is Betadistributed with (k~~-k) degrees of freedom and 

~(qU,qU) 

U~ 
uniformly distributed on the unit sphere in VI' 

~(qu,qu) we find by a simple transformation that 

Since Rl 
2 

Rl and Ware 

independent variables which are Betadistributed with respecti­

vely (k,N/2-k+l) and (N/2-m+l,m-k) degrees of freedom. 

Now, let v be an arbitrary vector in VI" Then we have that 

R~(v,U) = R~(v,qU) = Rl~(v,Ul)' and from this and (7.21) it 

follows, by an argument which is similar to that which led 

from (7.20) to (7.21), that (Y,Rl,U l ) and Ware independently 

distributed, that the distribution of (Y,Rl,U l ) has a density. 

of the form (7.21) with V replaced by VI' and that W is Beta-. 

distributed with (N/2-m+l,m-k) degrees of freedom. 

It is important to notice that the maximum likelihood estima­

tor and the likelihood ratio statistic are independently di­

stributed under the hypothesis H, because this result ensures 

that one can allow oneself to test a sequence of hypotheses 

successively. Since then succesive test are independent. 

If dim VI = 1 it 1S not hard to see that the hypothesis H gi­

ves a model of the form 

where A = (a+b)/2 E R and v 

suIts above will still hold. 

(a-b)/2 E VI = R, and the re-

If dim VI = 0 then W = 1 ~ R2 and the maximum likelihood esti­

mator Y for A is X2-distributed with N/2 degrees of freedom, 

and scaleparameter A/N and independent of W which is Betadi­

stributed with (N/2-m+l,m) degrees of freedom. 



-25-

9. EXAMPLES OF MODELS OF TYPE (ii). 

We obtain a concrete representation of a model of type (ii) by 

choosing a fixed 0. This is done by choosing a concrete re-
m 

presentation of the Clifford algebra C(V,¢) and, by using the 

methods in the proof of theorem 11.2.5. in Chevall e Y(19S4), we 

obtain, for an orthonormal basis in V, the following represen~ 

tations of ° for 2 < m < 9 (i.e. a(m) < 16): m 

a2 «a+b)/2, «a-b)/2,c» ~ {: :}, 

{

a c 

0 3 «a+b)/2, «a-b)/2,c,f» = ~_~ 
f 0 

o 
-f 

a 
c 

i} , 

1 
0 4 «a+b)/2, «a-b)/2,c,f,g»=crS «a+b)2,«a-b)/2,c,f,g,O», 

1 
0 S «a+b)/2,«a-b)/2,c,f,g,h) 

a c 0 f 0 g 0 h 
c b -f 0 -g 0 -h 0 
0 -f a c 0 h 0 -g 
f 0 c b -h 0 g 0 
0 -g 0 -h a c 0 f 
g 0 h 0 c b -f 0 
0 -h 0 g 0 -f a c 
h 0 -g 0 f 0 c b 

2 1 
0 S «a+b)/2,«a-b)/2,c,f,g,h) = 0 S «a+b)/2, «a-b)/2,c,f,g,-h), 

0 6 «a+b)/2, «a-b)/2,c,f,g,h,k» = 0 7 «a+b)/2, «a-b)/2,c,f,O,g,h,k», 

0 7 «a+b)/2, «a-b)/2,c,f,i,g,h,k) 

where 

C D} D -C 
A B 
B' A 
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c 0 f 0 g 0 

A 
b 0 .,-£ 0 -l. 

C 
0 0 

= 0 a c ' 0 -l. 0 0 0 u 0 c 

~} B 

b f l. 0 -f n 1-~ 0 -g 

D " {f -h 0 -~ } 0 k 
.-k 0 h ' 

0 -h 0 

0'8 « a+b) /2, CC a-b) /2, c', f', i, g, L h, k» 

O'~«a+b)/2,«a-b)/2,c,O,£,i,j,h,k», 

a § ( ( a + b) / 2, «a-b) / 2 , c, d , f , i , g , j , h , k) ) 

Al B C D 

B' A2 -D C 

C' D A2 -B 

-D C' -B' Al 

where 

AI" {~ 
c 0 

f} A2"[ ~ 
c 0 

-~} {~ 
-f 

b -d b d , B 0 
-d a d a -l. 

0 c -d 0 c 0 

C" P -g 0 -~} "P 
h 0 

-~} 0 J and D 0 -k 
j 0 -g , k 0 

, 
-J 0 g 0 -k 0 h 

and 

a ~ ( (a+ b) /2, ( (a- b) /2, c, d, f, i, g, j , h, k) ) 

a ~ ( ( a + b ) / 2 , (a - b ) / 2 , c , - d , f; i', g , j , h , k) ) • 

0 
-l. 

0 
f 

nand 

-~} 

It is now seen that (6.3a) for m = 2, (6.3a) for m = 3 and 

(6.3b) for m = 5 and n l = 0 or n 2 = 0 are th~ models of the 

form (6. 4) for r = 2 ( two) and D e qua 1 tor e s p e c t i vel y R, C, and 

H; therefore, these models can be described by invarians. 

Apart from the three cases mentioned above I have not succeeded 
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in finding an interpretation of models of type (ii). Here it 

shall,however, be emphasized that an arbitrary transformation 

of the covariance matrices above gives equivalent representa­

tions of the models of type (ii); thus, if we collect the ob­

servations with variance a in one component and the observati~ 

ions with variance b in another component then it can be seen 

.that the marginal distributions of both components give: mo­

dels of type (i) and that the conditional distribution of one 

component given the other gives an ordinary linear model with 

N / 2 0 b s e r vat ion and wit h m - 1 par am e t e r s for the mea n ve c tor ;. 

these considerations make it possible to understand why the 

maximum likelihood estimator does not exists in the case where 

N/2 = m - 1 and why the test statistic W is Betadistributed 

with (N/2-m+l,m-k) degrees of freedom. 

It .hall also be mentioned here that the Clifford algebra is 

of great importance in the mathematical theory of quantum me­

chanics in connection with the so-called spinrepresentation and 

that the covariance matrices above closely correspond to Di­

rac's y matrices, see Varadarajan (1970), Chapter XII.4. The 

first time Jordan algebras were treated was in an attempt to 

formulate the foundation of quantum mechanics. Finally I shall 

say that the relation (7.14) after my opinion is very impor­

tant, since this relation shows that the orthogonal transforma­

tion ~(s) of the observation X corresponds to the orthogonal 

transformation x(s)1 of the parameter v. 

10. COVARIANCE MODELS AS EXPONENTIAL FAMILIES. 

A linear covariance model can be given by saying that the un­

known covariance matrix is a linear combination 

m 
L 

j=O 
a. G. 

J J 

of m+l known, linear independent, symmetric matrices; 

0'0 •••• ' am are the parameters, see Anderson (1969) .• 

(10.1) 

here 
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It follows from Section 2 that it is not a restriction to as-

sume that GO = I. Then we have from (2.3) that the model is 

linear in the inverse covariance too if and only if G.G. + 
1. J 

GjG i for any i and j is a linear combination of GO'··· ,Gm• 

.this case it follows, 1.n the same way as we obtained (7.4), 

the likelihood equations are 

m 

In 

that 

L tr(G.G.)o. = tr(G.XX') 
j=O 1. J J 1. 

X'G.X, 
1. 

(10.2) 

i = O, ••• ,m; see also Anderson (1969), Section 5. 

Since GO:'.' ,Gm are linearly independent (tr GiG j > is a posi­

tive definite (m+1) x (m+1) matrix and (10.2) has a unique so-

1ution; if (10.1) 1.S positive definite for this solution it 

is the maximum likelihood estimator; 

likelihood estimator does not exist. 

otherwise the maximum 

Since GO = I we can always assume that tr Gi = 0 for 1. = 1, .. ~,m. 

Then it follows from (7.10) that the model is a model of type 

(ii) if and only if 

G.G. + G.G. = 2 tr(G.G.)I 
1.J J1. 1.J 

(10.3) 

for i,j = 1, •.• ,me In this ca~e we can, since the models of 

type (ii) are treated in an invariant way in Sections 7 and 8, 

at once give a complete solution to the problems of inference: 

V = Rm, A = 0 0 , v = (0 1 , •.• ,0 ), (1/N tr(G.G.» is the matrix 
,m 1. J 

for the inner product ¢ on V = Rm, and the distribution of 

the maximum likelihood estimator for (0 0 , (ol, ..• ,om» is given 

by (7.21); a test for a linear hypothesis about (ol, ••. ,om) 

can be carried out on the basis of the Betadistributed stati­

stic W given in Section 8. 

If one compares the considerations 1.n the first part of this 

section with the structure theorem 1.n Section 5, which shows 

which highly structured models one 1.n reality has to deal with, 

it seems quite clear that one cannot hope to solve the distri­

bution problems for these models by means of the general theo~ 

ry of exponential families. The fact is that each class of 

nice models requires a special discussion. 
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