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1 • I NTRODUCTI ON 

Given a r-1arkov chain Xo,X,.... with stationary transition probabi1ities~ 

we investigate random times T with the property that the joint distribution 

of the pre-T fragment (XO •... ,xT_l ) and the POSt-T fragment (XT,XT+l ",,) 

can be described by saying that one or other of these fragments is f.1arkovian 

with stationary transition probabilities, and that the bllo fragments are 

conditionally independent given the position of the inner endpoint of the 

f'larkovian fragment at T-l or T. Such a description of the joint law of the 

pre-T and post-T processes for a random time T will be called a £ath decom­

position. For some examples of more sophisticated path decompositions which 

provided motivation for the present study see Hilliams [8]9 [9], Jacobsen [2]s 

Pitm~n [4], [5], Pittenger and Shih [6]. FollovJing Neyer, Smythe and t~alsh [3] 

we refer to those random times T for IFJhich the post-T fragment is Markov as 

birth times, and to those for which the pre-T fragment is Markov as death times. 

t~e sho\r~ that for discrete time Markov chains with countable state space the 

ana 1 ogues of the types of bi rth times and death times cons i dered by r"1eyer, 

Smythe and Walsh for continuous time processes, namely optional, cooptional~ 

terminal and coterminal times, all admit the additional conditional independence 

property described above, and that from these special tYf)es of random times it 

t This research was prepared with the support of National Science Foundation 
Grant r~ps 74-18967 and the Danish Natural Science Research Council. 



- 2 -

is possible to construct the most general random times determined by the evolu-

tion of the Markov chain which allow this kind of path decomposition. 

To make things precise VJe assume that (Xn9 n is N) is the coordinate 

process defined on the space n of all sequences in a countable set J 

indexed by the non-negative integers N~ equipped with the usual product 

a-field F. ~Je say that a probability P on (n 3 F) is ~'1arkov9 or rilarkov(pL 

if P is the distribution of a 1'1arkov chain 1tJith stationary transition proba­

bilities P, i.e. if under P the sequence (Xn) is itself such a Markov 

chain. Background on this framework may be found in Freedman [1]~ and fuller 

definitions follow at the end of this introduction. 

A random time T = T(W) is now an F-measurable function of sequences 

wen with values in the extended time set NU{co}. Given a r,1arkov(p) proba­

bility P and a random time '[9 we say that T is a birth time _for P if 

the P-distribution of the post-T process is Markov(q) for some transition 

matrix q9 and say that T is a regular birth time Jor P if in addition the 

pre-T and post-T processes are conditionally independent given XT on (T < 00). 

Put another way~ T is a regular birth time for P if there is a transition 

matrix q such that conditional on the pre-T process, T < co. and X = x 
T 

(for each state x) the P distribution of the post-T process is Markov(q) 

with starting state x. According to the strong Markov property each optional 

(stopping) time T is a regular birth time for every I"larkov probability Ps 

and in this case q = p. If all states are recurrent it will be seen th~t 

every regular birth time is a.s. equal to an optional time 9 but if there are 

transient states there will usually be many regular birth times T for which 

q differs from p, e.g. the last time T that a certain set of states H is 

visited~ when the poSt-T process is like the original process conditioned 



- 3 -

never to hit H. 

It turns out quite generally that the Markov chain which emerges at a 

regular birth time T can be described by conditioning a rlarkov chain \'1ith the 

same transition probabilities as the original. ~Jith this in mind ItJe determine 

in Section 2 the collection of all events C e F with the property that when 

a ~1arkov probability P on (n 9 F) is conditioned on C$ another t,1arkov 

probability results. The result of Section 2 is then applied in Section 3 to 

give a complete description of all regular birth times for a Markov probability 

P. It is shown that there is a class of random times B with the property 

that for each 1\1arkov probabil ity P 

(i) every T e B is a regular birth time for P 

(ii) every regular birth time fQ}~ P is P a.s. equal to a random time 

in B. 

This canonical collection of regular birth times may be roughly described as 

comprising 'optional times after coterminal times'. It is interesting that the 

conditional independence hypothesis involved in regularity is quite essential 

for this type of result. t~e show that there exists no such canonical collection 

of plain birth times by exhibiting t\lm Narkov probabilities P and Q IrJith 

the same null sets together with a random time T which is a birth time for 

P but not for Q. 

In Sections 4 and 5 we consider death times. He say that T is a death 

time for P if the P distribution of the pre-T process (XO~ ... ~XT_l) is 

Markov(r) for some sub-stochastic transition matrix r. and say that T is 

a regular death time for P if in addition the pre-T and post'-T processes are 

conditionally independent given X 1 on (O<T<CO). Since the time reversal 
T-

of a Markov fragment with finite lifetime and stationary transition probabilities 

is again Markov t'llith stationary transition probabilities j the regularity 
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condition for a death time is equivalent to demanding that there is some sub" 

stochastic transition matrix r such that conditional on the post-T process~ 

o < T < wand X 1 = x (for each state x), the reversed pre-T fragment 
T-

(XT_l'XT_2'···.XO) is Markov(~) with starting state x. Thus the notion of 

a regular death time may be viewed as the dual under time reversal to the notion 

of a regular birth time. 

In Section 5 we prove the existence of a canonical class V of regular 

death times which roughly speaking comprises leo-optional times prior to 

terminal times'. This result is like a dual to the existence of the class B 

of regular birth times~, but owing to the impossibility of reversing on (T=OO) 

we are unable to bridge between the two results by any direct use of time 

reversal. For the death time theorem we instead make use of a new method 

developed in Section 4~ exploiting a functional equation satisfied by certain 

conditional probabilities associated with any death time, regular or not. Once 

again we show that there is no canonical collection of plain death times. 

Section 6 is devoted to random times which are both regular birth times 

and regular death times. We show that for nice transition matrices p these 

times are essentially either terminal times or coterminal times~ and give a 

detailed description of the associated path decompositions. Finally, in 

Section 7 we discuss possible extensions of our results to Markov processes 

",lith more general time set or state space. 

We set out now the basic notation and conventions which will be used 

throughout. We take it right from the start that our countable state space J 

contains a conventional coffin state ~, but ~ is for use only after killing 

operations. Except where otherwise specified we assume that we are given a 

fixed Markov probability P on the sequence space (Q 9 FL with initial 
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distribution A;: (A(X), x e J) and transition probabil Hies p;: (p(x,y) 9 x~y e J) 

which are arbitrary subject to the coffin state conventions that A(&);: Os 

p(&,&) ;: L p(x~&);: 0;; X t: IJ.. Thus P can be any f,1arkov probability concen-

trating on the space nO en of an sequences in the state space J\{&}. For 

x e J we denote by pX the probability on (n~F) which is Markov(p) with 

starting state. x: thus p;: L A(X)pX 
0 

xeJ 
For n eN;: Nu{,*} \</e define the coordinate maps Xn: n + J 9 killing 

operators Kn: n ~ n and shift operators en: n + n as follows: for 

W ;: (wo s w1 ' • • .) € Q ~ n e N 9 

while for n;: 00 

Xn(w) = wn $ 

Kn(w) = (wO·· .. ~wn_1'&·&9 ... ) 

8n(w) ;: (wn,wn+1,·,,) 0 

where wlJ.;: (&~&~ ... ) is the dead sequence. For a random time T: Q + N we 

define F-measurable mappings Xl" KT and 8T in the obvious way: e.g. 

X (w) = X ()(w), w e Q. Thus X gives the position of the process (Xn) 
T T W T 

at time T, KT describes the strictly pre-T fragment (Xo , ... ,XT_1) by 

identifying it with the more manageable process (XO"'. 'XT_19&9&"")~ whie 

aT describes the post-T fragment (XT,XT+11 .•. ). For n e N we define Fn 

to be the sub-a-field of F generated by XO"" ,Xn' and denote by A n the 

countable collection of all atoms of Fn 3 i.e. all events A of the form 

A ::: (Xk ::: xk' O~k~n) for some xo', . .,xn IS J. For a random time T define 

FT" the a-field of events up to and including time T, to be the a-field 
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generated by KT+l , This agrees with the usual definition for an optional time 

T, and especially FT = Fn for the constant time T = n. We are only ever 

interested in the trace of FT on the space nO of sequences avoiding the 

coffin state ~~ and we find that for each n e N the trace of FT on the 

event nO(T = n) is identical to the trace of Fn on nO(T = n), and that 

the event nO(T<oo) is the union of the countable collection {nOA(T=n), 

AeA n, neN} of atoms of FT~ where here and throughouts AB stands for the 

intersection of two events A and B in F. 

2. cormITIONED MARKOV CHAINS 

In this section we solve the following problem: given a Markov chain 

with stationary transition probabilities~ on what events determined by the 

evolution of the Markov chain can one condition obtain a neld r~arkov chain 

with stationary transition probabilities? For any probability P on (n~F) 

and C e F with P(c) > 0 let Pc or P(oIC} denote the probability on 

(n~F) obtained by conditioning on C: 

PC(F) = p(FIC) = P(FC)/P(C) , F e F . 

Thus the problem becomes: given that P is Markov 5 for which C e F is Pc 

again Markov? We start by defining various collections of events contained 

in F: 

(2.1) Definition. Let 

Co = {C: CeF, C = (XOeH) for some H cJ} , 

C* = {C~ Cef~ C = [(Xn,Xn+1)eV, neN] for some V cJxJ} , 

Coo = {C: Ce f, C = (e l sCn . 
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Thus Co = Fa is the a-field of initial events generated by Xos Coo is the 

a-field of invariant events, but the collection C. of events which constrain 

an the transitions to be of a certain type is not a a-field at all. 

(2.2) Definition. Let 

c+ :: {C: C e F, C = C.Coo for some C. e C.£ Coo e Coo} 9 

C :: {C: C e F~ C = COC.Coo for some Co e CO' C. e C.~ Coo e Coo} • 

Events in C+ will be called coterminal ev~nt~9 anticipating the connection 

between these events and coterminal times \lJhich is described in the next section. 

Events in C are intersections of initial events and coterminal events. 

Now each of the collections CS' s:: Og ., 00, is readily seen to have 

the property that if P is Markov then so is Pc whenever C e Cs and 

P(C) > 09 and it fol101!#s by repeated conditioning that the class C of all 

intersections of events from these collections must again have this property. 

The central result of til; s section is that no matter what r"1arkov probabil ity P 

we consider, the events in C are up to P-equivalence the only events for 

which Pc is Markov: 

(2.3) Theorem. Suppose P is Markov and C is an event with P(C) > O. Then 

Pc is Markov if and only if C is P-equivalent to an event in C. 

The theorem is an immediate consequence of Lemma (2.5) and Proposition 

(2.10) below. Proofs of these results take up the remainder of the sections 

but we mention first a simple corol1ary~ 
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(2.4) Corollary. Suppose the Markov probability P makes all states recurrent. 

Then Pc is Markov if and only if C is P-equivalent to an initial event. 

Proof. If P makes all states recurrent then it is found that every 

coterminal event is P-equivalent to an initial event (see Freedman [1], 1.120). 

(2.5) Lemma. If C is a cotermina1 event~ then there are events Fn e Fn such 

that 

(i) 

Conversely, if C is an event such that 

(i i) 

for some Fl e F1, then C is a coterminal event. Furthermore, if (ii) holds 

only pX a.s. for all x e J~ where pX is Markov(p) starting at x, then 

there is a coterminal event which is pX-equivalent to C for all x. 

Proof. The first assertion is obvious. For the converse suppose that 

C e F satisfies (i 1). Since F1 = ({XO,X1) e Y) for some Y C J x J we get 

C = «XO~Xl) e Y)(81 e C) 

whence C = {(Xk_pXk}eV, 1~k~n)(8neC) , n > 1 ~ 

by iteration. But intersecting this identity over all n > m gives us 

\'ihere Cy = (Xk_1,Xk) eY, 1 <k<oo) e C*, and taking the union of this identity 

over all m gives C = CyCoo where Coo = lim inf (an e C) is invariant, so 
n~ 

that C is indeed a cotermina1 event. For the final assertion the same 
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sequence of identities is justified pX a.s. for all x by using the fact that 

if two events F 1 and F 2 agree pX a. s. for a 11 x then so too do the 

events (8n eF1) and (en sF2) foreach neN. 

Our efforts now are directed toward establishing the final result (2.1Q) 

required for the proof of Theorem (2.3). 

(2.6) Notation. Recall that A denotes the countable collection of all atoms --- n 

of Fn' Now for y e J let Any denote the subcollection of An comprising 

those atoms conta i ned in the event (Xn = y) . 

~Je observe that a probabil ity P on (n,F) is 1"1arkov if and only if for 

each y e J the PA distribution of the post-n process en remains constant 

as A varies over all events in Any \\Iith P(A) > 0 and n varies over N, 

When P is Markov(p) this constant distribution is of course the probability 

py. 

(2.7) Definition. Let n e N. For each event A in AnI and each event 

F e f, define a set FA C n~ the section of F beyond A as follows: For 

A:: (Xk=xk~ 0.s..k.s..n) e An' FA comprises those sequences w = (wo,wp ''') 

such that Wo = xn and the sequence (xO, ... ,xn~wl,w2>"') is in F. 

Then fA is an event in F and we shall make repeated use of the identity 

(2.8) AF '" A ( en e FA) 9 A e An ~ f e F • 

Notice that if AeAny then FAC(XO"'y), Fef. 

(2.9) Lewrna. Suppose P is Markov(p), C e F with pee) > O. Then for 

A e Any with P(AC) > 09 the PAC distribution of en is P~A = py(oICA)· 
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Proof. For B e F~ A e Any with P{AC) > 0, we have 

_ P[AC{Sn e B)] _ P[A(Sn e CAB)] 
PAC{Sn e B) - P(AC) - P[A{S n e CAJ] 

PA(8n eCAB) = pY{CAB) = pY{BIC) 
= PA(Sn e CA} pY(CA) A 

(2.10) proposition. Suppose P is Markov{p), C e F with P{C) > O. Then 

Pc is Markov if and only if there exists an event D e F such that 

(i) c - C 0 - 0 

for some initial event Co e CO~ and 

P a.s. 

(i i) for each n e N there is an event F n e F n with 

x P a.s. 

for all x e J. 

Proof. Fix P and C e F with P(c) > 0, and define I C J to be the 

essential range of (Xn) under PC: 

I = {ye J: Pc{X,n=y} > 0 for some n} . 

For y e J define A~y to be the collection of all atoms A in Any with 

PC(A) > 0, and set A; = ~ A~y' Thus A; is non-empty if and only if y e 1. 

Now Pc is Markov if and only if for each y e I the PAC distribution of en 

is constant as A varies over A~y and n varies over N. Thus by (2.9) Pc 

is Markov if and only if for each y e I the probabilities pY(·ICA) are iden­

tical, A e A;, i.e. if and only if the events CA are Py a.s. identical~ 

A e A;. But if there is a D satisfying (1) and {iiL then we clearly have 
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pYa.s.~ 

hence Pc is Markov. Conversely; if Pc is ~larkov, say Markov(q) ~ then for 

each Y e I we can select a representative event CA with A e A;~ call it 

0y" set D '" U Dy ' and then have for each y e I the identity 
ye I 

(2.11) 

where oy is Markov(q) starting at y. Obviously this D satisfies (i) 

with Co '" (XO e H) for H '" {y: PC(Xo"'y) > O}, and this D also satisfies 

(ii)~ as can be seen by the following argument. For any y e I, Pb is 

r,1arkov(q) so that fJ '" DA pZ a.s. for any A e Anz ~'iith Py(AD) > O. 

Consequently AD '" t\(en e D) PY a.s. for any A e An \'1ith Py(AD) > 0 and 

taking the union over all such atoms A we arrive at a representation 

D '" Fny(Sn e D) pY a.s. with Fnye fn' Defining F '" U (XO"'y)F we nm"! see 
n ye I I ny 

that D '" Fn(8n e D) pX a.s. for arbitrary x e I, and since pX(D) == PX(Fn) '" 0 

for x ~ I~ 0 satisfies (ii)~ and the proof is complete. 

3. REGULAR BIRTH TIMES 

The main result of this section is Theorem (3.9) which describes all 

regular birth times for a I~arkov probability P in terms of certain fundamental 

birth times associated with the coterminal events of the previous section~ 

i.e. the coterminai times of r/leyer~ Smythe and Halsh [3]. 

Using the notation defined at the end of the introduction~ a random time 

T is a regular birth time for P if and only if a P conditional distribution 

of 8T given fT is equal to QX on (T<oo~ x"[=xL where QX is t4arkov(q) 
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with starting state x for some transition matrix q. Put another way, T 1s a 

regular birth time for P if and only if under P the post-T sequence 

(XT+n~ n e N) is Markov(q) with respect to the increasing sequence of a-fields 

( F T+n' n eN) . 

Suppose now that C is a coterminal event as defined in (2.2), i.e. 

(3.1) 

where 

for some V C J x J, and Coo is invariant. 

(3.3) Definition. The cot~rminal time associated with C is the random time 

TC defined by 

(Here and elsewhere we use the convention inf ~ = 00) sup 0 = 0). 

Since for coterminal events C 

(3.4) o < k < m < co ~ 

we have the identity 

(3.5) n eN. 

In particular, if C = CV~ then TC is the time that the last transition in 

VC is completed: 
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while if C = C is invariants then co 

co on C~ g 

and in general for C = CVCoo we have that TC is simply the maximum of TC 
V 

and TC. 
00 

It is easy to check that TC is indeed a coterminal time as defined by 

Meyer~ Smythe and ~Jalsh in [3], i.e. that the random time T = TC has the 

properties 

(3.6) 
(i) 

(i i) 

i1 eN, 

ToK = T on (T < n), n eN. n 

Conversely~ if T is a coterminal time~ then C = (T=O) is a coterminal 

event and T = TC. To see this observe that (3.6)(i) implies 

(3.7) n eN, 

so that by (3.5) it suffices to show that C is a coterminal event. But by 

(3.6)(ii) for n = 2 and (3.7) for n = 1 we have 

and since (ToK2 = 0) e Fl ~ lrJe conclude from (2.5)(ii) that C is a coterminal 

event. 

tile shall see shortly that each coterminal time T = TC is a birth time 

for each t<1arkov probability P: indeed a P conditional distribution for aT 

given FT equals P~ on (XT = x) 9 where P~ = QX is t4arkov(q) for some q 

by (2.3). This is just the analogue in the present context of Theorem 5.1 of 

[3]. For a more detailed description of the path decomposition at TC giving 
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the transition probabilities q of the post-Tc process~ see Section 6. 

(3.B) Definition. Let B denote the class of all random times T of the form 

where TC is the coterminal time associated with a cotermina1 event C, and 

p is an optional time for the increasing sequence of a-fields (F +n~ n e N);) 
TC 

i. e. (p=n) e F +n 9 n eN. 
TC 

Once we know that each TC is a regular birth time for P, it follows 

at once from the strong Markov property of the sequence {X +n9 n e N} adapted 
TC 

to (FT +n' n e N) that each T e B is again a regular birth time for P. Our 
C 

principal result is that the random times in B form a complete~ canonical 

collection of birth times in that no matter what Markov probability P we 

start off with, every regular birth time for P is P-equ;valent to a random 

t"ime in B. 

(3.9) Theorem. A random time T is a regular birth time for a Markov proba­

bility P if and only if T is P-equiva1ent to a random time in B. 

The proof of this theorem takes up the rest of the section, but we mention 

first the following corollary: 

(3.10) Corollary. If P makes all states recurrent then every regular birth 

time for P is P-equiva1ent to a stopping time. 

Proof. Just as for (2.4). 
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(3.11) pefinitfon. A random time T is a conditional inri~endp.nce time for a 

Nat'kav pl"obabil Hy P if under P the pl"e-T and post-T processes ilre cond"iti0n-

ally independent given XT , i.e. if there is a conditional distribution of 8T 

given F within (T<OO) which is a function of X alone. 
T T 

(3.12) lemma. A random time T is a conditional independence time for P if 

and only if there are events Fn e Fn, n e N. G e F with 

(3.13) (T=n) = F (8 eG) 
n n 

P a.s.;; n eN, 

and there is then a conditional distribution of e given F which equals 
T T 

Remark. The proof can easily be sharpened to show that T is a conditional 

independence time for P if and only if T is P a.s. equal to a T* with 

(T* = n) = Fn(Sn e G) exactly for some Fn € Fn 9 G e F. Every such time is 

thus a.s. equal to a splitting time 9 defined in Jacobsen [2J as a random time 

T for ItJh i ell F € F? I~ e F. n n n Th~ present 

argument win also sho~~ that splitting times are characterized by conditional 

independence of the pre-T and post-T processes given both X and T. 
T 

+ Prqof 0 L10rki ng on a toms as in the proof of (2.9)" 1 et Anx be the 

collection of all atoms A of Fn contained in (Xn = x) ~\Iith P(AGn) > 0, 

~!lIhere Gn = (T=n)" so that (X =x)G is P a.s. equal to the union of the 
n n 

sets I~Grl over an A in A+. De'f'iningG as in (2.7) to be the section nx nA 
of G beyond A; we have from (2.9) that the P conditional distribution of 

n 

en given AGn is pX( -IGnA ) ~ A e A~x' But T is a conditional independence 

time if and only if this conditional distribution is a function of x alone 

for all A E A~x' n e N, i.e. if and only if for some Gx in F with 
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Gx C (Xo = X) we have for each x e J 

(3.14) G = G nA X 
X P a.s. ~ + A eA. nx 

But if (3.13) holds we have (3.14) with Gx = G(XO=x)~ while if (3.14) holds 

we get (3.13) with G = U G ~ and F the union of all A e An \t/ith 
x e J x n 

Proof of Theorem {3.9}. He have that T is a regular birth time for P 

if and only if T is a conditional independence time for P and the P distri­

bution of BT is Markov. Thus the 'if' part follows at once from (3.12) and 

(2.3). For the converse, suppose T is a regular birth time for P. Then 

(3.12) shows that there are events Fn e Fn, G e F with 

(3.15) P a. s. ~ 

and also that the conditional distribution of B given 
T 

(T <00, \ = x). Since the regular birth time property tells us that this proba­

bility is Markov(q) for some q not depending on x~ we deduce from 

Theorem (2.3) that for every x with P(T <00, XT = x) > O~ G is pX a.s. 

equal to a coterminal event C which because of (2.10)(ii) and (2.5)(ii) may 

be chosen so as not to depend on x. It now follows that we can replace the 

set Gx = G(XO = x) which appears in (3.14) by the set ex = C(XO = x) to 

deduce that in fact 

(3.16) P a.s. j n eN. 

But now define 

(3.17) 
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and define a random time T' by setting 

TI = n on 

= 00 on 

n-1 
C \ U Ck ~ n e N 
n k=O 

(Note that we could not define T' to be n on Cn because the sets Cn 

might not be disjoint). t-Je clearly have TI = T P a.s.~ and we now conclude 

by showing that TI ~ TC and that p = TI - TC is an optional time for 

(FT +m' meN). But from (3.17) ~ (3.4) and (3.5) Ifle have 
C 

n n 
= U Ck C U (a. e C) = 

k=O' k=O K 
n eNs 

which imp1 ies T I ~ TC' Furthermore s setti ng p = T I - TC we have for meN 

the identity 

00 

(3.18) (p ~m) = U (TC = n-m~ T' ~n) 
n=m 

But 

(3.19) 

where Bk = (TC = n-m)Ck. Now if k < n~m \'/e have by (3.17) and (3.5) that 

Ck c (ak e C) = (Tc~k) so that Bk = 09 ~\fhile if n-m ~ k ~ n we have from 

(3.5) and (3.4) that (TC = n-m) c (en=m e C) c (ak e C) so that using (3.1l} \'Je 

get Bk = (TC+m = n)Fk where Fk e Fk C Fn' In either case we see that 

Bk @. FT +m9 and thus working back through (3.19) to (3.18) we get also +~at 
C 

(p < m) e F +m~ \'/hich is to say that p is an optional time of (F +m 9 meN). 
- TC TC 

The proof is complete. 
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We conclude this section with some remarks about plain birth times. For 

an interesting example fix m ~ 1 and define 

If P makes all states recurrent then L is P a.s. finite and since T+m is 

a stopp; ng time and (XT, ... ~XT+m) = (XO ~ ... ,.Xm) on (T < 00) it is easy to 

see that the P distribution of e is P. Thus T is a birth time for P9 
T 

but certainly not a regular birth time, since knowledge of the pre-T process 

completely determines the first m-moves of the post-T process. Examples show 

that T can fail to be a birth time if there are transient states. But it is 

of greater interest to use the idea behind this example to construct two t4arkov 

probabilities P and R with the same null sets and a T which is a birth 

time for P but not for R, since this shOt·!s that there exists no canoninl 

clC'ss B* of plain birth times with the property that T is a birth time for 

a fJlarkov probability P if and only if T is P-equivalent to a time in B*. 

(3.20) Example. Ignore the coffin state ~ and let J = {1,2,3}. Define 

transition matrices p and r on J by 

1 1 r a }! 1 0---2 2 

p = all 
2 2 r = all 

2 2 

all 
2 2 

all 
2 2 -

Let P and R be Markov{p} and Markov{r} respectivelY9 both starting at 1. 

Then P and R have the same null sets but the random time T defined by 

T ",{inf{n: Xn = 2, 

inf{n: Xn = 2, 

Xn+ 1 = 2} if Xl = 2 

Xn-H = 3} if Xl = 3 
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is a birth time for P only. 

4. DEATH TH1ES 

Given a Markov(p) probability P on (Q 9 F) we now investigate death 

times for P~ i.e. random times T such that under P the distribution of 

the pre-T fragment (XO~'" ,XT_1) is ~1arkov with stationary sub-stochastic 

transition probabilities 9 or~ what is the same 3 that the killed process 

K = (XO, ... ,X 1,6 9 6; ... ) is Markov with stationary transition probabilities. 
T T-

Let T be a death time for P. If we let J+ denote the essential range 

of the pre-T path, 

J+ = {xeJ\{6}: P(T>n" Xn=x»O for some neN} , 

then the transition probabilities q(x,y) of the killed chain are well defined 

for all x, y e J+u{M and induce a family of probabilities {Qx, xeJ+u{6}} 

on Q which concentrate on paths w which remain forever within this restricted 

state space J+U{6}. Clearly if P(T>O. XO=x) > 0 then QX is identical 

to the pX distribution of K given (T>O). This conclusion may be either 
T 

false or meaningless if peT > 0, Xo = x) = 0, but lNe shall see that matters can 

be rectified by redefining T(W) properly for paths w starting at such 

points x. 

Ue consider now the whole family of probabilities {Px}xeJ where pX on 

(Q,F) is ~1arkov(p) with starting state x. For each random time T we 

define J C J by 
T 

and say that T is a .dr:ath _~ime for the_ family {Px}xeJ if there is a 
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transition matrix q on JT U {~} such that for each x € JT the pX distri~ 

bution of KT given (T > 0) is QX 9 where QX on (n,F) is P1arkov(q} 

with starti n9 state x. In particul ar QX conce;ltrates on the set of sequences 

in JT u {M. 

Obviously every death time for the family {Px}xeJ is a death time for 

each Markov(p) probability P. Conversely we have 

(4.1) Proposition. let T be a death time for a Markov(p} probability P. 

Then there is a death time T* for the family {Px}xeJ such that T*(W) = T(W) 

for all paths W starting at points x e J with peT > o~ Xo = x) > O. 

Remark. If P = pY for a fixed state y then T* and T agree P a.s. 

Proof. As before let J+ be the essential range of the pre-T path under 

P~ and suppose KT is Markov(q) under P. For those paths W starting at 

an * e J\J+ we set T*{W) = O~ while for those starting at an x e J+ with 

P(T>O~ XO=x) > 0 we put T*(W} = T(W}. Finally~ if x e J+ and 

peT > o~ Xo = x) = 0 Ii'!e find an m > 1 and xO~'" ,xm e J+ with xm = x such 

that P[A(T>m)] > 0 where A = (XO=xO, ... ,Xm=xm), and then for W = (wo~wP''') 

with Wo = x define 

Obviously JT* = J+ and it remains only to check that the pX distribution 

of KT* given (T*>O) is QX for x e J+ \'Jith P(T>O~ XO=x) = 0;) where 

QX is Markov(q) starting at x. For this it suffices to shm~ that for n € N~ 

B = (XO=Yo, ... ,Xn=Yn), where YO = x~ Yl".·'Yn e J+ 9 we have 
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where QX(B) = q(YO~Yl)···q(y ,"y) by definition. n- 0 n 

But let m and n be as above. Then by first using the Narkov prop,2tty 

* + of P and then the fact that T 08 = (T-m) on A we have m 

Similarly PX(T* > 0) = P[A(T > n)]/P(A), \'Ihence 

which equals QX(B) because the P distribution of K is Markov(q). 
T 

This result reduces the problem of describing the death times for a given 

r1arkov probabil ity P to that of characterizing the death times for a family 

{pX}xeJ. Such a characterization is provided by the following proposition. 

~Jrite P(oIFn} for any of the identical conditional probabilities PX(oIFn) 

and given a random time T introduce 

Note that Zo = f(XO) and reca 11 that JT = {)( e J \{f.\}; f(x) > OJ. 

(4.2) Pr9Position. A random time T is a death time for the family {pX}xeJ 

if and only if for each x e J\{t,L m"n e N the identity 

x holds P' a.s. 

r z z 08 /f(X) on 
~ om n m m 

(Xm e JT ) 

on (Xm ~ JT) 
"-
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Proof. With QX the pX distribution of KT given (T > 0), the condi­

tion that T be a death time for {px} is equivalent to requiring that for 

(4.4) 

Introducing the atoms A = (XO=xOj ... ~Xm=xm)' B = (XO=Xm9""Xn=xm+n)' it 

is seen that (4.3) and (4.4) are equivalent to 

x 
(4.6) P O(Xk ¢JT3 T>k) = a . 

But the left side of (4.5) equals 

while the right side becomes 

Since A and B are arbitrary atoms for paths within J and since (4.6) is 
T 

equiva 1 ent to demandi ng that Zk ~Zk+ 1"" vani sh pX a. s. on (Xk ¢ JT ) the 

result follows. 

We finish this section with an example of two Markov probabilities P and 

R" with the same null sets~ and a random time T which is a death time for P 

but not for R~ thus proving that there exists no collection of random times 

* V such that T is a death time for a Markov probability P if and only if 
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T ;s p a.s. equal to a random tine in v* (cf. Example (3.20)), 

(4.7) ExamEle. Ignoring the coffin state b. let J = {1~2,334}. Define 

tt'ansition matrices p and r on J by 

1 1 1 0 1 1 1 0 "3 3" "3 3" "3 "3 

0 0 1 1 0 0 1 3 
"2 "2 if 4-

p = r = 
0 1 0 1 0 

3 0 1 
"2 "2 4" 4" 

0 0 0 1 0 0 0 1 

Let P and R be Markov(p) and Markov(r) respectively. both starting at 1. 

Clearly P and R have the same null sets. Define p as the time of entry 

into {2~3}, cr as the time to absorption in state 4~ put 0 = cr-p and 

finally let T be the minimum of p and o. 

Under both P and R the random times p and <5 are independent; under 

P they both have a geometric distribution~ whence so too does T~ but under 

R the random time p is geometric while 0 is not~ and thus T is not 

geometric either. Since the pre-T process never leaves state 1 it is therefore 

Markov under P but not under R. 

5. REGULAR DEAHl TH1ES 

In this section we consider death times T for a ~1arkov probability P 

on (Q 3 F) with the additional property~ discussed in the introduction, that 

conditional on the final position XT_1 of the pre-T process on (0 < T < co) 

the pre-T and post-T processes are independent. Such a death time for P will 

be referred to as regular. 
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(5.1) Definition. Let V denote the class of all random times T of the form 

for some V C ,J x J~ F € F" t'lhere TV is the terminal time associated with if: 

TV = inf{n: 11>1, (X l~X )eV} . - n- n 

Our main result is that the random times in V form a complete canonical 

collection of regul ar death Urnes for each r,1arkov probabil ity pX on (!J,F) 

with a fixed starting state x. For random starts V must be enlarged to 

include all times of the form Tl(XO e H) for H C J~ but 1,IJ€ shall ignore 

this trivial complication. 

(5.2) Th~orem. A random time T is a regular death time for a r\~arkov proba­

bility pX with starting state x in J\{~} if and only if T is pX-equi -

valent to a random time in V. 

The proof of this theorerl vdll be taken up later in the section. He men-

tion first some facts about the collection V which derive from the following 

resul t. 

(5.3) 'proposition. The random times in '0 are characterized by the fol1ov/ing 

two structural properties: for every n € N 

(i 1) 

Indeed. if T satisfies (1) and (iiL then T = TV,F with F = (T>O) and V 

such that Fl = ((X03 X1) e Vc):; and then 
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Proof. See lemma (5.4) below. The present criterion is just a restatement 

of the criterion (a) of that lemma. 

llJe note that for an optional time T we have (T> n) e Fn so that the 

two conditions (1) and (11) above collapse to (ii) alone. Since an optional 

time satisfying (ii) is by definition a terminal time, we find that an optional 

time is in 1) if and only if it is a terminal time. Furthermore it is plain 

from the original definition of V) that T is a terminal time if and only if 

T is the first time that the path either enters H or completes a jump in V 

for some H c J" V C J x J (cf. t1a 1 sh and Heil [7]). 

FOt' a cooptional time VIle have by definit'ion that TOe n :: (T-n)+" and since 

this obviously implies both (1) and (ii) we see that V includes all cooptional 

times. We find also that every cooptional time T can be represented as 

T = sup{n: n~ L 8n_1 € F} where F = (T > 0). and since for cooptional T we 

must have (T > 0) :: (8 e G) for some G e F we deduce that T is a cooptiol'lal 

time if and only if for some G e F 

Finally we mention two important closure properties ofD which are readily 

checked using Proposition (5.3): if 0 and T are two random times in V, 

then so are (i) their minimum OAT. and (ii) the random time ooKT obtained 

by apply; n9 0 after fi rst kn 1 i ng at T 9 provided 0 <. inf{n eN: Xn = ~L 

(5.4) lemma_" Each of the following conditions (a) and (b) is necessary and 

sufficient for a random time T to belong to V: 
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(a) For each meN there is an Fm e Fm such that 

(T>m+n) = F(Toe >n) 9 n eN. m m 

(b) There is an Fl e Fl such that for Fn = F1(e, eF1)···(ene,1 eF1) 

we have 

(n 

(i i) 

Proof. 

(T = n+ 1) :: F (Toe = 1) ~ 
n n 

(T=oo) :: F (T08 =00) 'nn ' 

If T == T e V then (a) is immediate with 
V9 F 

n > 1 

F :: (TV> m). m 

Conversely~ if T satisfies (a) we win sho\l>J that T::: TV9 F t1fith F::: (T> 0) 

and the V defined by F1 ::: (Xo ,X1)e\l). As a preliminary we claim that 

for m > 1 the Fm appearing in (a) can be replaced by the Fm determined 

from Fl as in (b). This is trivial for m == 1. while if true for m and 

all n we find that 

(T> (m+1) + n) ::: (T > m + (n+ 1) ::: F (Toe > 1'1+1) m m 
:: Fm[8meFl(Toe>n)]==Fm+l(T08m+l >n) ~ 

establishing the fact for m+19 and the assertion is verified. To shm~ now 

that T::: TV,F for the given V and F it suffices to check that 

(TV,F>m) :: (T>m) for me N9 Le. that 

U (TV>119 eneF) 
n>m 

=F(Toe>O) m m 

But since Fm==(TV>m) and (Toe > 0) ::: (e e F), the right hand event is m m 
identical to (TV> m'i em e F)" and we must therefore show that fmA each n > m 

this event contains the event 
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(5.5) 

But because (T > 0) ::> (T> 1) = Fl (Toe> 0) 9 we find by induction that 

(T > 0) ::> i\(T 0 6k > O} = (TV > k~ 8k € F) and using this with k = n-m in (5.5) 

yields the desired conclusion. 

For the second characterization (b) it is obvious that if T = TV,F is in 

V" then both (i) and (ii) hold \'1ith Fl = «Xo~Xl)evcL while if these iden~ 

tities obtain it is easy to check that (a) holds with Fm = Fm' 

The same proofs show that if Q* C Q is invariant under e~ i.e. if 

Q* c (6 eQ*L then knowing that either (5.4)(a) or {5.4}(b} holds just on Q*~: 

e.g. that 

we can deduce that T=TV,F on Q* for some VCJxJ~ FeF. 

We also note that an obvious modification of Lemma (3.12) tells us that 

for a random time T and a Markov probability P the pre-T and post-T processes 

are conditionally independent given X 1 and the event (0 < T < co) if and 
T-

only if for every n e N there exists Fn e Fn~ G e F such that 

(5.6) (T = n+ 1) = F (6 e G) n n P a.s .. 

Proof of Theorem (5.2). Fix x e J\{6}. Assuming first that T = TV~F 

pX a.s., it follows from (5.4}{a) that for Zn = P{TV,F>nl Fn) we have 

Zm+n = lFmZno8m a.s. where here and throughout this proof la.s.' on its own 

means IpY a.s. for all ye J\{ll}'. But Proposition (4.2) is then easily app"lied 

to shm.'1 that TV ~F is a death time for p\ and hence so too is T. Since 

(5.4)(b) applied to TV)F shows that (5.6) holds with Il = (TV~F= 1) it 

follows that T is a regular death time for pX. 
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Now assume conversely that l' is a regular death time for pX. In parti-

cular by (5.6L (1'=n+1) = Fn(SneG) pX a.s. for some Fn e Fn s G e F. 

Replacing l' by the 1'* constructed in Proposition (4.1) "'Ie get a random time 

which is pX a.s. equal to 1: and which is a death time for the family 

Furthermore~ it is not difficult to verify that ( l' * = n+ 1) = F* ( e :3 G) 
n n 

a.s., n e N9 where F~ is the union of the events Fn,y over y in J1'*~ 

with Fn"y the section of Fm+n beyond the atom Ay = (XO=x09 ... :,Xm=y) used 

to defi~e 1'* on paths starting at jI e J * (see (2.7) and the proof of (4.1». 
l' 

Thus we may as well drop the stars and take it from the start that 1: is such 

that there are events Fn e Fn~ G e F with 

(5,7) 

. 
We now aim to show that such a l' satisfies (i) and (ii) of (5.4)(b) a.s. 

Both in this and later arguments there will be much tacit use of the fact that 

if two events Fl and F2 area.s. equal then so too are (eneF1) and 

(en e F2) for each n e N. Writing 

we first cja1m that 

(5.B) 

To see this observe that by (5.7L (XOeM) = FO(PX{O)G>O) so that also 

(XneM) = (eneFO' pX(n)G>O). But then, again using (S.7) 

(1: = n+l, Xn e ~1) = Fn(Sn e FOG, pX{n)G > 0) a.s. 

and (5.8) fol1~ws. Introducing now 
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it follows from Proposition (4.2) that 

a.s. 

(5.9) 

Because (T = n+1) C (Wn > 0) we find in particular that (T = n+l) C (Xn e 14) 

so that (5.8) may be written 

whence (Mn>O) = Fn(XneM), and comparing with (5.9) it develops that 

Since (TOen = 1) C (Xn eM) and T is a death time for {pX}xeJ 5 Proposition 

(4.2) implies that (1) of (5.4)(b) holds a.s. t~ith F, = (Zl >0). To establish 

(ii) of (5.4)(b) observe that by the martingale convergence theorem 

l{T=oo) = lim Z a.s. But because of Proposition (4.2) that limit equals 
mfoo m 

Zn[f(Xn)]-ll(xneJT) l~mZmoOm = Zn[f{){n)]-ll{XneJT~ TOOn=OO) a.s. 

for every n e N~ and the desired conclusion that (T=OO) = (Zn>09 TOen=OO) 

a.s. is now immediate. 

Thus~ for each y e J\{~}, ignoring a PY-null set Ly ' we have that T 

satisfies the identities of (5.4)(b) for all n ~'iith Fl = (Zl > 0). But the 

set L = U (XO=Y)Ly is a null set for all pY" y e J\{~} simultaneous1y 
y eJ\ {~} 
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and consequently, defining Q* = ( U (6 e L»c we see that for :-: c N the 
neN n 

identities 

* * (t = n+l)Q = (Zl > 0, ... ,Zl 08n_1 > 0, tOen = l)Q ~ 

(t=oo)Q* = (ll >O, .•• ,ll08n_l >0, t 06n =OO)Q* ~ 

hold exactly, and since Q* is invariant under 8, the remark following 

Lemma (5.4) shows that on Q* ~ Tis of the form TV,F for some V C J x J ~ 

F e F. Since also pY(Q*) = 1 for every y, in particular for y = x, we 

conclude that T is pX a.s. equal to some TV,F 9 and the proof is complete. 

As a final comment on death times, it may be observed that there eX~.::.t 

random times T \'1hich are death times for all rl1arkov probabilities simultaneously 

without being regular. A simple example is obtained by taking an integer a > 2 

and defining 

(T > 0) = Q, ( T > n) = (Xo = ... = X an) n > 1 

6. BIRTH AND DEATH TJr.1ES 

Lie now consider random tiMes which are both regular death times and regular 

birth times for each Markov(p) probability P. For such a random timp. T 

it is seen that a path decomposition specifying the joint distribution of the 

pre-T and poSt-T processes can be given in terms of just four quantities deter­

nlitlcd by T and p, namely the function f: J -+ [O~ 1] and the three transi·· 

tion matrices q, rand s on J such that under the probability pX on 

(Q,F) which makes (Xn) Markov{p) starting at x we have 
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( 6. 1) ( i) pX ( T > 0) = f ( x L x e J. 

(ii) Conditional on T > 0 the pX distribution of the pre-T process 

is Markov(q) starting at x, 

(iii) Conditional on 0 < T < 00 and a pre-T path with XT_l = y the 

pX distribution of X is r(Y9o), 
T 

( iv) Conditional on T < oo~ the pre-T path and X = z. the pX 
T 

distribution of the post-T process is Markov(s) starting at z. 

With f, q9 rand s specified by (6.1) the path decomposition involved 

in (6.1) can be expressed more intuitively by saying that the following proba­

bilistic motion describes a Markov chain with stationary transition probabilities 

p: Start at x~ and then with probability 1 - f(x) move off according to a 

Markov chain with transition probabilities q; when (if ever) this chain dies., 

look back at the position y where the chain was at the instant before it died 

and instead of dying make a single transition according to r(y,~); if this 

gets you to state z (where z =)( if there was no motion according to q) 

complete the motion by moving forevermore according to a Markov chain with 

transition probabilities s starting at z. 

There are two basic kinds of random times which induce a path decomposition 

of this kind: terminal times and coterminal times. We first indicate how the 

parameters f, q, r, and s are obtained for these times, and then show that 
J 

for nice transition matrices p these are essentially the only random times 

inducing such a path dec~~position. 

Suppose first that T is a ternlinal time. Then as mentioned below (5.3) 

there is a subset H of J and a subset V of H x H such that 
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With H and V so defined it easily is checked that the parameters f, q" 

rand s are given by 

f(x} :: lH(x} ~ x e J ~ 

q(x,y) = { 
P (x ,y) 1 V (x .,y ) if Y t: b. 

1 - 1: q(x,z) if y = b. 
z'lb. 

r(x,y) = V z V {
P(X'Y)l c(x~y)/1:P(xtz)l c(Xqz} 

arbitrary 

s(x)y) = p(x,y) • 

if x e H 

if x e HC 
9 

where 18 stands for the indicator function of a subset 8 of either J 

or J x J. 

For T a coterminal time there is a subset V of J x J and an invariant 

event C such that 
00 

(T<n) = (a eC) ~ n eN, - n 

t/here C is the cotermina1 event «Xk ,Xk+1)eV 9 keN)Coo ' Define functions 
-

f~ f, 9 and h from J to [O~l] by setting for x e J 

-

f (x) = pX ( T > 0) = pX ( C c) 

f(x) = pX(T=O) = pX(C) 

g(x) = pX(T=l) =px[(XO,x1)eVc , aleC] 

hex) :: PX(T = (0) = pX[((Xn ,Xn+1) e VC infinitely often) UC~] . 

Then f, f and 9 are related by the identities f + f = 1 and 

g(x) :: 1: p(x,y)l c(x,y}f{y), x e J I 

Y V 

and it may also be observed that f is p-excessive, that h is p-harmonic, and 
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00 

that the Riesz decomposition of f is f=Ug+h where U= Lpn is the 
n=O 

potential operator associated with p. The parameters f~ q, rand s for 

the path decomposition are now readily seen to be specified as follows: f has 

already been defined~ 

if fey) > 0 $ y I: 11 $ f p{x)y)f(y)/f(x) 

if fey) = 0 ~ y I: 11 s q(x,y) = l 0 

.1 - L q(x,z) if y = 11 ~ 
zl:l1 

r p(x,y)l c(x~Y)f(Y) if g(y) > 11 , 
r(x?y) = ~ V 

l arbitrary if g(y) = a ~ 

s{x,y) 
(P(x,Y)lV(X,Y)f(y)/f(X) if f(x) > a ~ 

= < l arbitrary if fex) = a . 

In this case parts (i), (ii) and (iv) of the path decomposition statement {6.1} 

are the discrete analogues of Theorems (2.1) and (5.1) of Meyer~ Smythe and 

Walsh [3]. Part (iii) provides the inner link between the pre-T and post-T 

processes which is required for the full statement of the path decomposition, 

We now establish a characterization of terminal and coterminal times by 

the path decomposition (6.1). 

(6.2) Theorem. Let the ~1arkov probabilities {PXi xeJ} be induced by a 

transition matrix p on J which makes all states in J\{I1} form a single 

closed communicating class. Then a random time T is both a regular birth 

time and a regular death time for pX if and only if T is pX-equivalent to 

a random time which is either terminal or coterminal. 
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Remark. The characterization fails without some hypothesis Oll p. For 

instance if p induces two closed communicating classes A and B and a 

transient state x from which absorption into either A or B is possible~ 

then T could be equal to a terminal time on paths entering A and to a 

coterminal time on paths entering B. 

Proof. The 'if' part is contained in Theorems (3.9) and (5.2). For the 

'only ift part observe first that if T is a regular birth time and a regular 

death time for PX
3 then by the same results 

(6.3) x P a.s. , 

(6.4) x P a.s. 

where TC is a coterminal time associated with some coterminal event C, p 

is an optional time for {FT +n~ n~O} and TV9 F is given as in (5.l) for 
C 

some V C JxJ, F e F. In particular 3 if TV ~ 1 is the terminal time asso-

ciated with V, we have 

{6.5} x P a.s. 

NoVl C is the intersection of an invariant event Coo \AJith an event requiring 

that all transitions belong to some subset~ VIC say, of J x J. By {6.5} 

therefore TC = T = TV = 00, pX a. s. on C;, so that C;, C «Xn ,Xn+l ) e VC ~ n e NL 

pX a.s' 9 which because the states form one communicating class is possible only 

if either pXc;, = 0 or transitions in V are impossible, i.e. we must have 

that either TC equals pX a.s. the last time crVI a transition in VI is 

completed or else TV = 00, pX a.s. But in the first case the inequality 

0V I ~ TV ShOlflS that it is impossible to perform a transition in V' after a 
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transition in VI and again because we have one communicating class 9 this 

means that either VI or V ocnsists of transitions which are impossible 

under p. Thus eitller TC == 0" pX a.s. or Til == 00) pX a,s. and by (6.3)0 

(6.4) this means that either there is an optional time p which equals T~ 

x } P a.s." or there is an event F e F such that T =: Tn!. I:'!":= sup{n> 1: e 1 € F" 
~~r -- n-

'( 
P' a. s. 

!IJe have already seen that if3 e.g. T is itself an optional time satis­

fying (6.4) exactly~ then T is a terminal time, If we only kno\!J that T == PJ 

pX a.s. with p optioned it follows that pX(T>nIFn) = 

because of (6.4) the same conditional probability equals 

But then 

1(T>n)' pX a.s. while 
X(n)( , ) 

1( »p T\f.F>D. TV n . " 

(T > n) = (T V > n ~ pX (m) (T V , F > 0) > 0 c, 0 ~ m ~ n ) x P a.s. 

showing that T is pX-equivalent to a terminal time. 

Similarly, if T = T9.ls.F pX a.s. ~>Je have pX(T~nir-n);: pX(n)(T09F ::O) 

~lJhi1e because of (G.3) 3 Cr_< n} :: F (8 e C) for some F e F so that the n n n n 
conditional probability equals l~ pX(n)C and consequently 

'n 
Fn(p)(n)c > 0) ;: (px(n)(T0~F = 0) > 0) pX a.s. whence 

(T ~ n) = F n (e nee ~ pX (n) C > I)) = (8 nee 9 pX (ret) (T 09 F = 0) > 0, m ~ n) pX a. s. ~ 

showing that T 1s pX-equivalent to a coterm1nal time. The theorem is proved. 

7. POSSIBLE EXTENSIONS 

Though we have restricted ourselves in this paper to Markov processes in 

discrete time with countable state space. the concepts of birth times, death 

times. and conditional independence times can all be formulated for Markov 
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processes with more general time set or state space. We conclude in this section 

with sonle comments on the difficulties involved in extending our results to 

apply to these situations. 

A fevi of the results do carryover to apply to ~'ark()v processes with 

abstract measurable state space and time set T either r~ or [0,00). Copy­

ing the definition from Section 4 of a death time for a family of Markov 

probabilities. a generalization of Proposition (4.2) remains valid; and by 

adopting an analogous definition of a conditioning event for a family ratboC!r 

than a single Markov probability~ it can be shown that F is such an event if 

and only if there are events CeF~ FteFt , teT such that F=Ft (8t eC), 

pX a.s. for every x and every t ~ 0 (cf. (2.10) and Jacobsen [2]. Lemma 1). 

As for our other results. the assumption of a countable state space is 

used chiefly to avoid measure theoretical problems in the proofs of the harder 

'only if' assertions of Theorems (2.3)? (3.9) and (5.2), while the restriction 

to discrete time is essential for our treatment of conditional independer,ce 

acn)ss a random time. The basic criterion for deciding whether a random time 

possesses the conditional independence property is Lemma (3.12L the proof of 

which rel ies on the fact that within the set A(T = n) 9 tl/here A is an arbi·· 

trary atom in Fn~ the conditional probability law of aT given the pre=T 

field may be determined as a conditional pY-probability given the event GnA 

which is the section of (T = n) beyond A. A generalization of this to pro­

cesses in continuous time fails 9 partly because the conditioning event -GnA 

lnay now have measure 0 for more than a negligible collection of atoms A, 

and partly because, even when this is not the case, it is no longer obvious 

that the desired conditional probability given FT results. For some 

criteria for conditionAl independence and some of the subtleties involved see 

Jacobsen [2]~ Pittenger and Shih [6]. 
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