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1. INTROBUCTION

Given a Harkov chain XO,Xlg... with stationary transition probabilities,
we investigate random times 1 with the property that the joint distribution
of the pre-t fragment (ng...,XT_]) and the post-t fragment (XT’XT+1"")
can be described by saying that one or other of these fragments is Markovian
with stationary transition probabilities, and that the two fragments are
conditionally independent given the position of the inner endpoint of the
flarkovian fragment at t-1 or T. Such a description of the joint Taw of the
pre-T and post-T processes for a random time T will be called a path decom-
position. For some examples of more sophisticated path decompositicns which
provided motivation for the present study see Williams [8], [2], Jacchsen [2],
Pitman [4], [5], Pittenger and Shih [6]. Following Meyer, Smythe and Walsh [3]

we refer to those random times <t for which the post-t fragment is Markov as

birth times, and to those for which the pre-t fragment is Markov as death times. \
le show that for discrete time Markov chains with countable state space the
analogues of the types of birth times and death times considered by Meyer,
Smythe and Walsh for continuous time processes, namely optional, cooptional.
terminal and coterminal times, all admit the additional conditional independence

property described above, and that from these special tynes of random times it

TThis research was prepared with the support of Mational Science Foundation
Grant MPS 74-18967 and the Danish Natural Science Research Council.



is possible to construct the most general random times determined by the evolu-
tion of the Markov chain which allow this kind of path decomposition.

To make things precise we assume that (Xn9 nelN) is the coordinate
process defined on the space Q of all seguences in a countable set J
indexed by the non-negative integers [, equipped with the usual product
o-field F. VWe say that a probability P on (9,F) 1is Markov, or Markov(p),
if P 1is the distribution of a Markov chain with stationary transition proba-
bilities p, i.e. if under P the sequence (Xn) is itself such a Markov
chain. Background on this framework may be found in Freedman [1]. and fuller

definitions follow at the end of this introduction.

A random time T = T(w) 1is now an F-measurable function of sequences

we  with values in the extended time set Nu{x}. Given a Markov(p) proba-

bility P and a random time T, we say that T 1is a birth time for P if

the P-distribution of the post-t process is Markov(a) for some transition

matrix g, and say that T 1is a regular birth time for P if in addition the

pre-t and post-t processes are conditionally independent given XT on (t<=).
Put another way, T 1is a regular birth time for P if there is a transition
matrix q such that conditional on the pre-t process, T < o, and XT = X
(for each state x) the P distribution of the post-t process is Markov(q)
with starting state x. According to the strong Markov property each optional
(stopping) time T 1is a regular birth time for every Markov probability P,

and in this case q = p. If all states are recurrent it will be scen that
every regular birth time is a.s. equal to an optional time, but if there are
transient states there will usually be many regular birth times Tt for which

q differs from p, e.qg. the last time T that a certain set of states H s

visited, when the post-t process is Tike the original process conditioned



never to hit H.

It turns out quite generally that the Markov chain which emerges at a
regular birth time T can be described by conditioning a Markov chain with the
same transition probabilities as the original. With this in mind we determine
in Section 2 the collection of all events C e€ F with the property that when
a Markov probability P on (Q,F) is conditioned on C, another Markov
probability results. The resuit of Section 2 is then applied in Section 3 to
give a complete description of all regular birth times for a Markov probability
P. It is shown that there is a class of random times B with the property
that for each Markov probability P

(i) every T e B 1is a reguiar birth time for P

(i1) every regular birth time for P is P a.s. equal to a random time

in B.

This canonical collection of regular birth times may be roughly described as
comprising 'optional times after coterminal times'. It is interesting that the
conditional independence hypothesis involved in regularity is quite essential
for this type of result. We show that there exists no such canonical collection
of plain birth times by exhibiting two Markov probabilities P and 0 with
the same null sets together with a random time T which is a birth time for
‘P but not for Q.

In Sections 4 and 5 we consider death times. Ye say that T is a death
time for P if the P distribution of the pre-t process (XO"°"XT~1) is
Markov(r) for some sub-stochastic transition matrix r, and say that Tt is

a regular death time for P 1if in addition the pre-t and post-T processes are

conditionally independent given X..p on (0<T<»). Since the time reversal
of a Markov fragment with finite lifetime and stationary transition probabilities

is again Markov with stationary transition probabilities, the regularity
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condition for a death time is equivalent to demanding that there is some sub-
stochastic transition matrix r such that conditional on the post-t process,
0<T< o and Koq =% (for each state x), the reversed pre-t fragment

(X X _ps---2Xg) is Markov(F) with starting state x. Thus the notion of

a regular death time may be viewed as the dual under time reversal to the notion
of a regular birth time.

In Section 5 we prove the existence of a canonical class ? of regular
death times which roughly speaking comprises 'co-optional times prior to
terminal times'. This result is like a dual to the existence of the class B
of regular birth times, but owing to the impossibility of reversing on (1=)
we are unable to bridge between the two results by any direct use of time
reversal. For the death time theorem we instead make use of a new method
developed in Section 4, exploiting a functional equation satisfied by certain
conditional probabilities associated with any death time, regular or not. Once
again we show that there is no canonical collection of plain death times.

Section 6 is devoted to random times which are both regular birth times
and regular death times. We show that for nice transition matrices p these
times are essentially either terminal times or coterminal times, and give a
detailed description of the associated path decompositions. Finally, in
Section 7 we discuss possible extensions of our results to Markov processes
with more general time set or state space.

e set out now the basic notation and conventions which will be used

throughout. We take it right from the start that our countable state space J

contains a conventional coffin state A, but A is for use only after killing

operations. Except where otherwise specified we assume that we are given a

fixed Markov probability P on the sequence space (Q,F), with initial



distribution A = (A(x), xedJd) and transition probabilities p = (p(x,y), x,yedJ)
which are arbitrary subject to the coffin state conventions that A(A) = 0,
p(A,A) = 1, p(x,A) =0, x #A. Thus P can be any Markov probabi]fty concen-
trating on the space 25 C Q of all sequences in the state space J\{A}. For
x € J we denote by P the probability on (Q,F) which is Markov(p) with
starting state x: thus P = ZJ)\(X)Px .

xe

For ne il = Nu{»} we define the coordinate maps X2 &+ Jds killing

operators Kn: 2« Q and shift operators en: Q-+ as follows: for

w = (wggw]’,...) e, neN,

Xp(w) = w .
K (w) = (wgs-.en0 q58:8,...) 5

0, (w) = (0,0, q5--2) >
while for n =

X (w) =4, K (o) =w, 6(w) = Wy

-

where w, = (AsA,...) 1is the dead sequence. For a random time T: Q> N we
define F-measurable mappings XTs KT and eT in the obvious way: e.qg.
XT(w) = XT(w)(w), we . Thus X, gives the position of the process (Xn)
at time T, K_ describes the strictly pre-t fragment (XO""’XT~]) by
identifying it with the more manageable process (XO,..Q;XT_]QASA,...)S while
6, describes the post-t fragment (XT,XT+]9...). For neN we define F_
to be the sub-o-field of F generated by XO""’Xn’ and denote by ’An the

countable collection of all atoms of Fna i.e. all events A of the form

A= (Xk=xk’ 0<k<n) for some Xgse-esX, € J. For a random time T define

FTa the o-field of events up to and including time T, to be the o-field



generated by KT+]‘ This agrees with the usual definition for an optional time
T, and especially FT = Fn for the constant time T = n. MWe are only ever
interested in the trace of FT on the space QQ of sequences avoiding the
coffin state A, and we find that for each n e il the trace of FT on the
event QO(T==n) is identical to the trace of F_ on 90(1'=n)3 and that
the event QO(T<:w) is the union of the countable collection {RGA(T==n),
AeArls neN} of atoms of Fr’ where here and throughout, AB stands for the

intersection of two events A and B 1in F.

2. CONDITIONED MARKOV CHAINS
In this section we solve the following probiem: given a Markov chain
with stationary transition probabilities, on what events determined by the
evolution of the Markov chain can one condition  obtain a new Markov chain

with stationary transition probabilities? For any probability P on (Q.F)

C) denote the probability on

and Ce F with P(C) >0 1let PC or P(-

(2,F) obtained by conditioning on C:
PC(F) = P(FIC) = P(FC)/P(C) , FeF.

Thus the problem becomes: given that P is Markov, for which C e F is PC

again Markov? We start by defining various collections of events contained

in F:

(2.1) Definition. Let

CG = {C: CeF, C = (XOeH) for some H CJ} ,
C, =1{C: CeF, C = [(xngxnﬂ)evs nelN] for some V C JxJ} ,
c, =1{C: CeF, C= w]eCH .



Thus CO = Fo is the o-field of initial events generated by XO’ C, is the

o-field of invariant events, but the collection C, of events which constrain

all the transitions to be of a certain type is not a o-field at all.

(2.2) Definition. Let

C, =1{C: CeF, C=C,C_ for some C,eCy; C eC} ,
C={C: CeF, C=C,C,C, for some CheCqy» CeCy. C eC} .

Events in C+ will be called coterminal events, anticipating the connection

between these events and coterminal times which is described in the next section.
Events in C are intersections of initial events and coterminal events.

Now each of the collections CBQ B =20, *, o, 1is readily seen to have
the property that if P 1is Markov then so is PC whenever C e CB and
P(C) > 0, and it follows by repeated conditioning that the class C of all
intersections of events from these collections must again have this property.
The central result of this section is that no matter what Markov probability P

we consider, the events in C are up to P-equivalence the only events for

which PC is Markov:

(2.3) Theorem. Suppose P 1is iarkov and C 1is an event with P(C) > 0. Then

P~ 1is Markov if and only if C dis P-equivalent to an event in C.

C

The theorem is an immediate consequence of Lemma (2.5) and Proposition

(2.10) below. Proofs of these results take up the remainder of the section,

but we mention first a simple corollary:



(2.4) Corollary. Suppose the iMarkov probability P makes all states recurrent.

Then P, 1is Markov if and only if C 1is P-equivalent to an initial event.

¢

Proof. If P makes all states recurrent then it is found that every

coterminal event is P-equivalent to an initial event (see Freedman [1]., 1.120).

(2.5) Lenma. If C 1is a coterminal event, then there are events Fn € Fn such

that

(i) C=Fn(eneC) s nel.,
Conversely, if C 1is an event such that

(i) C = F](e]ec)

for some F.l e F], then C 1is a coterminal event. Furthermore, if (ii) holds
only P* a.s. for all x e J, where P* s Markov(p) starting at x, then

there is a coterminal event which is Px-equiva1ent to C for all x.

Proof. The first assertion is obvious. For the converse suppose that

C e F satisfies (ii). Since F] = ((xosx]) eV) for some V CJxJ we get

(g
b

= ((X5:%;) eV)(6,eC)
whence C= Hxhqgk)ev,likinﬂenec) , n>1,

by iteration. But intersecting this identity over all n >m gives us
C=vanecan3m)
where CV = ((Xk_1,xk)e\!, 1<k<w) ¢ C,, and taking the union of this identity

over all m gives C = CVC where C_ = lim inf (6_eC) 1is invariant, so
. o 0 oo n

that C 1is indeed a coterminal event. For the final assertion the same



sequence of identities is justified P* a.s. for all «x by using the fact that
if two events F] and F2 agree P* a.s. for all x then so too do the

events (eneF'i) and (eneFZ) for each n e M.

Qur efforts now are directad toward establishing the final result (2.192)

required for the proof of Theorem (2.3).

(2.6) Notation. Recall that An denotes the countable collection of all atoms

of Fn, Now for y e J let Any denote the subcollection of An comprising

those atoms contained in the event (Xn==y),

We observe that a probability P on (Q,F) 1is Markov if and only if for
each y e J the PA distribution of the post-n process en remains constant

as A varies over all events in Any with P(A) >0 and n varies over H.

When P is Markov(p) this constant distribution is of course the probability

P,

(2.7) Definition. Let n e M. For each event A in A.» and each event
FeF, defineaset F, CQ, the section of F beyond A as follows: For
A= (X =%, O<k<n) e A.s Fn comprises those sequences = (wOsw],..n)

such that Wy = X, and the sequence (XO””’xn*m15w2”'°') is in F.

Then FA is an event in F and we shall make repeated use of the identity

(2.8) AF=A(GneFA) ; AeAn? FefF.

Notice that if AeA ~ then F,C (xo=y), FeF.

Y

(2.9) Lemma. Suppose P is Markov(p), C e F with P(C) > 0. Then for

Ae A, with P(AC) >0, the Ppc distribution of o fis P%'A=Py(o|CA).
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Proof. For BeF, Ae Any with P(AC) > 0, we have

PIAC(8, €B)]  P[A(8, €C,B)]

Pac(6,€B) = —prey— = P[A(enneCA)]
_ P, (6, €CpB) _ Py(CAB)

PA(en € CA) Py(CA)

= Py(BlCA) .

(2.10) Proposition. Suppose P is Markov(p), C e F with P(C) > 0. Then

P. is Markov if and only if there exists an event D e F such that

C

(i) C=C.D Pa.s.

for some initial event C0 € CO’ and

(ii) for each n e i there is an event Fn € Fn with

- X
D= Fn(eneD) P” a.s.

for all x e J.

Proof. Fix P and Ce F with P(C) >0, and define I CJ to be the

essential range of (Xn) under PC:

I ={yed: PC(Xn=y) >0 for some n} .

+-
ny
P.(A) >0, and set AP UAT . Thus AT s non-empty if and only if y e I.
C Yy o, y

Now PC is Markov if and only if for each y e I the PAC distribution of en
+
ny
is Markov if and only if for each y e I the probabilities Py(alCA) are iden-

For y e d define A to be the collection of all atoms A in Any with

is constant as A varies over A and n varies over N. Thus by (2.9) PC

tical, A e A;, i.e. if and only if the events CA are PY a.s. identical,

Ae A;. But if there is a 9 satisfying (i) and (ii). then we clearly have
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+
for all A e A
r € y

C, = (X.=y)D P oa.s.,

hence PC is Markov. Conversely, if PC is Markov, say Markov(g), then for
each y e I we can select a representative event CA with Ae A;9 call it

D, set D= U D , and then have for each y e I the identity
y yel y

’ Y - +
(2.11) pY (- c) =) . Ae A

D) = Py(o

D) = PY(-

where 0¥ is Markov(g) starting at y. Obviously this D satisfies (i)

with Cy = (Xoel4) for H = {y: PC(Xﬂ=y):>Q}, and this D also satisfies
Y
"D

Markov(q) so that D = O P? a.s. for any A e Anz with PY(AD) > 0.

(ii), as can be seen by the following argument. For any y e I, is
Consequently AD = A(enei)) PY a.s. for any A e An with PY(AD) > 0 and
taking the union over all such atoms A we arrive at a representation

= Y i ini = =
D Fny(enen) P* a.s. with F eF . Defining F, yLeJI(XO ¥)Fpy we now see
that D = F (6 eD) P* a.s. for arbitrary x e I, and since P*(D) = PX(F,) = 0

for x ¢ I, D satisfies (ii), and the proof is complete.

3. REGULAR BIRTH TIMES
The main result of this section is Theorem (3.9) which describes all
regular birth times for a Markov probability P in terms of certain fundamental
birth times associated with the coterminal events of the previous section,
i.e. the coterminal times of Meyer, Smythe and Yalsh [3].
Using the notation defined at the end of the introduction, a random time
T 1is a regular birth time for P if and’on]y if a P conditional distribution

of 0. given FT is equal to Q* on (t<e, XT=x)9 where Q° is Markov(q)
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with starting state x for some transition matrix q. Put another way, 7t is a

regular birth time forPif and only if under P the post-t sequence

(Xr+n’ neN) is Markov(q) with respect to the increasing sequence of o-fields
(Fr+n’ neN).
Suppose now that C is a coterminal event as defined in (2.2), i.e.
(3.1) C = CyL,
where
= r o)
(3.2) Cy = (X _1:X ) eV, T<n<e]

for some V CJdxd, and C_ 1is invariant.

(3.3) Definition. The cotarminal time associated with C 1is the random time

T defined by

TC=1nﬁneN:9neC}.
(Here and elsewhere we use the convention inf @ =, sup § = 0).

Since for coterminal events C

(3.4) (ekeC)C(emeC) , O<k<m<e,

we have the identity
(3.5) hcﬁn)= (OneC)s nekn.

In particular, if C = Cvs then T¢ is the time that the last transition in

Ve s completed:

- . c
TCV = sup{n>1: (X _;.X )eV'},



while if C = C, is invariant, then

Te =0 on C . = on c .

co

and in general for C = CVCoo we have that Te is simply the maximum of Te
v

and Tcm.

It is easy to check that Te is indeed a coterminal time as defined by
Meyer, Smythe and Walsh in [3], i.e. that the random time 71 = T has the

properties

-
(t=n) . nekl,

: o8
(3.6) W “n

(i1) oK T on (t<n), nekN.

n

Conversely, if T is a coterminal time, then C = (t=0) is a coterminal

event and T = Te- To see this observe that {3.6)(i) implies
(3.7) (t<n) = {to8_=0) = (6_eC) . nek,

so that by (3.5) it suffices to show that C 1is a coterminal event. But by

(3.6)(ii) for n =2 and (3.7) for n=1 we have
C=(t=0, 1<2) = (TOK2=09 T<2) = ('|:0K:/_,=03 G]GC) 5

and since (ToK2==0) € Fls we conclude from (2.5)(ii) that C 1is a coterminal
event.

We shall see shortly that each coterminal time T = Tc is a birth time
for each iMarkov probability P: indeed a P conditional distribution for eT
given FT equals Pé on (XT==x)9 where Pé = 0° s Markov(a) for some q
by (2.3). This is just the analogue in the present context of Theorem 5.1 of

[3]. For a more detailed description of the path decomposition at Te giving
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the transition probabilities q of the post-rC process, see Section 6.
(3.8) Definition. Let B denote the class of all random times Tt of the form
T = Te + 0

where ¢ is the coterminal time associated with a coterminal event C, and

p is an optional time for the increasing sequence of o-fields (FT +n® neM),
C

i.e. (p=n) e FTC+n3 neN.

Once we know that each Tc is a regtlar birth time for P, it follows
at once from the strong Markov property of the sequence (XTC+n9 nel) adapted
*0 (Frc+n’ nel) that each T e B is again a regular birth time for P. Our
principal result is that the random times in B form a complete, canonical
collection of birth times in that no matter what Markov probability P we
start off with, every regular birth time for P 1is P-equivalent to a random

time in B.

(3.9) Theorem. A random time T 1is a regular birth time for a Markov proba-

bility P if and only if T 1is P-equivalent to a random time in B.

The proof of this theorem takes up the rest of the section, but we mention

first the following corollary:

(3.10) Corollary. If P makes all states recurrent then every regular birth

time for P is P-equivalent to a stopping time.

Proof. Just as for (2.4).
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(3.11) Definition. A random time T is a conditional independence time for a

Markov prcbability P if under P the pre-t1 and post-t processes are condition-
ally independent given XT9 i.e. if there is a conditional distribution of eT

given FT within (1t <%) which is a function of XT alone.

(3.12) Lemma. A random time T 1is a conditional independence time for P if

and only if there are events Fn € an nelN, GeF with
(3.13) (t=n) = Fn(q1eG) Pa.s., nehlN,

and there is then a conditional distribution of eT given FT which equals

X -
PG on (1<, XT—x).

Remark. The proof can easily be sharpened to show that T is a conditional
independence time for P if and only if t© 1is P a.s. equal to a t* with
(t*=n) = Fn(enea) exactly for some Fn € Fn"‘ G e F. Every such time is

thus a.s. equal to a splitting time, defined in Jacobsen [2] as a random time

- Tl = = H [ n
T for which (t=n) Fﬂ(ene(%ﬂ for some Fn € an 'y € F. Tha present
argument will also show that splitting times are characterized by conditional

independence of the pre-t and post-t processes given both XT and T.

Proof. Working on atoms as in the proof of (2.9). let A:x be the
collection of all atoms A of F ~ contained in (Xn==x) with P(Asn) > 0,
where Gn = (t=n), so that (Xn==x)5n is P a.s. equal to the union of the
sets AGn over all A in A;x. Defining IGnA as in (2.7) to be the section
of Gn beyond A, we have from (2.9) that the P conditional distribution of
6, given AG  is Px(-IGnA)g Ae A:X. But T is a conditional independence
time if and only if this conditional distribution is a fuaction of x alone

for all A e A:XS nedlN, i.e. if and only if for some Gx in F with
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GX - (X0==x) we have for each x e J
< X . At
(3.14) (znA GX P*" a.s., Ae Anx .
But if (3.13) holds we have (3.14) with GX = G(X0==x)9 while if (3.14) holds

we get (3.13) with 6= U G, and F_ the union of all A e A with
wed X n n
P(AGH) > 0.

Proof of Theorem (3.9). We have that T is a regular birth time for P

if and only if T 1is a conditional independence time for P and the P distri-
bution of 0. is Markov. Thus the 'if' part follows at once from (3.12) and
(2.3). For the converse, suppose T is a regular birth time for P. Then

(3.12) shows that there are events Fn € Fn’ GeF with

(3.15) (r=n)=anneG) Pa.s.,

and also that the conditional distribution of eT given FT is Pg on

(T <, XT==x). Since the regular birth time property tells us that this proba-
bility is Markov(q) for some ¢ not depending on x, we deduce from
Theorem (2.3) that for every x with P{r<e, XT==x) >0, 6 is P* a.s.
equal to a coterminal event C which because of (2.10)(i1) and (2.5)(i1) may
be chosen so as not to depend on x. It now follows that we can replace the
set GX = G(XO==x) which appears in (3.14) by the set Cx = C(X0==x) to

deduce that in fact

(3.16) (t=n) = Fn(qqec) Pa.s., nekil.

But now define

(3.17) C, = Fn(eneC)
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and define a randem time T' by setting

n-1
n on C\NUC , neldl
N =g K

)
1]

w on (U Ck)C .

k=0
(Mote that we could not define t' tobe n on Cn because the sets Cn
might not be disjoint). Me clearly have t' =1 P a.s., and we now conclude

by showing that t' > Tc and that p = 1' - Te is an optional time for

(’FT . meN). But from (3.17), (3.4) and (3.5) we have
C '
n n
(t'<n) = ug © U (ekeC) = (Tcgn) . neN,
k=0 k=0

which implies T' > g Furthermore, setting p = 1' - Tp we have for me N

the identity

(3.18) (p<m) = U (rc=n-m9 t'<n) .
n=m
But
n n
(3.19) (Tc=n"m9 t'<n) = (TC=n==m)[kL=JOCk} = kL:OBk

where By = (TC=n=-m)Ck. Mow if Kk < n-m we have by (3.17) and (3.5) that
Ck C (ekec) = (rc_gk) so that Bg, =@, while if n-m < k < n we have from
(3.5) and (3.4) that (TC=n~m) C (enmmeC) C (eke(:) so that using (3.17) we
get Bk = (TC+R']= n)Fk where Fk € Fk C Fn" In either case we see that

Bk e FT 0 and thus working back through (3.19) to (3.18) we get also *hat
C

(p<m) e FTC+m9 which is to say that p 1is an optional time of (Ftc+m9 meN).

The proof is complete.
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We conclude this section with some remarks about plain birth times. For

an interesting example fix m > 1 and define

T = Anfln> 1 (XX )= (Rgeen s X))

If P makes all states recurrent then T is P a.s. finite and since t+m is
a stopping time and (XT”°'3Xr+m) = (XO,...JXm) on (T<%) it is easy to

sea that the P distribution of GT is P. Thus T is a birth time for P,
but certainly not a regular birth time, since knowledge of the pre-t process
completely determines the first m-moves of the post-t process. Examples show
that T can fail to be a birth time if there are transient states. But it is
of greater interest to use the idea behind this example to construct two Markov
probabilities P and R with the same null sets and a T which is a birth
time for P but not for R, since this shows that there exists no-canonical

cless B¥ of plain birth times with the property that T 1is a birth time for

a Markov probability P if and only if T 1is P-equivalent to a time in B*.

(3.20) Exampie. Ignore the coffin state A and let J = {1.2,3}. Define

transition matrices p and r on J by

PSR SRR
0753 07l

_ 11 = 11
P=103573 r=1033
1] 11
L0755 055

Let P and R be Markov(p) and Markov(r) respectively, both starting at 1.

Then P and R have the same null sets but the random time T defined by

]
nNo

. JR - (v = 1 Yy
.. infin: xﬁ 2, L 2} if A]
inf{n: X, =2 xn%-?=3} if X =3
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is a birth time for P only.

4. DEATH TIMES
Given a Markov(p) probability P on (Q,F) we now investigate death
times for P, 1i.e. random times T such that under P the distribution of
the pre-t fragment (XDD"'“XT«1) is Markov with stationary sub-stochastic
transition probabilities, or, what is the same, that the killed process

K = (XO;...QX AsA,...) s Markov with stationary transition probabilities.

T T-1°

Let T be a death time for P. If we let Jy denote the essential range

of the pre-t path,

J, = {xe A {A}: P(t>n, Xn=x)>0 for some neil} ,

then the transition probabilities q{x.y) of the killed chain are well defined
for all x, y e J,u{A} and induce a family of probabilities {0, xed, u{al}
on § which concentrate on paths w which remain forever within this restricted
state space J u{A}. Clearly if P(t>0, XO==x) >0 then Q° is identical
to the P* distribution of KT given (t>0). This conclusion may be either
false or meaningless if P(t>0, XO==x) = 0, but we shall see that matters can
be rectified by redefining t(w) properly for paths o starting at such
points x.

lle consider now the whole family of prcbabilities {Px}xed where P* on

(Q.F) is Markov(p) with starting state x. For each random time T we

define JT CJ by

J. = {xed\{a}: PY(t>0) >0} ,

and say that T 1is a decath time for the family {P*} if there is a
- xed
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transition matrix g on JT U {A} such that for each x ¢ JT the P* distri-
bution of KT given (t>0) is 0%, where * on (2,F) is Markov(q)
with starting state x. In particular Qx concentrates on the set of sequences
in J_u {a}.

Obviously every death time for the family {PX}XeJ is a death time for

each Markov(p) probability P. Conversely we have

(4.1) Proposition. Let T be a death time for a Markov(p) probability P.
Then there is a death time t* for the family {Px}XeJ such that T (w) = t(w)

for all paths w starting at points x € J with P(t>9, XO==x) > 0.
Remark. If P =PY for a fixed state y then T and T agree P a.s.

Proof. As before let J, be the essential range of the pre-t path under
P, and suppose KT is Markov(q) under P. For those paths w starting at
an x e J\J+ we set T (w) = 0, while for those starting at an x e J, with

P(t>0, Xg=x) > 0 we put t*(w) = t(w). Finally, if x e J, and

X such

0, X =x) = i ' ‘ i
P(t>0, Xy=x) =0 we findan m>1 and Xgo-+- Xy € dp with x

that P[A(t>m)] > 0 where A = (X0=x0,...,xm=xm), and then for w (abﬁw],...
with Wy = X define

¥©) = (T(Xgsene X 1s00,00 .. ) -m)”

T IRERRL R PSP
Cbviously JT* = J+ and it remains only to check that the P* distribution
of KT* given {(t*>0) is " for xe J, with P(t>0, XO’=X) = 0, where

QX is Markov(q) starting at x. For this it suffices to show that for n e N,

B = (X0=y0,.°.sxn=yn); where yg = X, Ypa...sY, € J,s we have

PX[B(*>n)| ¥ >0]1 = 0*(B) ,
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where  Q(B) = q(yg.yy)---aly,_;.¥,) by definition.

But let m and n be as above. Then by first using the Markov property

of P and then the fact that T*oem = (T—m)+ on A we have

P*[8(x">n)] = P[A(6,€B, tog >n)1/P(A)

P[A(Gm eB, T>mtn)1/P(A) .

Similarly PY(t¥>0) = P[A(t >n)]/P(A), whence
PX[B(c* >n)| *>0] = P[A(6_eB, T>mm)]/P[A(t>n)]

which equals QX(B) because‘the P distribution of K. is Markov(q).

This result reduces the problem of describing the death times for a given
Markov probability P to that of characterizing the death times for a family
{Px}xed' Such a characterization is provided by the following proposition.
Write P(oan) for any of the identical conditional prohabilities Px(o!Fn)

and given a random time T introduce

f(x) = PX(t>0) ., Z =P(t>n| F). nel.

Note that I, = f(XO) and recall that J_ = {xedMA}: flx)>0}.

s . . . o Fami X
(4.2) Proposition. A random time T 1is a death time for the family {P }xed

if and only if for each x € \{A}, m.n e N the identity

. j 2700 /f(X) on (X €dJ)
] on (X ¢4J)

\

X
holds P a.s.
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Proof. HWith Qx the P* distribution of KT given (t>0), the condi-
tion that T be a death time for {P*} is equivalent to requiring that for

all wm, n, ke N, xo”“sxm+n9 X € JTQ

X X X
3 0y = = =0 Oy = = Mey -
(4-3) Q (XO_Xognoogxm+n-xm+n) = Q (XO-Xog‘a-qXp]-xm)Q (XO—meunugxn" m+n) E)

*0
(4.4) Q (X ¢ 3 uia) =o0.

Introducing the atoms A = (X0=xgd...3xm=xm)9 B = (X0=xm9...sxn=xm+n),

is seen that (4.3) and (4.4) are equivalent to
Xq Xg %
(4.5) P [A(emeB, t>mkn)] = P “[A(t>m)IP [B(T>n)}/f'(xm)

(4.6) p O(XketJTa >k) =0 .
But the left side of (4.5) equals

o

P [Zm+n5 A(GmeB)']

while the right side becomes
Xq X Xq
p (Zm;A)P (Zn;B)/f(xm) =P [ZmZnoem/f(Xm); A(enes)} .
Since A and B are arbitrary atoms for paths within J. and since (4.6) is

equivalent to demanding that zk92k+1"" vanish P* a.s. on (szkdr) the

result follows.

We finish this section with an example of two Markov probabilities P and
R. with the same null sets, and a random time T which is a death time for P
but not for R, thus proving that there exists no collection of random times

D* such that 1T is a death time for a Markov probability P if and only if
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T is P a.s. equal to a random time in D* (cf. Example (3.20)).

(4.7) Example. Ignoring the coffin state A let J = {1,2,3,4}. Define

transition matrices p and r on J hy

(1 1 1 ) (1 1 1
33530 7330
1 1 1 3
00 5 = 0 0 + >
o = 2 2 - i g
1 1 3 1
0 5 0 5 0 7 0 7
0 0 0 1 c 0 0 1
g J { )

Let P and R be Markov(p) and #arkov(r) respectivaly, both starting at 1.
Clearly P and R have the same null sets. Define p as the time of entry

into {2.3}, o as the time to absorption in state 4, put § = o-p and
finally let T be the minimum of p and §.

Under both P and R the random times p and & are independent; under
P they both have a ceometric distribution, whence so too does T, but under
R the random time p 1is geometric while & 1is not, and thus T 1is not

geometric either. Since the pre-t process never leaves state 1 it is therefore

Hlarkov under P but not under R.

5. REGULAR DEATH TIMES
In this section we consider death times Tt for a Markov probability P

on (Q,F) with the additional property, discussed in the introduction. that

conditional on the final pesition XT_] of the pre-t process on (0<T<w)

the pre-t and post-T processes are independent. Such a death time for P will

be referred to as regular.
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(5.1) Definition. Let D denote the class of all random times Tt of the form

TS Ty supin: T<n<ty, 6 4

for some VCJdxJd, F e F, where Ty is the terminal time associated with V:

Ty = infln: n> 1, (X _;.X )eV) .

Our main result is that the random times in ¥ form a complete canonical
collection of regular death times for each Markov probability P* on (9,F)
with a fixed starting state x. For random starts D must be enlarged to
include all times of the form T](Xoeii) for HCJ, bhut we shall ignore

this trivial compiication.

(5.2) Theorem. A random time T 1is a regular death time for a Markov proba-
bility PX with starting state x in J\{A} if and only if Tt is Px-equi—

valent to a random time in 0.

The proof of this theoren will be taken up later in the section. We men-

tion first some facts about the collection 0 which derive from the following

resuit.

(5.3) Proposition. The random times in 0 are characterized by the following

two structural properties: for every n e N
- \ =
(1) (t>n) Fn(T°6n3>0) for some F e F
(i) B, = T-n On {(t>n) .

Indeed. if T satisfies (i) and (ii), then T = Ty F with F = (t>0) and V

such that Fl = ((Xoaxl) eV®), and then
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- - c
Fo = hv>n)— (XX pq) eV, 0<k<n-1) .

Proof. See Lemma (5.4) below. The present criterion is just a restatement

of the criterion (a) of that lemma.

We note that for an optional time T we have (t>n) e Fn so that the
two conditions (i) and (ii) above collapse to (ii)} alone. Since an optional
time satisfying (ii) is by definition a terminal time, we find that an optional
time is in D if and only if it is a terminal time. Furthermofe it is plain
from the original definition of D, that T is a terminal time if and only if
T s the first time that the path either enters H or completes a jump in V
for some HcCJd, VYCJIxJ (cf. Walsh and Weil [7]).

For a cooptional time we have by definition that 7o = (Tnn)+9 and since
this obviously implies both (i) and (ii) we see that ¥ includes all cooptional
times. We find also that every cooptional time T can be represented as
T = sup{n: n>1, 8 1 eF} where F = (t>0), and since for cooptional T we
must have (t>0) = (6e6) for some G e F we deduce that T 1is a cooptional

time if and only if for some G e F
T = sup{n: nel, enes’i} .

Finally we mention two important closure properties of ? which are readily
checked using Proposition (5.3): if o and Tt are two random times in D,
then so are (i) their minimum o~t, and (ii) the random time ook obtained

by applying o after first killing at 1, provided o < inf{neR: Xn==A}.

(5.4) Lemma. Each of the following conditions (a) and (b) is necessary and

sufficient for a random time T to belong to D:
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(a) For each me N there is an Fnn € Fm such that
(T>Wﬂ)=FQTﬁm>M s nebd.

(b) There is an F} € F.i such that for Fo = F](e]eaF])---(enm]e F1)

we have

(1) (T =n+l)
(i1) (1=)

Fn('roen =1) .,

F (to8 ==)

Conversely, if T satisfies (a) we will show that 7 = Ty F with F = (1>0)
and the V defined by F] = ((Xosxl)e\ﬁﬁ. As a preliminary we claim that
for m>1 the Fm appearing in (a) can be replaced by the Em determined
from F1 as in (bj. This is trivial for m =1, while if true for m and

all n we find that

(t>m+ (n+1)) = Em(foem > n+1)

(1> (m+1) +n)

= FmﬁjemeF](Toe>n)] =Fm_|_](Tc>emH >n) ,

establishing the fact for m+l, and the assertion is verified. To show now
that 1 = Ty . F for the given V and F it suffices to check that
(TV F>m) = (t>m) forme N, i.e. that

U (7

>n, 6 _eF) = F (1o8_>0) .
nim 1] me . m

)

But since Em = (TV:>m) and (Toem:>0) = (GmezF)s the right hand event is

identical to (TV:>m5 en]eF)g and we must therefore show that for each n > m

this event contains the event



- 27 -

5 = o
(5.5) hv>ngeneF) hv>m9tvem>nmgeneF).

But because (t>0) D (t>1) = F1(T08>'0)9 we find by induction that
(t>0) D ?k(Toek>0) = (Tv>k9 ekeF) and using this with k = n-m 1in (5.5)
yields the desired conclusion.

For the second characterization (b) it is obvious that if t = Tng is in
D, then both (i) and (ii) hold with Fy = ((X;.X;)eV®), while if these iden-
tities obtain it is easy to check that (a) holds with Fm = Fm‘

The same proofs show that if @ CQ 1is invariant under 6. i.e. if

Q" C (peQ*). then knowing that either (5.4)(a) or (5.4)(b) holds just on Q.

e.g. that
(t=n+1)0* = Fn(roen=1)9* (t=0)0" = ?n(roenmm* \

we can deduce that T = T, . on Q* for some V CJdxJ, FefF.

e also note that an obvious modification of Lemma (3.12) tells us that
for a random time T and a Markov probability P the pre-t and post-t processes
are conditionally independent given X__, and the event (0<t<w) if and

only if for every n e N there exists Fn € an G e F such that
(5.6) (t=n+1) = Fn(eneﬁ) Pa.s. .

Proof of Theorem (5.2). Fix x e MN{A}. Assuming first that T = Ty F

PX a.s., it follows from (5.4)(a) that for Z, = P(rqu>-n| Fn) we have

Zm+n = ]szn°em a.s. where here and throughout this proof 'a.s.' on its own

means 'PY a.s. for all y e \{A}'. But Proposition (4.2) is then easily applied
to show that Ty F is a death time for PX? and hence so too is tT. Since
5.4)(b) applied to Ty g Shows that (5.6) holds with 6 = (Tv £= 1) it

follows that T 1is a reguiar death time for PX,
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Now assume conversely that 1 1is a regular death time for P, In carti-
cular by (5.6), (t=n+1) = Fn(ene!3) P* a.s. for some Fn € an G e F.
Replacing T by the ™ constructed in Proposition (4.1) we get a random time
which is P* a.s. equal to T and which is a death time for the family
{Py}yed' Furthermore, it is not difficult to verify that (7" =n+l) = F;(e“:sa)
a.5., n e, where Fz is the union of the events F over y in JT*Q

nsy

i ti f = (¥ = = 2l
with Fnﬁy the section of Fm+n beyond the atom Ay (AO xo,.o.th y) used

to define 1" on paths starting at vy e JT* (see (2.7) and the proof of (4.1)).
Thus we may as well drop the stars and take it from the start that Tt 1is such

that there are events Fn € an GeF with
(5.7) (t =n+1) =anneﬁ) a.s.

We now aim to show that such a T satisfies (i) and (ii) of (5.4)(b) a.s.
Both in this and later arguments there will be much tacit use of the fact that
if two events F, and F, are a.s. equal then so too are (8ﬂefﬁ) and

U%]eFZ) for each n e N. Writing
M= {yed{a}: P(r=1)>0}
wa first caim that
(5.8) | (t=n+1, XneM) = Fn(anMs Toen=]) a.s.

To see this observe that by (5.7), (XOeiW) = FO(PX(O)G:>0) so that also

(XneM) = (eneFO’ Px(n)G>0). But then, again using (5.7)
{T=n+1, XneM) = Fn(eneFOG"‘ Px(n)G>0) a.s.

and (5.8) follows. Introducing now
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fly) = P(1>0) , Z,=Plt>nlF) , ¥ =Plr=ntl|F) ,

it follows from Proposition (4.2) that

=W+ zn[f(xn)]"’ll(xneJT)PX(")(nl) a.s.

so that because (Zn>0) C (XneJT),
(5.9) (wn>0)=(Ln>O,xneM) a.s.

Because (Tt=n+l1) C (wn:>0) we find in particular that (t=n+l1) C (Xneiﬁ)

so that (5.8) may be written
(t=n+1) = Fn(XneﬁL Toﬁn=1) a.s.
whence (wn>»o) = Fn(XneiW), and comparing with (5.9) it develops that
(t=n+1) = (wn>(n T°6n=]) = (Zn>(h Xneﬁh T°6n=1) a.s.

Since (T°6n='l)<: Og1eM) and T 1is a death time for {Px}xedﬁ Proposition
(4.2) implies that (i) of (5.4)(b) holds a.s. with F] = (Z]>'@). To establish
(i1) of (5.4)(b) observe that by the martingale converaence theorem

1(t=w) = 1im Z_ a.s. But because of Proposition (4.2) that 1imit equals
Moo

-1 . - v y1-1 . of =
Zn[f(Xn)} ](Xne"]'r) 1n11mZm°6m = Zn[f(/(n)] 1(X.ncJT$ T8, ) a.s.

for every n e N, and the desired conciusion that (t=w) = (Zn:>0ﬂ Toen=<n)
a.s. is now immediate.

Thus, for each y e J\{A}, ignoring a PYonull set Lys we have that =
satisfies the identities of (5.4)(b) for all n with Fi = (Z]:>O). But the

set L = U (X0==y)L is a null set for all Pyg y € M\ {A} simultaneously
yed\{A} y
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N the

[¢7]

and consequently, defining Q% = (U U%]eL))C we see that for =
nei
identities

¥ *
(t=nt1)Q" = (Z;>0,... 2506, 4 >0, 106, =1)2 .

(t==)0* = (2,>0,... 2,08 >0, 100 =e)2*

hold exactly, and since ©° 1is invariant under 6, the remark following
Lenma (5.4) shows that on 0%, 7T is of the form TV .F for some V C Jdxd,
FefF. Since also Py(ﬂ*) =1 for every y, in particular for y = x, we

conclude that t is P* a.s. equal to some Ty p and the proof is completa.

As a final comment on death times, it may be observed that there exist
random times T which are death times for all Markev probabilities simultaneously

without being regular. A simple example is obtained by taking an integer a > 2

and defining

(t>0) =, (x>n) = (XO= -~»=Xan):, n>1.
6. BIRTH AMD DEATH TIMES
lle now consider random times which are both reqular death times and regular

birth times for each Markov(p) probability P. For such a random tiuar T

it is seen that a path decomposition specifying the joint distribution of the
pre-t and post-t processes can be given in terms of just four quantities deter-
mined by T and p, namely the function f: J -~ {0,1] and the three transi-
tion matrices q, r and s on J such that under the probability P* on

(2,F) which makes (Xn) Markov(p) starting at x we have
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(6.1) (i) PX(r>0) = f(x), x e d.
(ii) Conditional on Tt > 0 the PX distribution of the pre-t process
is Markov(gq) starting at x,
(iii) Conditional on 0 < T <~ and a pre-t path with X,q =y the
P distribution of XT is r(v,°),
(iv) Conditional on T <, the pre-t path and X, =z, the p*

distribution of the post-t process is Markov(s) starting at z.

With f, q, r and s specified by (56.1) the path decomposition involved
in (6.1) can be expressed more intuitively by saying that the following proba-
bilistic motion describes a Markov chain with stationary transition probabilities
p: Start at x, and then with probability 1-f(x) move off according to a
Markov chain with transition probabilities q; when (if ever) this chain dies.
look back at the position y where the chain was at the instant before it died
and instead of dying make a single transition according to r(y.-); if this
gets you to state z (where z = x 1if there was no motion according to q)
complete the motion by moving forevermore according to a Markov chain with
transition probabilities s starting at z.

There are two basic kinds of random times which induce a path decomposition
of this kind: terminal times and coterminal times. We first indicate how the

parameters f, q, r, and s are obtained for these times, and then show that

for nice transition matrices p these are essentially the only random times
inducing such a path decsmposition.
Suppose first that T 1is a terminal time. Then as mentioned below (5.3)

there is a subset H of J and a subset V of HxH such that

(1>0) = (XyeH) » (r>n) = ((X.X ,q) eV, O<ks<n-1) , n>1.
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With H and V so defined it easfly is checked that the parameters f, g,

r and s are given by

f(x) = IH(x) , xed,
| plx:y)Ty(x.y) if y #4
q(x.y) =
1- 3 qlx,z) if y=A
Z#A
px.y)1 (x:y)/]p(x,2)1 (x.z) if x eH
r{x,y) = v z v .
arbitrary if xeH |
s(x,y) = p(x.y) »

where ]B stands for the indicator function of a subset B of either J

or dJxJd.

For T a coterminal time there is a subset V of JxJ and an invariant

event C_ such that

(t<n) = (enec)a nel,

where C 1is the coterminal event ((Xkaxk+1)e\l,i<eﬁncw. Define functions

f, f, g and h from J to [0,1] by setting for x e J

PX(CC)

P¥(c) |

Xp(y c

PXL((X,:X, 47) €VC infinitely often) UCT] .

f(x) = P*(1>0)
f(x) = P*(r=0)
g(x) = PX(=1)
n(x) = PX(r=w)

Then f, f and g are related by the identities f+f=1 and

g(x) = I pOuy) (xy)f(y) . xed.
y v

and it may also be observed that f is p-excessive, that h 1is p-harmonic, and
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co

that the Riesz decomposition of f is f = Ug+h where U = Z pn is the
n=0

potential operator associated with p. The parameters f, q, r and s for

£

the path decomposition are now readily seen to be specified as follows: f has

already been defined.

[P(xgy)f(y)/f(X) if fly) >0, y#4,

q(x.y) = < 0 if fly)=0. y#4,
11- ) a(x,z) if y=4,
z#A
[yl Gy Ey) i aly) >0,
r(x,y) = < Ve
1‘arbitrary if gly) =0,
(ol e F/E(x) i F() >0,
s(x,y) = ¢ .
Larbitrary if f(x) =0.

In this case parts (i), (ii) and (iv) of the path decomposition statement (£.1)

are the discrete analogues of Theorems (2.1) and (5.1) of Meyer, Smythe and
Walsh [3]. Part (iii) provides the inner link between the pre-t and post-t
processes which is reguired for the full statement of the path decomposition.

We now establish a characterization of terminal and coterminal times by

the path decomposition (6.1).

(6.2) Theorem. Let the Markov probabilities {P*, xeJd} be induced by a
transition matrix p on J which makes all states in J\{A} form a single
closed communicating class. Then a random time Tt 1is both a regular birth
time and a reguiar death time for P* if and only if 1 is Px—equiva1ent to

a random time which is either terminal or coterminal.
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Remark. The characterization fails without some hypothesis on p. For
instance if p induces two closed communicating classes A and B and a
transient state x from which absorption intc either A or B is possible,

then 71 could be equal to a terminal time on paths entering A and to a

coterminal time on paths entering B.

Proof. The 'if' part is contained in Theorems (3.9) and (5.2). For the
‘only if' part observe first that if T 1is a regular birth time and a regular

death time for PX5 then by the same results

i

(6.3) T= Tt P a.s. ,

(6.4) TS Tk PX a.s.

where To is a coterminal time associated with some coterminal event C, p

is an optional time for {FT +n° n>0} and Ty F is given as in (5.1) for

C
some Y CJxJd, FefF. In particular, if Ty > 1 1is the terminal time asso-

ciated with V., we have
(6.5) peTeT,  Plas.

NMow C s the intersection of an invariant event Co, with an event reqguiring
that all transitions belong to some subset, yr ¢ say, of JxJ. By (6.5)
therefore =T =Ty = P* a.s. on Ci so that Cg - ((Xn*xn+4) eV’ nelt),
pX a.s., which because the states form one communicating class is possible only
if either PXCi = 0 or transitions in V are impossible, i.e. we must have
that either T¢ equals PX a.s. the last time ST transition in V' s
completed or else Ty = P* a.s. But in the first case the inequality

Oy g,rv shows that it is impossible to perform a transition in V' after a
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transition in V, and again because we have one communicating class, this
means that either V' or V ocnsists of transitions which are impossible
under p. Thus either e =0, PX a.s. or Ty = ®» P* a.s. and by (6.2),
(6.4) this means that either there is an optional time p which eguals T,

P* a.s.. or there is an event F e F such that 1 = TyE " supln>1: 6 _yeFl,
P* a.s.

We have already seen that if, e.g. T is itself an optional time satis-

fying (6.4) exactly, then T 1is a terminal time. If we only know that T = p,
PX a.s. with p optional it follows that PX(TS>n|Fn) = ](r>n)9 P* a.s. while

because of (6.4) the same conditional probability equals 1(T >n)Px(n)(rv F>O).
v

But then

showing that Tt is Pxeequivalent to a terminal time.
.. . _ X X - pX(n) =
Similarly, if T = Ty F P* a.s. we have P (Tjin|Fn) =P (TﬁgF 0)
while because of (6.3), (t<n) =F (6 eC) for some F e F so that the
conditional probability equais 1. Px(n)C and consequently

n
Fn(Px(n)C>O) = (PX(")(T@ F=0)>0) P* a.s. whence
f - X(n) ! = X(m) = X
(t<n) = F (6 eC, PP7'C>D) = (o eC, P hwj 0)>0, m>n) P a.s.,
showing that Tt is Pxnequivalent to a coterminal time. The theorem is proved.
7. POSSIBLE EXTENSIONS
Though we have restricted ourselves in this paper to Markov processes in

discrete time with countable state space, the concepts of birth times, death

times, and conditional independence times can all be formulated for Markov
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processes with more general time set or state space. Ue conclude in this section
with some comments on the difficulties involved in extending our resuits to
apply to these situations.

A few of the results do carry over to apply to Markov processes with
abstract measurable state space and time set T either ¥ or [0,»). Copy-
ing the definition from Section 4 of a death time for a family of Markov
probabilities, a generalization of Proposition (4.2) remains valid, and by
adopting an analogous definition of a conditioning event for a family rathar
than a single Markov probability, it can be shown that F dis such an event if
and only if there are events C e F, Ft e Ft’ teT such that F = Ft(etsgc)*
P a.s. for every x and every t >0 (cf. (2.10) and Jacchsen [2]. Lemma 1).

As for our other results, the assumption of a countable state space is
used chiefly to avoid measure theoretical problems in the proofs of the harder
‘only if' assertions of Theorems (2.3), (3.9) and (5.2), while the restriction
to discrete time is essential for our treatment of conditional independence
aciross a random time. The basic criterion for deciding whether a randem time
possesses the conditional independence property is Lermma (3.12), the proof of
which relies on the fact that within the set A(t=n), where A is an arbi-
trary atom in an the conditional probability law of eT given the pre-t
field may be determined as a conditional Py-probabiiity aiven the event gnA
which is the section of (t=n) beyond A. A generalization of this to pro-
cessas in continuous time fails, partly because the conditioning event ‘GnA
may now have measure 0 for more than a negligible collection of atoms A,
and partly because, even when this is not the case, it is no longer obvious
that the desired conditional probability given FT results. For some

criteria for conditional independence and some of the subtleties involved see

Jacobsen [2], Pittenger and Shih [6].
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