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The limit theory for supercritical, positively regular Markov 

branching processes with a finite set of types has long been known 

in its sharpest form. See [18] and [2] for the discrete and con­

tinuous time case, respectively. For processes with a general set 

of types the situation is less satisfactory. The theory is com­

paratively incomplete, and the techniques used to prove the funda­

mental convergence results depend on second moment assumptions. 

See [12J, (13], [14J for the general case and [9], [10], [21], 

[22] for diffusion examples. 

In this paper we develop the general theory with conditions 

as weak as those for a finite set of types. In particular, we obtain 

almost sure convergence without assumptions beyond positive regular­

ity, and we solve the problem of finding the proper generalization 

of the x log x condition which is necessary and sufficient for the 

non-degeneracy of the limit variable. Some results are extensions 

or sharpened versions of known results, others are completely new. 

Also, many of our proofs, when specialized, are simpler than those 

in the literature for '/3. finite set ,of types, which often ilo not 

admit a generali~ation to the infinite case. 

The formal basis of our theory is an asymptotic representation 

of the first moment semigroup, which we adopt as definition of 

positive regularity in case of a general set of types. The concept 

of ' positive regularity is not unambigous in the infinite case, and 

the motivation for our specific assumptions derives from branching 

diffusions. For a large class of such processes the representation 

can be derived by exploiting asymptotic spectral properties 
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of the generator. The idea first occurred in connection with the 

limit theory for critical processes ([15J). 

Branching diffusions not only are of heuristic value for the 

development of a general theory, they also serve as models for 

various biological and physical phenomena, thus providing a testing 

ground for any general theory. We considered it to be crucial 

that, when applying the theory to a branching diffusion, all our 

conditions could be expressed in terms of the quantities from 

which the process is actually constructed. 

In Section 1 we give the preliminaries and state the results 

in the general setting. Section 2 conta~ns the corresponding proofs. 

Sections 3 and"4 deal with a class of branching diffusions: We 

define the model, derive the fir'st moment representation, and 

reformulate our limit theory irt terms of natural model parameters. 
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§l. General Model: Preliminaries and statement of results. 

Let (X,~) be a measurable space, B the Banach algebra 

of all bounded, A-measurable functions ~ on X with norm 

"S II = supl~(x)l, 
x 

and denote by B+ the nonnegative cone in B. 

Write X(n) for the symmetrized n-fold direct product of X, 

let e be some extra point, X(O) = tel, and 

~ = ; x(n) 
n=O 

A ~ 
Define A as the a-algebra induced on X by A. Every element 
A A . . 
X E X defines a counting measure 

A ° 1 X = e, 

~[A] = 

bn X and we write 

" x[ s] = 
1\ r ~ (x) x [ dx] • 

X 

Take T = N = [0,1,2, •.. } or T = R+ = [0,00[, and suppose given a 
" Markov process r" x lXt,P } in with parameter set T and 

stationary transition probabilities satisfying the branching 

condition 

( 1.1) 

e 1\ _ 

P (xt[X] = 0) = 1 

L: 
n· 1+·· .+n'k=n. 

1. 1. 1. 

i=l, .•. ,m 

n. ; i=l, ... ,m) = 
1. 

k <x.> 
II P J (~t[A. ]=n .. , i=l, ... ,m) 

, 1 1. 1.J J= 
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A > A > for all t € T, x = <xl, ... ,xk € X, k 0, n i € N, and every 

decomposition (Al, ... ,Am) of X with Ai € A, i = l, •.. ,m, m> o. 

Such a process is called a Markov branching process. For questions 

of existence and construction see [16J, [20J. 
A A 

1\ 
EX~tTIJ < If for some x € X and t € T, 

A 

then ~~t[·J is a bounded linear functional on 

00, where l(x) = 1, 

B. If furthermore 

(1.2) 

then E<· >~t[· J: B ~ B is a bounded linear operator, and if (1. 2) 

holds for s,t € T, then 

is an immediate consequence of (1.1) and the Markov property~ 

We now define our general model by the following additional 

structure: 

(M) The first moment semigroup (E<·>~ [oJ) exists and can be t t€T 

represented in the form 

with a non-negative bounded linear 

functional on B such that 

cp* [Q~ • > [ . '] J ;: 0, 

t > 0 J 
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for some real-valued a: T ~ [O,oo[ satisfying 

t ~ 00 • 

Notice that (M) implies that ~* is a measure. For convenience 

we take ~*[l] = '1. Also, ~* and ~ are the left and right 

eigenvectors, respectively, of E<·>~t[·] corresponding to the 

eigenvalues t 
P • In particular, ~* is the invariant distribution 

-tl\ of the types an~ Wt = P Xt[~]' t € T, is a martingale with 

respect to Ft ~ O"(~s; ° < s < t) • 

We restrict ourselves to the investigation of the supercritical 

case p > 1. We first state the main results for T = N and then 

give the extension to T = R • + 
In discrete time the a.s. existence of 

W = lim Wn is immediate without fUrther assumptions, appealing 
n 

to the martingale theorem. 

Theorem 1. Given (M) with p > 1 , 

a. s. ) ~*[T1]W, n~oo,. 

for all 

The limit variable W may be degenerate at 0. The question 

of how properly to generalize the x log x condition known to be 

riecessary and sufficient for non-degeneracy in the finite case 

presents a problem. The answer is provided by the next theorem. 

Let 

(1. 3) 
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so that is the x log x moment of given that the 

type of the original particle is distributed according to ~*. 

Theorem 2. Either I < 00 for all n > 0, or In = +00 for all n 

n> O. If 11 < 00, then E<x>W = ~(x) VX E X. If' 11 = +OQ, 

W s o [p<X>] Vx E X. 

Let us now turn to T = R+" In order to ensure the a.s. 

existence of W = lim Wt we have to assume separability of 
t-+oo 

then 

/\ xl 
{Xt[~]'P J. The continuous time version of Theorem 2 follows immediately 

from the discrete time version. As regards Theorem 1, the proof 

fur discrete time is easily adapted .toshow that 

(1.4) -tl\ [ P > P x t 'Il] - ~* ['Il] w, t -+ 00, 

Also, 

(1.5 ) a. s. >~*['IlJW, N3 n -+ 00, e: > 0, 1 
'Il E Lcp* 

is immediate without further assumptions. But the passage from this 

a.s. convergence of skeletons to a.s. convergence as t -+ 00 

continuously is a non-trivial problem, which has been considered 

before in various settings ([2], [14]1), [17]). A simple and 

natural situation is the following: 

Theorem 1'. Let X be a separable metric space, A the topological 
A 

B 1 1 b d f A pX} ore a ge ra,an x t ' right-continuous, satisfying (M) with 

P > 1. If If E B+ is lower semicontinuous a. e. [cp*J and 

l)In Theorem 2 and Corollary 2.1 of [13J it should read ~ = ~C and 

~ = ~" respectively, where ,E B. 
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(1.6) a. s. > cp* [ -J'] W, 

then 

(1. 7) a. s. t -')- 00, 

for every '11 E B. which is continuous a.e. [cp*J. 

The role of the various a'ssumptions will become transparent 

from the proofs in §2. We always have (1. 6) for cJ = cp, of course, 

but if inf cp(x) = 0, as is the case for branching diffusions with 
x 

absorbing barriers, this is unsatisfactory since one would like to 

describe als~ for example, the asymptotic behaviour of 

the size of the population at time t. To deal with this case we 

need additional structure and we return to the problem in connection 

with· our branching diffusion model in §4. 

We conclude with a theorem on the existence of moments of W 

and rates of convergence. Theorem 2 suggests that corresponding 

results from the finite case ([5J, [7], [lJ) can be generalized 

to the present ·context by carrying conditions on the offspring 

distribution into conditions on 

(1. 8) 

00 

Theorem 3. Let ° > o. If £ yPdFO (Y), < 00 for some p 

wi th 1 < p < 2 , then 

00 

where lip + l/q = 1. Also, if 6 y(log+y)U+ldFo(y) < 00 for some 

U > 0, then 
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1\ 

EXW(log+W)a < ~ and W - Wn = o(n-a ) 

We shall omit the proof. The convergence rates are ob~a'ined 

by combining the methods of the present paper and of [1]. For the 

existence of moments our method is different from the approach in 

the literature ([5], [7]) and will appear elsewhere. 
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§2. General model: Proofs 

The branching prop~rt,y (1.1) implies that for every 5 E T""-( OJ 
1\ 

[yt,pr} in (~,A) which is equivalent to there exists a process 
"-

[ II. x 
xt,p } and has the following property: There exists an increasing 

family [D-k}kEN of a-algebras such that ·for every A-measurable 

~ and all n,m E N 

where the ; are G -measurable, -n+m 

independent conditioned upon .g~ , and satisfy 

<y~5) A 

= P5 (~m5 E A), 
A A 
A E A 

with Yn & = < ... ,y~&' ... ). Hence it does not ,lead to 

, 

a loss in generality if for any fixed & such a representation is 

used for (~t'pX} itself. 
A A 

Where it is unambiguous, we shall write P , E instead of pX,Ex. 

Our plan for the proofs is motivated by the fact that if the 

x log x condition fails to hold, we need W = 0 a.s. in our 

proof of Theorem 1. Hence Theorem 2 will be proved first. 

Here and in § 4 it will be convenient to work with the 

function 

log*x = 

f x/e, 

l 
o < x S e 

log x, e<x<.fX) 

We summarize some of the properties of log* 
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Lemma 1. x log*x is non-negative, non-decreasing and convex. 

If S = Xl+ .. ,+XN is the sum of N independent non-negative random 

variables, 

(2.1) 
N 

ESlog*S < ESlog*ES + EEXilog*Xi 
i=l 

Proof: The first part of the lemma is immediate. By the inequality 

log*(a+b) < 10g*a + log*b, a,b > 0, 

N N 
E S 10g*S = E l: Xi log* Jo=El Xj < 

i=l 

(2.2) 

with 

N 
E [EXolog* 

° 1 1. 1.= 
t XJo + EX1..10g*x1..} < (Jensen's inequality) 
j~i 

N N 
E [EX.log* E EXJo + EX1..10g*x1.') < ESlog*S + t EX.10g*X.. [J 

i=l 1. j~i i=l 1. 1. 

We shall use (M) in the form 

m = 1,2, .•. , 

independent of This' is immediate for ~ 

bounded, and the extension to follows by monotone convergence. 

Proof of the first assertion of Theorem 2: Let 

(2.3) 

We may replace In by By convexity and the martingale 

* property In is non-decreasing in n, so that it suffices to prove 
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that n > 0, implies that Letting 

A [lJ X An, i [ J N = xn ' i = x2n ~, s = ~2n[~] it follows from (2.1), 

(2.2) that 

t;n (x) = E<x>E(~2n [~J 109*~2n [~J I Fn) < 

for suitable constants Integration with respect to ~* 

completes the proof. r1 

The next lemma presents a key step in the proofs of Theorem 1 

and Theorem 2 as well as in the transition from discrete to 

continuous time here and in §4. 

Lemma 2. Let 0 E T"[ oj and let n = 0,1, ... , 

i = 1, ... '~no [1] be random variables such that ° < Y~, i < z~, i , 

yO . 's are independent conditioned upon F ~ 
n,l --------=-------------------~-- -nu 

and that the the 

distribution G<O > of ZO. depends only on the type 6f the 
xi n,l 

particle alive at time no. Define 

~ [lJ 
no 00 -no 

1'\ 

X ~ [lJ nu 0 -no 
P .I:l Yn,i'~n=P 

l= 

!Xl 
Then (M), p>l, and ~*[ J YdG<.>(y)] <!Xl imply that 

o 

(2.4) 

1: ? . . 
o 1 n,l 
l= 
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In particular 

(2.6) 

Proof:, Let 

By assumption the distribution GO bas finite mean, and we get 

00 00 
£6 dGo (y) < c £ ,ydG6, (y) < 00, 

p 

00 
= E EVar (~~I ~no) < 

n=O 

IX) ~n6 [1] 00 
E -2no(E E E(~O .21F )) < E -2n6E~n~[~n2] < p n ~ -no - P u 

n=O i=l' n=O 

no l y2dGO(y) < c £00 ydG6 (y) < IX) • 

(2.5) implies by standard estimates that ~! - E(~~lln6) a.s. > 0, 

so that (2.6) follows by (2.4). [J' 

Remark If we drop the summation over n and replace n E. N with 

t € [OJOO[] the estimates above show that at least p(S~ f -s-t) ~ 0, 

var(-S-~ - ~(~~IEt6)) ~ 0, s~ -E('S~I!'t6) ~> 0, t ~ 00. 
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We are now prepared to complete the proof of Theorem 2. The 

idea is to exploit systematically the martingale property of 

-[Wri1n€N or rather of (Wnoln€N' where S is a large integer to 

be determined later. Our method "is different from that used for a 

finite set of types in [18], [4]. We shall use the set-up of 

L 2 ·th .y& ZO Ano,i [] Th emma w~ n,i = n,i = x(n+l)0 ~ • en 

:i [1] 
o 1 no Ano , i 0 

Sn = pn i:l x(n+l)o[~] = p W(n+l)o' and we let 

w(n+l) 0 
= p - orgno = -r_l ........... -=­

(n+l) 6 
p " 

~no[lJ 
I: 

i=l 
yO 1 
n, i [yO . < no 1 

n,~ - p 

so that 

(2.8) 

1 
Wno ... p (n+l) o. 

From Lemma 2 we immediately get 

Lemma 3. (M), p>_l, implies that 

00 

(2.9) n~oP(W(n+l)o ~ w(n+l)0) < 00 

and that 

, 

(2.10) 
00 

E (V1(n+l) S - Wno + €n," 0 1 converges a. s. and in Ll 
n=O 
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In fact, (2.9) is clear from (2.4), and (2.10) follows from (2.5) 

and the convergence theorem for L2-bounded martingales, if we observe 

that the terms of the, series in (2.10) are martingale increments by 

(2.8). 

Lemma 4. Let ~ ,n, [) be defined by (2.7). Then for, any m,5> 0, 
00 

if and only if 'I: cp* [ ~ ] < 00. 

n=O run, [) 

Proof: Note that (cf. (1.8)) 

, 00 s 
ydFS(y), IS = f y log Y dF (y). 

o 

Lemma 5. For an appropriate choice of S there are constants 

cl ,c2 > 0 such that ~n,s(X) > cl~(X)CP*[~n,l] and thus 

(2.11) 

Proof: L t A (1\ ['] > n1 A 1.0 ::;:; {~~-l,i[cp] > pnl. e = x 5 cp p-, u 

o 

and we need only to take 6 with c~_l > o. (2.11) is now immediate 

from the definitions. [J 
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Proof of Theorem 2" completed: Su.ppose first II < 00. From (2.2), 

Lemma 4, and the definition of €n,6 we get 

00 00 
E E€n,l< c E ~*[S IJ < 00 . 

n=O n=O n, 

Therefore we have 1 
L -convergence of E€n,l by positivity and of 

r:[~n+l - Wn } by (2.10) with 0 = 1. Since ~n+l < Wn+l ' we get 

for any N 

'As N -7 00, the last term tends to, 0, so that E<x>W > ,~(x) • The 

converse inequality is immediate from Fatou's lemma, since, 

E<x>W = ~(x). 
n 

Next 'suppose that II = +00. By (2.9), the Borel-Cantelli lemma, 

and (2.10) we have a.s. convergence of E[W(n+l)e - Wne + €n,e} 

and therefore, since W exists, of 

Then by Lemmata 4 and 5 

E€ s:.Let n,u 

a. s. on 

which is only possible if p<x> (W > 0) = p<x> (W-) 0) = o. D· 
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We now proceed to the proof of Theorem 1. The idea is quite 

,simple 8.nd becomes transparent if we set 'Iln = 'Il in the next two 

lemmata, However, this identification would lead us to Theorem 1 

for I" I <ccp only. 

in order to deal with 

The added generality of Lemma 6 is needed 
1 

'Il E L * • cp 

Lemma 6. Let r"n J .be a sequence of averaging functions such 
1 

that ° <"n <" for Rome " E Ltp*. Define for any- m 

.Then (M), p> 1, and the assumption 

(2.12) 

imply· 

1 
<5 n ,m = n 

p 

a, s'7 0 , 

Proof: In the notation of Lemma 2 with <5 = 1, 

Also, by (2.2) 

Using (2.6) and (2.12) we get 

> 0, \rm 
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lim sup ( s~/ pm - cp* [ T1n+mJ Wj = 
n 

Letting m ~ 00, it follows that the lim sup of the left-hand 

side of (2.13) is < O. The inequality for lim inf is obtained 

similarly. [J 

Remark. If we replace n € N with t € [0,00[, then E5 t ,m < 

where is as in the proof of Lemma 2. This shows 

. P > 6t ,m - 0, t ~ 00. Taking T1 = T1 n and using the remark f·ollowing 

the proof of Lemma 2, we can repeat the argument with a.s. convergence 

replaced by convergence in probability to get (1.4). 

Lemma 7. -If we can take T1 = ccp, c L 0, in .Lemma 6, then (2.13) 

holds, assuming only (M), p> 1. 

Proof: We' can assume c = 1. Then by (2.7) 

Thus by Theorem 2., (2.12) holds if 

implies 
00 00 

I = +00, m and otherwise Lemma 4 

t E6n,m < c* t cp* [g ] < 00 n,m and thus (2.12). o 
n=O n=O 



Proof of Theorem 1: We take 

prove (2.12), that 1s 5n,m == 

nn(X) == E<X>~[nJl An' 
(xm[nJ)p 1 
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n == n n in Lemma 6 and have to 
-nl\ ,.... 

p xn[ T1n] 
a.s. > 0, where 

But by (2.2) (~ 1 satisfies the lin 

assumption of Lemma 7 with c == c+pm~*[T1J so that by (2.13) m 

limn sup 5n,m = limn sup cp* CnnJ W = 0 , 

where we have used the dominated ponvergence theorem for the last 

equality. D 

We conclude this section by giving the transition from discrete 

to continuous 'time, i.e. the proof of Theorem I'. Define for 

F!,5 > 0, U SX, iJ'€ B , + 

ue:(x) == (y € U: I(y) L (l+e:)-l-3'(x)), 

;~' e: (x) = p<x) (~t € UE: (x)vt '€ [0, 5J) .• 

Lemma 8. Suppose that for some e:) 0 

(2.14) .. 5, E: "'I I' ':IU U a. e. [cp*J, • 

Then 

Proof: Consider the t" i h particle alive at time n6 with type, 

Xi' and let 
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Then 

vt € [no, (n+l)o]. 

Wi th Zr, ~ = ~(x .. ), (2.6) and (1. 5 ) give . n, ~ J.. 

-tA [ q.. > -0 -no lim inf p xtv lU] _ P lim inf p 
~oo ~oo 

= 

-0 -no p lim inf p 

" xn~J 1] 
.~. E(Y~'~I~no) 
1=1 ' 

= 
fr700 

p-olim inf p-no£no[(l+e)-l·,rst,e:] = p-oCP*[(l+e)-lt?'~~'€JW 
~oo 

(2.15) follows from (2.14) by letting 0 7 0, € 7 0 in that 

order. D 

Lemma 9. Suppose X is topological, 

(~t'P~) right-continuous. Also, let 

A the Borel a-algebra, 

p - t~t [ '" ] a. s. > cp* [ ~ J W 

for some ~ €B+, l.s.c.a.e. [cp*J. Then for any U c X whose 

boundary aU· has cp*-measure 0, 

(2.16) t 7 00 

Proof: If x is in the interior ofU, our assumptions imply that 

~t,€(x) t 1 as 0 t 0, so that (2.15) holds. 

also lim sup p-tQt[vlu] = cp*[ir]W - lim inf 
~oo . ~oo 

cp* [~lU]' completing the proof. 0 

c Since aU = aU , 

p -tQt[ "'1 c] < 
U 

Proof of Theorem 1': The case cp* [ it] = 0 is trivial e c1ndalso 

(1.7) is obvious on ("vl = OJ. On (W> OJ, the random probability 
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measure ~t ["J == Qt [ ff 11] /~t [ {f ) is well-defined and for each 

continuity set U of lJ.[fl] =cp*[Vit]/q'}*[V], IJt[IU] a.s. > 1J[IU] by 

(2.16). Taking an appropriate denumerable class of such U's, 

Theorem 2.2 of [6] shows that IJt converges weakly to IJ for 

almost all realizations of the proces~ completing the proof 

([6]). D 
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§3. Bra.nching diffusions: Preli.minaries and representation of 

the first moment semi-group. 

We now discuss our theory in terms of branching diffusions. 

The principal mathematical difficulties that arise in our context 

are present already with a one-dimensional diffusion. For greater 

clarity we therefore restrict ourselves to this case. However, all 

results and proofs of this and the following section can be formu-

lated with n-dimensional diffusions~ and we shall do this in the 

more comprehensive framework of a future publication. 

Let X c R be a bounded interval with end-points a,/3. The 

interval may be closed, half-open or open. Denote by r:P the set 

of all n times continuously differentiable functions on the closure 
"-

[a,~J of X. Let {~t~PX} be the Markov branching process deter-

mined ([16J,[20]) by the following data: 

(a) The diffusion process (Xt'pX) on X defined by the 

differential generator of its transition semigroup, 

where 

(3.1) 

and D(A) 

d2 d 
Au = a - u + b dx u, U E D (A) , 

dx2 

a E C2 , b E Cl , inf a (x) > 0, 
XEX 

is the set of all 2 u E C satisfying the separated 

endpoint conditi.ons 
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Here Va + 0, yl = ° corresponds to aDsorption at ex and 
a 

Va =, 0, yl + ° to reflection at a and correspondingly for ,~. 

(3.2) 

with 

(3.3) 

a 

(b) The termination density 

k E: C2 , k > 0. 

(c) The local pranching law 

I\. 

2 m = ~ n Pn E C • 
nfl 

/\ /\ 
(A E A) 

A. X 1 The process tXt,P} is constructed according to the fol owing 

intuitive picture; All particles move independently, each according 

to (xt,pX). Branching of a particle whi.ch is at the point x E X 

at time t occurs in [t, t+6J 'wi th probability k(x)6 + 0(6). 

At the point x and time of branching a particle is replaced accord-

ing to 7r(x,.) by a (possibly empty) population of, new particles. 
A 

Condition is more than enough to guarantee that ( A x) xt,P 

is conservative ([20J). 

Theorem 4. The process 

has the property (M) 

° < c < r(x) E C2 . 

1\ X tXt,P} constructed from (a), (b), (c) 
(3' , 

wi, th C+' E D (A), cp * [ T] J == J T] ( x ) 'cp ( x ) r (x) dX, 
a 

Proof: The d~ffusion process is constructable as a conservative 

process either on X, when X is compact (no absorption), or 
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on X' = X U( o}, when X is noncompact (absorption). Here Xl 

is the one-point compactification of X, with 0 serving as trap_ 

Define C :::: CO 
0 if X is compact and C = 0 [g € cO:s(x) ~ 0 

as x-+ o} otherwise. Then the transition semigroup 

{Tt } of (xt,px ) satisfies TtCO C CO' t > 0, and 1.s strongly 

° continuous on ·Coo In conjunction w1.th k, m E C this implies 

not only E(')Xt [1] E. B+ vt~ 0, but also. that {E<'>~t [. ]} t ~ 0 is a 

strongly continuous semigroup on Co with differential generator 

LV = Av + k(m-l)v, V € D(L) = D(A), 

cf'. [16], slightly adapted. 

Consider now the eigenvalue problem 

Lv = AV, v E D(A). 

Since a,b,k,m E CO and inf a(x) > 0, multiplication by 
x 

p (x) = exp(Jx ill)t) dy} 
a .aryr 

leads to·theregularSturrn-Liouville problem 

, 
(pv') + (q-Ar)v = 0, v E D(A), 

q = k(m-1)p/a, r = pia. 

As is well-known J see e.g. [8J, Ch. 8, there exists a sequence of 

real eigenvalues 

(3.4) 

and a complete system of eigenfunctions (v"'}, v'J corresponding 

to "v' such that 
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{3 r v \I (X)V (x)r(x)dx == 6\1\l' 

a \J. 

That is, for ; € D(A) 

t > 0, 

where 

Moreover, 

(3.6) 

v has exactly \I zeros in ]a,{3[, i.e. 
:\1 

and know by unlci ty that 

(3.7) 

we can choose 

By (3.1)-(3.3) we have 2 p, r € C , and we can use Liouville's 

substitution 

x 
vex) = (p(x)r(x»-1/4w(y)) y =J (r(z)/p(z))1/2 dz € [O,y({3)] 

a 

to obtain the normal form 

where 

w" + (q - }...) w ~ O? 

q = q/r + (pr)-1/4 ~22 (pr) 1/4, 
ay 

with regular separated endpoint conditjons, generally with chang~d 

eoefficients. The eigenvalues remain the same as before. 
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Now applying the theory of asymptotic spectral behavior of 

differential operators ([19]), 

(3.8) " > 0, 

(3·.9) w,,(Y) = 2 1/2 lID (~) sine I ""I y+ c,,] + 6,,(Y), 

(3. 10) sup I" 5,,(Y) I < 00, 

y," 

(3. 11) sup 
y," 

16~(y) I < 00. 

Given (3.8) to (3.10), we can extend (3.5) .:flrst to lJ;€Co' using the 

stone-Weierstrass theorem, and then to ~ £. B,. using the fact that 

E(X>Xt[lA] and vy-[lA] are ()- additive inA EA. With (3.6), (3.8), 

(3.9), (3.10) and, if wo(O) = 0 or Wo~¥(,B-» = 0, also (3.7), (3.11), 

and L'Hospital' s rule 

(3. 12) 

Since vo > 0, r > 0,· (3.12) implies 

uniformly in g € Be Hence. 

< > "ot * * 
IE x ~t[gJ - e vO[g] vo(x)l< ·at vo[lgl Jvo(x), 

0: = t 
00 2·"t 
t 0(,,) e" , 

,,=1 

-"ot 
and by (3.4), (3.7), e at ~ 0, t ~ 00. Thus (M) with the convention 

[ ] - * * * -1 * "0 -D ep* 1 = 1 is satisfied with cp = vO[lJvO' q>= (VO[l]) vO' p = e • 
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04. Branching diffusions: Limit results 

The set-up is that of §3 with " p = eO> 1, 

Theorem 1" Assume in addition to the assumptions of §3 that p> L 

Then for any 1 
Tl E L * 

!fl 

p-t~[Tl] P~~*[Tl]W, , 

If Tl is bounded and a.e. continuous, then 

Proof: The t·wo first assertions are immediate from (1.4) and (1.5). 

For the third we have only to prove p -t~t[l] a,' so> w, t '"700, in 

view 'of the absolute continuity of '4l*.I'c+J*[l] = 1, and Theorem 1'. 

However, the assumption (2. 14) of Lemma 8 is fulfilled for U = X, 

so our problem reduces to proving 

lim sup p -t~t[lJ < W a.s. 
t-""oo 

Define the auxiliary process (Yt'P~), Yt=~t[l] + Nt' where 

Nt is the number of particles absorbed up to time t plus the 

number of branching events up to time t. Clearly, is 

non-decreasing and 

(4. 1) 

E(X> < at Yt _ e , .0 < a = "kll ( /I mil + 1) < 00 • 



No VI let 6 > 0 be fixed and let be defined 

the obvious way. Using (2.6), we get in the notation of Lemma 2 

" 
-t,,- [ -n5 

xn5 [1] 
y5 lim sup p x t 1] ~ lim sup p !: = 

t-+oo n~oo i=l n,i 

lim sup S6 
n = lim sup E(S~ I Fn6 ) 

n~oo n-+oo 

lim sup E( s~ I Fn5 ) 
n-+oo 

/ ao -nO .... 
~ e' lim sup P xno[l] = 

n+ 00 

As 5 ~ 0, the proof is complete. o 

We recall the definition (~.3) of _It Degeneracy of W at ° 
is, of course, equivalent to It = +00 for some t > 0. But the 

relation It < 00 is difficult to verify and it is therefore 

desirab.le to have a criterion in terms of the natural model parameters 

A,k,~ of the branching diffusion. Heuristic consideration of 

It for small t leads to the condition 

, 

where~(x) = E n log n Pn(x) 

Theorem 2' For any t > 0, It < 00 if and only if (4.3) holds. 

That is, E<X>W = ep(x). 11 x E X if and only if (4.3) rolds, ~ 
W = ° [p<x>]. V x E X otherwise. 

'. ' 

Remark: The properties of fP a.nd cp* obtained in §3 make it 

possible to verify (4.3) without knowing r.p,r.p* explicitly. 
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E.g. in the cas~ of absorbtion at a and ~, (4.3) is equivalent to 

J~(x-a)2(~-x)2k(x)K(X)dX < 00 

a 

Of course the heuristic derivation of (4.3) does not constitute 

a rigorous proof. To see the problemJ note that the situation is 

somewhat similar to that of [3], where despite the simplicity of 

the model the proof is non-trivial. In addition to the times of 

branching, or spli t times, 'T l,T 2,0", our proof also has to 

take into account the stopped diffusion, 10 e. the transition semi­

group tT~} of the eXPt-Stk(Xs)dS} - subprocess of (xt,pX) 
o 

denote constants with 0 < c < 00 • 

'V 

Lemma 10 There are to > 0 and cl ,c2 such that 

(4.4) 

Proof: We have 

(4.5) 

where 0* A 

[llJ. But 

(4.6) 

so that 

is the adjoint of the generator AO 

, 

of see 
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from which the sec.ond- inequality. in --(4. 4) follows by iteration- -

(take c2 = eAotO ). Also, from (4.6) AO*~*) -c3~* Inserting 

in (4.5), we get 

for t < to • Choose to such that o 

Proof of the 8uffic-ienc,Y of' (4.3): For ~o € ~, X € X· define 

(cf. (2. 3) ) 

t*t (x) = t*t (x») , ,n , n 

Then 

" For j=l, ... ,xO[lJ, define B(j,n) as the event that there are 

at most n splits in the jth line of descent up to time 
1\ 
xO[lJ 

~ E ~~,j[cpJIB(j n)' 
j=l ' 

and by (2.1), 

Thus for 0 ~ t ~ to ' 

t Then 
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(4.8) 

Inserting (4.4) and (4.8) in (4.7) leads to 

cp*[t* IJ ~ c7 '+ c8 cp*[kcpX,] + c9 t . sup cp*[t* ] 
t, n + - ~ O~ s~ t s, n 

for 0 ~ t ~ to' Since IIttoll ~ c lO ¥t) 0, it follows from· 

our assumption (4.3) that 

I; = q>*[t*t J ~ sup sup 9*[1.* J < 00 

nEN ~s~t s, n 

o 

Proof of the necessity of (4.3): Let 

" tt(~) = EXXt[~Jlog*Xt[CPJ , 

so that t:t(x) = l';C<x») (cf. (2.3)). Then 

(4.9) t:t 2. E<')~t[CPJIOg*~t[CPJl{Tl~t} 

= StTo[k S 1';_ (~)1fC" d~) Jds 
Os" s x 

Since ~t[cpJ is a submartingale, it follows by convexity that 
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00 

(4. 10) J,\1';(~)1T(x,d~) 2. E Pn(x)n~(x) log*(ncp(x)) 
x n=2 

L ~(x)~(x) - Cll . 

Thus, if cp*[k~~] = +00, it follows by inserting (4.4) and (4.10) 

in (4. 9) tha t 

for 
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